
PHYSICAL REVIEW A 104, 052410 (2021)

Quantum diffusion map for nonlinear dimensionality reduction

Apimuk Sornsaeng , Ninnat Dangniam, Pantita Palittapongarnpim ,* and Thiparat Chotibut †

Chula Intelligent and Complex Systems, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

(Received 25 June 2021; accepted 24 September 2021; published 10 November 2021)

Inspired by random walks on graphs, the diffusion map (DM) is a class of unsupervised machine learning that
offers automatic identification of low-dimensional data structure hidden in a high-dimensional data set. In recent
years, among its many applications, the DM has been successfully applied to discover relevant order parameters
in many-body systems, enabling automatic classification of quantum phases of matter. However, a classical
DM algorithm is computationally prohibitive for a large data set, and any reduction of the time complexity
would be desirable. With a quantum computational speedup in mind, we propose a quantum algorithm for
the DM, termed the quantum diffusion map (qDM). Our qDM takes as an input N classical data vectors,
performs an eigendecomposition of the Markov transition matrix in time O(log3 N), and classically constructs
the diffusion map via the readout (tomography) of the eigenvectors, giving a total expected runtime proportional
to N2polylog N . Finally, quantum subroutines in the qDM for constructing a Markov transition matrix and for
analyzing its spectral properties can also be useful for other random-walk-based algorithms.

DOI: 10.1103/PhysRevA.104.052410

I. INTRODUCTION

Discovering statistical structure in high-dimensional data is
essential for data-driven science and engineering. Advances in
unsupervised machine learning offer a plethora of alternatives
to automatically search for low-dimensional structure of data
lying in a high-dimensional space. Many of these approaches
involve dimensionality reduction. A classic approach is the
principal component analysis (PCA), which projects high-
dimensional data onto a low-dimensional linear space spanned
by a set of orthonormal bases, whose directions capture sig-
nificant data variations. A more compelling approach enables
automatic searches for a low-dimensional data manifold em-
bedded in a high-dimensional space. Well-known manifold
learning algorithms include Isomap [1], Laplacian eigenmaps
[2], uniform manifold approximation and projection (UMAP)
[3], nonlinear PCA [4], t-distributed stochastic neighbor em-
bedding (t-SNE) [5], and the diffusion map (DM) [6–8],
which is the focus of this paper. Inspired by the appealing
features of random walks on graphs, the DM and its variants
have received increasing attention for data visualization in
bioinformatics [9,10]. The DM has also recently been success-
fully applied to provide automatic classification of topological
phases of matter, and offers automatic identification of quan-
tum phase transitions in many-body systems [11–16].

Most dimensionality reduction methods require the com-
putation of singular value decomposition (SVD) of a matrix
constructed from a collection of high-dimensional data points.
For a matrix of size, say, N × d , where N is the number of
data points and d is the dimensionality of each data vector

*Corresponding author: panpalitta@gmail.com
†Corresponding author: thiparatc@gmail.com,

thiparat.c@chula.ac.th

(assumed to be smaller than N), the computational cost of
SVD typically grows with the number of data points as O(N3).
Thus, classical dimensionality reduction can be computa-
tionally prohibitive for a large data sample. However, under
moderate assumptions of accessibility to certain features of
full-scale quantum computers, matrix exponentiation-based
quantum algorithms have been proposed to perform SVD
more efficiently [17]. In particular, assuming efficient encod-
ing of classical data to quantum information and accessibility
to appropriate quantum random access memory (qRAM), the
quantum singular value decomposition (qSVD) algorithm’s
runtime for many nonsparse low-rank Hermitian matrices is
O(polylog N), which is exponentially faster than the classical
counterpart and can be extended to nonsquare matrices. A
classic quantum algorithm for dimensionality reduction with
quantum computational speedup is quantum principal compo-
nent analysis (qPCA), which exploits matrix exponentiation
tricks as in qSVD [18]. More recently, quantum algorithms
with quantum advantage for nonlinear dimensionality reduc-
tion with nonlinear kernel [19] and cluster identification based
on spectral graph theory have also been proposed [20–22].

With a quantum computational speedup for dimensionality
reduction in mind, we propose a quantum algorithm for un-
supervised manifold learning called a quantum diffusion map
(qDM). Under mild assumptions of appropriate oracles, the
qDM has an expected runtime of roughly κ0.625

D N2polylog N ,
where N is the number of data points and κD is the condition
number of the degree matrix (see Theorem 1 and Lemma 1 for
the precise statement), as opposed to O(N3) in the classical
DM. Although κD depends strongly on the data structure and
can take the value N in the worst case, such a worst case
is highly atypical for a well-structured data set, in which
κD = O(1). Without the final readout step, our qDM algorithm
prepares all necessary components for constructing the diffu-
sion map in O(κ0.625

D log3 N) time.

2469-9926/2021/104(5)/052410(12) 052410-1 ©2021 American Physical Society

https://orcid.org/0000-0003-3698-8412
https://orcid.org/0000-0002-9108-2181
https://orcid.org/0000-0002-8936-1413
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.052410&domain=pdf&date_stamp=2021-11-10
https://doi.org/10.1103/PhysRevA.104.052410

APIMUK SORNSAENG et al. PHYSICAL REVIEW A 104, 052410 (2021)

Although the backbone of the DM is a graph-based dimen-
sionality reduction method, the procedure is different from
other spectral graph methods. Namely, rather than working
with the data-induced graph Laplacian as in Laplacian eigen-
maps or in spectral clustering, the DM involves a Markov
transition matrix that defines random walks on a data-induced
graph. Therefore, recipes for qDM dimensionality reduction
are different from the recently proposed quantum spectral
clustering [20,21], mainly in the efficient construction of the
degree matrix, which was mentioned as not efficiently ac-
cessible [21]. Our algorithm also exploits the coherent state
encoding scheme, initially proposed in Ref. [23], to provide
an exact quantum encoding of a classical Gaussian kernel.
This is in contrast to the quantum kernel principle component
analysis (qKPCA) [19] for dimensionality reduction, which
only encodes the nonlinear kernel approximately.

The paper is organized as follows. Section II provides nec-
essary ingredients to understand the classical diffusion map
and its runtime. Section III introduces quantum subroutines
for the qDM, which is then discussed in detail in Secs. IV and
V. The qDM runtime complexity appears in Sec. VI. We con-
clude with the discussion and outlook in Sec. VII. Additional
details on the algorithmic complexity and the subroutines for
the qDM are provided in Appendixes A and B.

II. CLASSICAL DIFFUSION MAP FOR
DIMENSIONALITY REDUCTION

Given a set of N data vectors X ≡ {x(i)}N−1
i=0 , in which

each data vector has d features (i.e., x(i) ∈ Rd), unsupervised
machine learning seeks to identify the structure of data distri-
bution in a high-dimensional (d � 1) space. When the data
distribution has a highly nonlinear structure, a classic linear
approach such as PCA fails. Rather than using mere Euclidean
distance as a similarity measure between data points, the man-
ifold learning approach assigns the connectivity among data
points in their neighborhood as a proxy for proximity between
points; e.g., points on a toroidal helix embedded in three
dimensions with equal Euclidean distance can have different
geodesic distances on a manifold (different similarity; see
Fig. 1, top). This approach allows one to perform a nonlinear
dimensionality reduction by assigning an appropriate function
that maps a high-dimensional data point into a relevant lower-
dimensional Euclidean space embedding, while encapsulating
the notion of proximity in high dimensions based on neighbor-
hood connectivity.

Neighborhood connectivity leads to the development of
a graph-based manifold learning approach, where one can
assign a vertex i to a data vector x(i) and assign an edge
between a pair of data points that are considered to be neigh-
bors. Isomap [1] and Laplacian eigenmaps [2] are among
the first graph-based manifold learning algorithms, where
relevant low-dimensional data embedding can be extracted
from eigendecomposition of a data-induced graph Laplacian
matrix.

A. Diffusion map in a nutshell

In the diffusion map, the similarity matrix between a pair
of data vectors, or equivalently the weighted edge between a

pair of graph vertices, is often taken to be a Gaussian kernel:

Wi j ≡ Kσ (x(i), x(j)) = exp

(
−||x(i) − x(j)||22

2σ

)
, (1)

where the adjustable parameter σ , called the bandwidth, sets
the scale of the neighborhood. Two points whose squared
distance exceeds this bandwidth contribute exponentially little
to the weighted edge, suggesting that these two points are
far away from being a neighbor in its original feature space.
Given a graph with weighted edges Wi j , the DM assigns a
discrete-time random walk on a data-induced graph, where
the Markov transition probability from vertex i to j is given
by the normalized weighted edge,

Pi j = Wi j∑N−1
j=0 Wi j

. (2)

One can compactly compute the Markov transition matrix
P from the (weighted) adjacency matrix W , and the degree
matrix D ≡ diag{di}N−1

i=0 where di ≡ ∑N−1
j=0 Wi j by

P = D−1W. (3)

The notion of proximity based on graph connectivity can
be characterized by how fast random walkers on a graph
starting at different data points visit each other. One expects
that two points that are connected by multiple paths should be
near, whereas two points that are sparsely connected should lie
far from each other. In fact, it can be shown that [8] the proper
distance function, called the diffusion distance, between two
points x(i) and x(j) after a t-step random walk is given by

Dist2
t (x(i), x(j)) =

N−1∑
k=0

[(Pt)ik − (Pt) jk]2

u0(x(k))
, (4)

where u0 is the left eigenvector with eigenvalue λ0 = 1 of P
and u0(x(k)) denotes the kth coordinate of u0.

Before obtaining a relevant lower-dimensional Euclidean
space representation of the original data point x(i), we first
note the following important identity. Define the diffusion map
with m bases as

φt,m

(
x(i)

) =

⎛⎜⎝λt
1v1(x(i))

...

λt
mvm(x(i))

⎞⎟⎠, (5)

where vi is the right eigenvector of P with eigenvalue λi,
vi(x(j)) denotes the jth coordinate of vi, and the eigenvalues
are ordered such that λ0 = 1 > λ1 � λ2 � · · · � λN−1 � 0
assuming no degeneracy in the largest eigenvalue (which is
always possible given σ is sufficiently large). Note that λ0 = 1
is always the eigenvalue of a Markov transition matrix P with
a normalized eigenvector (1 · · · 1)T /N , corresponding to
the stationary uniform distribution over all vertices. Then,
the diffusion distance (4) can be exactly computed from the
Euclidean representation in Eq. (5) with m = N − 1 bases [8]:

Dist2
t (x(i), x(j)) = ||φt,N−1(x(i)) − φt,N−1(x(j))||22. (6)

The above equality states that the distance in the diffu-
sion space (based on graph connectivity) is identical to the
Euclidean embedding distance (induced by the diffusion
map). Thus, the notion of proximity between data points from

052410-2

QUANTUM DIFFUSION MAP FOR NONLINEAR … PHYSICAL REVIEW A 104, 052410 (2021)

x

−2

0

2y

−2
0

2

z
−0.5
0.0
0.5

(a)

0 200 400 600 800
i

0

200

400

600

800

j

0.0

0.2

0.4

0.6

0.8

1.0

G
au

ss
ia

n
ke

rn
el

K
σ
(x

(i
) ,

x
(j

))

(b)

−0.005 0.000 0.005
φ1

−0.005

0.000

0.005

φ
2

(c)

−2 0 2
PCA 1

−2

0

2

P
C

A
2

(d)

0 50 100 150
i

0

50

100

150

j

0.2

0.4

0.6

0.8

1.0

G
au

ss
ia

n
ke

rn
el

K
σ
(x

(i
) ,

x
(j

))

(e)

−0.002 0.000 0.002
φ1

−0.002

0.000

0.002

φ
2

(f)

FIG. 1. The application of a classical DM for nonlinear dimensionality reduction (a)–(c) to identify the proximity structure of data points
distributed as a toroidal helix in three dimensions, and (d)–(f) to reveal the proximity structure of 13 chemical components’ concentrations of
178 wines (d = 13, N = 178) derived from three different cultivars grown in the same region in Italy, taken from the WINE data set in Ref. [24].
(a) In a toroidal helix data set, color variation signifies a difference in the geodesic distance between points on a one-dimensional manifold.
(b) The Gaussian kernel with σ = 1 of Eq. (1) shows the neighborhood connectivity has a local, periodic structure. (c) The dimensionality
reduction into the first two components (m = 2) of the DM in Eq. (5) reveals a one-dimensional structure with an appropriate notion of geodesic
distance (see color variations). In the WINE data set, wines grown from three different cultivars are labeled in three different colors (red, green,
blue). (d) Projecting the 13 data features (chemical concentrations) of all wines into the first two principal components using PCA does not
suffice to distinguish the three types. However, (e) with the Gaussian kernel with σ = 50, the DM with two bases (m = 2) can reveal quite a
clear distinction between types (f). In addition, the proximity structure also suggests that the green type has its chemical components closer
to those of the other two types. In both data sets, we use t = 1 in the DM. Thus, the random walk on data-induced graphs can reveal salient
low-dimensional data structure within just a one-step walk, provided σ is chosen appropriately.

its graph connectivity can be simply computed from the Eu-
clidean embedding by the diffusion map (5).

What about dimensionality reduction? Since P is a Markov
transition matrix, its eigenvalues are λ0 = 1 � λ1 � λ2

� · · · � λN−1 � 0. Bases in Eq. (5) with low-lying eigenval-
ues are then exponentially suppressed as t step increases. In
the long-time limit, dimensionality reduction thus naturally
arises in the DM. One may take the number of bases m
in Eq. (5) corresponding to the number of top eigenvalues
of P and still obtain meaningful low-dimensional Euclidean
representation of points in the diffusion space. In practice, for
the purpose of visualization, taking m = 2 � d is a drastic
dimensionality reduction, yet a DM with such a small number
of bases can yield insights into the approximate proximity of
data in the original high-dimensional space (see Fig. 1). Using
DM (5) to extract low-dimensional data representation that
approximately preserves the notion of distance from neigh-

borhood connectivity in the original high-dimensional space is
also the first step towards data clustering algorithms. Namely,
one may employ standard clustering algorithms, such as a
k-means algorithm, on the low-dimensional outputs of the DM
without suffering from the curse-of-dimensionality problem.

B. Time complexity of classical diffusion map

Numerical recipes to obtain nonlinear dimensionality re-
duction or manifold learning in the classical DM consist of
four steps:

(1) Construct the data-induced similarity matrix (weighted
adjacency matrix) W from Eq. (1).

(2) Construct the Markov transition matrix P from Eq. (3);
i.e., P = D−1W .

(3) Compute the eigendecomposition of P.
(4) Construct the diffusion map (5).

052410-3

APIMUK SORNSAENG et al. PHYSICAL REVIEW A 104, 052410 (2021)

We now discuss the time complexity for each step as a
function of the number of data points, N . Assuming the Gaus-
sian kernel function (1), the weighted adjacency matrix W is
symmetric. The number of the elements that the algorithm
needs to calculate is then

∑N
i=1 i = (N2 + N)/2. Therefore,

the time complexity of calculating the kernel matrix in step 1
is O(N2).

For step 2, the calculation of P involves normalizing each
row of W as in Eq. (2). Numerical computation of the nor-
malization factor, which is simply the summation, takes the
time O(N). Then normalizing each row costs another O(N).
Applying these procedures over the N × N matrix thus yields
the time cost O(N2) + O(N2). Hence, the time complexity for
computing P is O(N2).

In step 3, the time cost stems from finding {vi} and {λi}
of P, using SVD, which can be applied to any nonsquare
matrices. This algorithm comprises two steps [25]. The first
step is to use Householder transformations to reduce P to a
bidiagonal form. Then the QR algorithm is applied to find
singular values. The time complexity of these two steps com-
bined is O(N3).

The last step is computing the diffusion map φ according
to Eq. (5), which involves the multiplication of λt

i with its
corresponding right eigenvector vi. Although we might not
need to perform the multiplication for all N − 1 right eigen-
vectors as some λt

i maybe negligible in the long-time limit, we
consider the worst-case scenario where all N − 1 eigenvectors
are required. With the length of each vector being N , the
time cost is O(N2 − N) for computing φ and thus the time
complexity for this step is O(N2).

Combining all the steps above, which are implemented in
sequence, the classical DM has a time complexity of O(N2) +
O(N2) + O(N3) + O(N2) leading to an overall time complex-
ity that scales as O(N3). Note here that the time complexity
is primarily dominated by the eigendecomposition algorithm,
which is subject to change if a different algorithm is chosen
in the implementation. In fact, this dominating complexity of
O(N3) from eigendecomposition urges for the development
of quantum algorithms to achieve a quantum computational
speedup, which we discuss next.

III. QUANTUM DIFFUSION MAP ROADMAP

In this section, we first give an outline of the qDM algo-
rithm summarized in Fig. 2. Then we proceed with classical
to quantum data encoding, and the construction of the kernel
matrix in Secs. III A and III B, respectively. Constructing the
Markov transition matrix and extracting the relevant eigende-
composition are not straightforward, and will be discussed in
Secs. IV and V, respectively.

From now on, we will focus on the case where the weighted
adjacency matrix is the Gaussian kernel matrix, so that W =
K . To reduce the dominating complexity in the construction
of the diffusion map, we first turn to the idea of quantum-
mechanically encoding the (normalized) kernel matrix as a
density matrix K̂ without explicitly evaluating each matrix
element. Using the fact that the Gaussian kernel (1) is the
inner product of canonical coherent states, this can be done
in O(log N) time assuming qRAM by exploiting “quantum

Input
Classical State

Kernel Operator
(Sec. III B)

Degree Matrix
(Sec. IVA)

Inverse Square-root
Degree Matrix

(Sec. IVB)

Symmetrized
Transition Matrix

(Sec. IVB)

 Eigendecomposition
(Sec. VA)

Diffusion Map

Coherent state
encoding (Sec. IIIA)

Matrix inversion
(Sec. IV B)

Matrix multiplication
(Sec. IV A)

Matrix
multiplication
(Sec. IV A)

QPE
(Sec. VA)

Readout (Sec. V B)

Transition Matrix
(Sec. IVB)

FIG. 2. The roadmap for the quantum diffusion map algorithm,
which also enables an efficient construction of the transition matrix
for generating random walks on graphs as a byproduct. Note that we
do not perform the eigendecomposition of the transition matrix di-
rectly since quantum phase estimation (QPE) only eigendecomposes
symmetric matrices. Nevertheless, the eigenpairs of the original tran-
sition matrix can be reconstructed from those of the symmetrized
transition matrix.

parallelism,” the ability to query data in superposition. We
further discuss the assumption of qRAM in Appendix B 1.

To construct the transition matrix, our algorithm uses as
subroutines density matrix exponentiation [18], the quantum
matrix algebra toolbox (QMAT) [26], and quantum matrix
inversion [27,28]. While it is straightforward to classically
compute the degree matrix D given elements of K , here we
do not have direct access to elements of the density matrix K̂
without performing full tomography. Instead, we compute D
via the identity

D = (K1) � I, (7)

052410-4

QUANTUM DIFFUSION MAP FOR NONLINEAR … PHYSICAL REVIEW A 104, 052410 (2021)

where � is element-wise multiplication, also known as a
Hadamard product, 1 is the all-ones matrix, and I is the iden-
tity matrix. Such matrix arithmetic can be done in the QMAT
framework given the exponential of the relevant matrices
either by density matrix exponentiation for K̂ , or Hamilto-
nian simulation to exponentiate sparse matrices [29]. We then
use quantum phase estimation (QPE) to construct the inverse
square root of D (akin to the Harrow-Hassidim-Lloyd (HHL)
algorithm [27]). Then the (right) eigenvectors and eigenvalues
of the transition matrix P ≡ D−1K can be obtained from the
eigendecomposition (via another QPE) of the symmetrized
transition matrix S ≡ D−1/2KD−1/2. The diffusion map is
then constructed classically. The time complexity is given in
Sec. VI.

A. Quantum state encoding into coherent states

By the fact that the Gaussian kernel arises naturally as the
inner product of coherent states, Ref. [23] proposed encoding
classical data into multimode coherent states,

x(i) �→ |x(i)〉 =
d−1⊗
p=0

∣∣x(i)
p

〉
, (8)

where each single-mode coherent state |x(i)
p 〉 represents the

pth feature of datum x(i). In continuous-variable quantum
systems, the canonical coherent states are states with min-
imal and equal uncertainties in both quadratures. They are
displaced ground states of the harmonic oscillator, and can be
realized, for example, as the state of classical electromagnetic
radiation. A single-mode coherent state is defined as

∣∣x(i)
p

〉 = exp

(
−

(
x(i)

p

)2

2

) ∞∑
n=0

(
x(i)

p

)n

√
n!

|n〉, (9)

where |n〉 is the nth eigenstate of the harmonic oscillator.
The inner product between two data vectors is the Gaussian

kernel

〈x(i)|x(j)〉 =
d−1∏
p=0

〈
x(i)

p

∣∣x(j)
p

〉 =
d−1∏
p=0

exp

(
−

(
x(i)

p − x(j)
p

)2

2

)

= exp(−||x(i) − x(j)||22
2

) = K (x(i), x(j)). (10)

Here, we take σ = 1 for simplicity (though σ can be incor-
porated by a scaling factor during state encoding in classical
preprocessing). Recall that we focus on the kernel matrix as
the weight matrix, and thus we denote K for describing the
weight matrix W .

B. Kernel matrix

Now we exploit superposition access to the encoded data
to implicitly evaluate the kernel matrix. This can be done
efficiently, assuming qRAM, for instance [30,31]. Calling the
oracle with the state 1√

N

∑N−1
i=0 |i〉 entangles the data vectors

with their labels:

|ψ〉 = 1√
N

N−1∑
i=0

|i〉label ⊗ |x(i)〉position. (11)

The reduced density matrix of the label space is given by the
partial trace over the position space:

Trposition(|ψ〉〈ψ |) = 1

N

N−1∑
i, j=0

〈x(i)|x(j)〉|i〉〈 j|

= 1

N

N−1∑
i, j=0

K (x(i), x(j))|i〉〈 j| = K

N
≡ K̂,

(12)

where Tr(K̂) = ∑N−1
i=0 K (x(i), x(i)) = N . Copies of K̂ will be

used to prepare the degree matrix and the transition matrix.

IV. QUANTUM SUBROUTINE FOR CONSTRUCTING
THE TRANSITION MATRIX

In this section, we show that the degree matrix and its
inverse, and consequently the transition matrix, can be ob-
tained efficiently in a coherent fashion. In particular, if one
can efficiently perform matrix multiplication and a Hadamard
product � involving K̂ , then one can efficiently obtain the
degree matrix according to Eq. (7). Such matrix arithmetic can
be done in the QMAT framework [26] by first exponentiating
the relevant (possibly non-Hermitian) matrices A in the form
eiXi (A), where

Xi(A) = Ri ⊗ A + R†
i ⊗ A†, (13)

and

R1 = |0〉〈1|, R2 = |1〉〈2|, R3 = |0〉〈2| (14)

are qutrit operators. Once one has the ability to apply, say,
eiX1(A1) and eiX2(A2) (shuffling between Ri, i = 1, 2, 3, can be
done by a simple permutation of the qutrit basis states), then
using the commutation relation between X1(A1) and X2(A2)
one can approximate eiX3(A3) where A3 is the result of the
desired binary operation between A1 and A2.

A. Exponential of degree matrix

To compute the degree matrix, we require QMAT subrou-
tines for (i) matrix multiplication, (ii) the tensor product, and
(iii) the Hadamard product. The latter two subroutines reduce
to matrix multiplication as A1 ⊗ A2 = (A1 ⊗ I)(I ⊗ A2), and

�(A1 ⊗ A2)�† = (A1 � A2) ⊗ |0〉〈0|, (15)

where

� =
N−1∑
i=0

|i〉〈i| ⊗ |0〉〈i|, (16)

and |0〉 = |0 · · · 0〉 [26]. The multiplication subroutine and its
complexity are summarized in Appendix A.

Define the (rank-one) density matrix

1̂ ≡ 1

N

N−1∑
i, j=0

|i〉〈 j| = 1

N
. (17)

If eiXi (K̂)τ , eiXi (1̂)τ , eiXi (�)τ , and eiXi (�†)τ can be constructed
efficiently for some time τ , then one can construct for a

052410-5

APIMUK SORNSAENG et al. PHYSICAL REVIEW A 104, 052410 (2021)

FIG. 3. Quantum circuit for square-root degree matrix inversion.
Note that QFT denotes quantum Fourier transform and UD is defined
by Eq. (18).

larger time t (to be determined later for the purpose of phase
estimation) the controlled-eiX3(D)t unitary

eiX3(�(K̂1̂⊗I)�†)t = eiX3(D)t ⊗ |0〉〈0| + I ⊗ (I − |0〉〈0|)
≡ UD. (18)

The last register will be discarded in the inversion step.
Now we discuss an efficient construction of the unitary

matrices required in the above procedure. � is sparse and thus
can be exponentiated efficiently [32]. For the kernel matrix
K̂ and 1̂ which are not sparse, we can use the technique
of density matrix exponentiation with time cost of O(τ 2/ε)
with accuracy ε [18]. [Note that we cannot exponentiate
Xi(A) directly using this method since Xi(A) is not a den-
sity matrix. However, since Ri + R†

i = |+i〉〈+i| − |−i〉〈−i|,
where |±i〉 are the ±1 eigenvectors of Ri + R†

i , we can sep-
arately exponentiate |±i〉〈±i| ⊗ A with the time parameters
±τ , respectively, and concatenate them to obtain the de-
sired unitary operator.] Hence, eiX3(K̂1̂)τ and automatically
eiX3((K̂1̂)⊗I)τ (since eiA ⊗ I = eiA⊗I) can be created efficiently
via the multiplication subroutine.

B. Inverse square root of degree matrix and transition matrix

Having eiX3(D)t already in the exponential form, it is natural
to construct the inverse square root of D using QPE akin to the
HHL algorithm for matrix inversion [27], with the following
differences:

(1) Our degree matrix is always well conditioned, having
all eigenvalues in the range 1 � di < N .

(2) To construct the (symmetrized) transition matrix, we
would like the resulting inverse square-root matrix in the form
of a density matrix to be fed into the QMAT framework once
more via density matrix exponentiation. Following Ref. [28],
this implies that the function of the eigenvalues we want to
compute is 1/ 4

√
di.

The quantum circuit for the QPE (Fig. 3) is initialized in
the state

|ψ0〉 = |0〉val ⊗ |+〉R ⊗ |1〉vec ⊗ |0〉junk, (19)

where |+〉 = 1√
2
(|0〉 + |2〉) and |1〉 = 1√

N

∑N−1
i=0 |i〉. The first

register “val” will eventually contain the estimated eigenval-
ues after the QPE, which are the components of the degree
matrix. The next two registers, “R” and “vec,” will contain
the eigenvectors of X3(D), and the last one, “junk,” is added
for collapsing other terms except eiX3(D)t in Eq. (18). Denote
by κD = dmax/dmin the condition number of D, i.e., the ratio
of the largest eigenvalue to the smallest eigenvalue. Setting
t = O(κ0.25

D /εD) with accuracy εD in the QPE results in the fi-
nal state 1√

N

∑N−1
i=0 |d̃i〉val ⊗ |+〉R ⊗ |i〉vec ⊗ |0〉junk, where the

tilde denotes the binary representation of the estimated degree.
After the conditional rotation on the ancilla qubit, “anc,”

the state is

N−1∑
i=0

⎛⎜⎝
√√√√

1 −
√

Č

di
|0〉anc + 4

√
Č

di
|1〉anc

⎞⎟⎠
⊗|d̃i〉val ⊗ |+〉R ⊗ |i〉vec ⊗ |0〉junk, (20)

where Č is of order O(dmin). We then perform postselection
on the outcome “1” on the ancilla qubit and take the partial
trace over “val,” “R,” and “junk” registers to obtain

D̂−1/2 = C̃
N−1∑
i=0

√
1

di
|i〉〈i|, (21)

where C̃ = O({∑N−1
i=0 d−1/2

i }−1) with success probability
	(1/κ0.5

D) [28]. The success probability can be amplified
to near certainty by repeating O(κ0.25

D) rounds of amplitude
amplification on the ancilla register [27]. Via another multi-
plication subroutine, we now have access to the symmetrized
transition matrix S = D−1/2KD−1/2 in an efficient manner.

Although we will not deal with the bona fide transition
matrix P in the rest of this work, it is important to note that
P = D−1K = D−1/2D−1/2K can be efficiently constructed via
the multiplication subroutine, given that we already have an
access to D−1/2 and K . In particular, the exponential eiX3(P)τ

can be constructed in roughly O(κ0.625
D τ 1.5 log2 N) steps [the

same as TS (τ) in Theorem 1]. Our algorithm thus can result
in P as a by-product, which may be useful for other random-
walk-based algorithms.

V. EIGENDECOMPOSITION

Recall that the necessary ingredients for constructing the
diffusion map are the (right) eigenvectors and the eigenvalues
of the transition matrix P = D−1K . We thus need to solve the
eigenvalue problem

D−1K|vi〉 = λi|vi〉. (22)

QPE would immediately provide such an eigendecomposition
if P is symmetric, which is typically not the case. Note that if
one applies QPE to the Hermitized (0 P

P† 0), one would end up
with the singular vectors of P, rather than the desired eigen-
vectors of nonsymmetric P. Therefore, we are in fact dealing
with the generalized or nonsymmetric eigenvalue problem.

052410-6

QUANTUM DIFFUSION MAP FOR NONLINEAR … PHYSICAL REVIEW A 104, 052410 (2021)

FIG. 4. Quantum circuit for transition matrix P eigendecomposition. UD is defined by Eq. (18).

One resolution is to transform Eq. (22) to a standard sym-
metric eigenvalue problem

D−1/2KD−1/2|si〉 = λi|si〉, (23)

where |si〉 ≡ D1/2|vi〉. Then, the desired eigenvectors |vi〉 can
be recovered given an efficient rotation conditional on D−1/2.

Now QPE can be applied, the output of which will be an
estimate of the eigenvalues and the eigenvectors of

X3(S) = (R3 + R†
3) ⊗ S, (24)

which are {±λi}N−1
i=0 and |±〉 ⊗ |si〉. The rest of this section

elaborates on the procedure for an eigendecomposition of S,
and on how to extract the eigenpairs of P in order to construct
the diffusion map classically.

A. Transition matrix eigendecomposition

The complete quantum circuit for the eigendecomposition
of P is shown in Fig. 4. An input state is prepared in registers
“val,” “R,” and “vec” as

|0〉val ⊗ |+〉R ⊗ |ψ0〉vec = |0〉val ⊗ |+〉R ⊗
N−1∑
i=0

βi|si〉vec,

(25)
where |ψ0〉 is an arbitrary initial state such that βi ≡ 〈si|ψ0〉.
The output state of the QPE after evolving for time t = 2π/εS ,
where εS is the accuracy of the estimated phases, reads

|ψ1〉val,R,vec ≡
N−1∑
i=0

βi|λ̃i〉val ⊗ |+〉R ⊗ |si〉vec, (26)

where λ̃i denotes the binary representation of the estimated
eigenvalues in the range [0,1).

The resulting eigenvectors |si〉 are not yet the components
of the diffusion map; they need to be conditionally rotated to
the right eigenvectors |vi〉 = D−1/2|si〉 of P via another QPE

using eiX3(D)t as the time-evolution operator. (Note that this
step is more similar to the original HHL algorithm than our
first application of QPE to construct D−1/2; cf. Ref. [28])
For this reason, we add to the initial state register “deg,”
which will store the estimated eigenvalues d̃i of the degree
matrix, and register “junk” to eliminate the unwanted terms in
Eq. (18):

|0〉deg ⊗ |ψ1〉val,R,vec ⊗ |0〉junk. (27)

The output of the QPE after evolving for time t = O(κ0.5
D /εD)

is

N−1∑
i j=0

|d̃ j〉deg ⊗ βi|λ̃i〉val ⊗ |+〉R ⊗ (si) j | j〉vec ⊗ |0〉junk, (28)

where (si) j is the jth component of |si〉. After the rotation
conditioning on d̃i, and O(κ0.5

D) rounds of amplitude amplifi-
cation on an ancilla qubit as in Eq. (20) (not shown here), the
eigenvector register is now, up to normalization, in the desired
eigenstate

N−1∑
j=0

(si) j√
d j

| j〉vec = D−1/2|si〉vec = |vi〉vec. (29)

B. Extracting desired eigenvalues and eigenvectors

Measuring the eigenvalue register “val” gives one of the
eigenvalues and collapses the register “vec” to the eigenvector
corresponding to that eigenvalue with probability |βi|2 [as-
suming no degeneracy as in the classical case (Sec. II A)].
The eigenvector can then be extracted using a number of
copies that scales almost linearly in N [33]. Repeating the
procedure until we recover all N − 1 distinct eigenvalues and
eigenvectors allows us to classically construct the diffusion
map (5).

052410-7

APIMUK SORNSAENG et al. PHYSICAL REVIEW A 104, 052410 (2021)

The process of recovering all eigenpairs is not determinis-
tic; in particular, one would not be able to recover an eigenpair
for which βi is close to zero. What this means in practice
is that one may need to change the initialization |ψ0〉 of the
QPE every so often, perhaps adaptively. We give below the
expected runtime of this process in terms of the βi’s of a
fixed fiducial state based on the classical coupon collector’s
problem [34]. Interestingly, in the best case where the βi’s
are all equal, the quantum coupon collector’s algorithm in
Ref. [35] guarantees that we will see all eigenpairs at least
once in time O(N).

Algorithm 1. Quantum diffusion map.

VI. TIME COMPLEXITY OF QUANTUM DIFFUSION MAP

The complexity of the qDM is summarized in Theorem 1
and Lemma 1, the proof of which is provided in Appendix B.
In Theorem 1, we provide the time complexity for performing
eigendecomposition of the transition matrix as we proposed
in Secs. III–V. In Lemma 1, we provide the expected time
complexity for reading out all eigenpairs using the classical
coupon collector’s algorithm.

Theorem 1. Time complexity of transition matrix eigen-
decomposition. For a data set X = {x(i)}N−1

i=0 such that each
x(i) ∈ Rd and d < N , steps 1–8 of Algorithm 1 construct and
eigendecompose the transition matrix with a runtime TE of

O

[
TS

(
1

εS

)
log N

εS
+ TD

(
κ0.5

D

εD

)
κ0.5

D log N

εD

]
, (30)

where TD denotes the time complexity to construct the degree
matrix,

TD(t) = O

[(
t1.5

ε0.5
m

+ t1.25

εeε0.75
m

)
log N

]
, (31)

TS denotes the time complexity to construct the symmetrized
transition matrix,

O

[(
κ0.625

D

ε2.5
D ε0.5

m

+ κ0.5625
D

ε2.25
D εeε0.75

m

)(
t1.5

ε0.5
m εe

+ t

εe

)
log2 N

+ t1.5

ε0.5
m εe

log N

]
, (32)

and εe and εm denote the errors of density matrix exponentia-
tion and matrix multiplication, respectively.

Expressing Eq. (30), we simplify the time complexity of
the transition matrix eigendecomposition to

O
(
κ0.625

D log3 N + κ1.25
D log2 N

)
. (33)

Lemma 1. The expected runtime to construct the diffusion
map given a fixed initialization (25) of the QPE is upper
bounded by

maxi{|βi|2}
mini{|βi|2} N log N × O

(
N

εt
log N

)
× TE , (34)

where i ∈ {0, . . . , N − 1}, TE denotes the time complexity of
eigendecomposing the transition matrix in Theorem 1, and εt

denotes the error of quantum tomography.
In the special case when all the βi’s are equal, we can re-

cover the worst-case runtime by virtue of the recent quantum
coupon collector’s algorithm [35].

Lemma 2. Suppose that the QPE is initialized in the state
such that all the β’s are equal in Eq. (25). Using the notations
of Lemma 1, Algorithm 1 constructs the quantum diffusion
map with a total runtime of

O

(
N2

εt
log N × TE

)
. (35)

When the errors and the condition number are indepen-
dent of the data set size N , the expected runtime reduces
to

N2polylog N, (36)

compared to the classical diffusion map algorithm which re-
quires O(N3) time in the worst case. In fact, the bottleneck
factor of N2 and the probabilistic nature of the runtime solely
arise from the readout (tomography) alone (see Appendix B),
which perhaps can be circumvented if one coherently outputs
the diffusion map as quantum states, providing an end-to-end
computation. Another possibility to bypass the probabilistic
runtime is to extend the quantum coupon collector’s algorithm
in Lemma 2 to encompass a structured βi and derive the
worst-case runtime. However, we leave this open problem for
future work. Regarding the condition number of the degree
matrix, the condition number κD depends on the neighborhood
connectivity of the data set, which will be tuned to be O(1)
and independent of N , provided the scale of the neighborhood
controlled by σ in the kernel matrix is local, such as in Fig. 1
(middle).

052410-8

QUANTUM DIFFUSION MAP FOR NONLINEAR … PHYSICAL REVIEW A 104, 052410 (2021)

VII. DISCUSSION AND CONCLUSION

In this work, we first review the classical diffusion map, an
unsupervised learning algorithm for nonlinear dimensionality
reduction and manifold learning. We then explain our efforts
to construct a quantum algorithm for the diffusion map. Our
quantum diffusion map (qDM) consists of five major steps:
a coherent-state data encoding scheme, a natural construction
of the kernel matrix from coherent states, a scheme to con-
struct the Markov transition matrix from the kernel matrix,
the eigendecomposition of the transition matrix, and extract-
ing relevant quantum information to construct the diffusion
map classically. The expected time complexity of the qDM
is N2polylog N , compared to the worst-case runtime O(N3)
of a classical DM. Importantly, from accessing of qRAM
to performing an eigendecomposition of the Markov tran-
sition matrix, the total time complexity is only O(log3 N).
Such an exponential speedup for transition matrix construc-
tion and analysis could be useful in random-walk-based
algorithms.

Note that other recently proposed quantum algorithms for
manifold learning include qKPCA [19] and quantum spec-
tral clustering [21]. However, the qDM has an appealing
distance-preserving embedding property (6), possessed by
neither qKPCA nor quantum spectral clustering. The inner
working of the qDM is also starkly different from that of
qKPCA and quantum spectral clustering. While qKPCA relies
on approximating an arbitrary target kernel via the truncated
Taylor’s expansion of linear kernels [19], the qDM proposes
a method to exactly encode a Gaussian kernel from classical
data, provided accessibility to qRAM. In addition, although
both the qDM and quantum spectral clustering are based on
spectral graph methods, the qDM manages to explicitly and
efficiently construct the degree matrix inverse and the Markov
transition operator, whose construction was mentioned not to
be accessible efficiently [21]. Therefore, our work could pro-
vide a hint to achieve a quantum speedup in other algorithms
that require a Markov transition operator and the analysis of
its spectral properties.

Regarding the N2 bottleneck, a quantum algorithm for
the generalized coupon collector’s problem to speed up
the process of finding all eigenpairs or a method to sort
the eigenvalues and select only the top ones would reduce the
complexity. Alternatively, one could devise a qDM algorithm
that outputs the eigenvectors as quantum states and retain the
exponential speedup. We leave open the question of how one
could make use of such a state for nonlinear dimensionality
reduction.

Recently, manipulation of matrices and their spectra by
block encoding into submatrices of unitary matrices has be-
come a topic of great interest due to its versatility in quantum
algorithm design [36,37], which may provide an alternative
route to the qDM algorithm.

ACKNOWLEDGMENTS

A.S. especially thanks Dimitris Angelakis from the Centre
for Quantum Technologies (CQT), Singapore, for hospitality,
and for useful advice on quantum algorithms. We also thank
Jirawat Tangpanitanon and Supanut Thanasilp for useful dis-

cussions. This research has received funding support from
the National Science, Research and Innovation Fund (NSRF)
via the Program Management Unit for Human Resources &
Institutional Development, Research and Innovation (Grant
No. B05F630108), and Sci-Super VI fund from the faculty
of science, Chulalongkorn University.

APPENDIX A: QMAT MATRIX MULTIPLICATION
SUBROUTINE

As explained in Sec. IV A, all QMAT subroutines [26]
utilized in our work reduce to that of matrix multiplication,
which we now describe. Given matrices A1 and A2, the idea
of the multiplication subroutine is to construct a Hermitian
embedding of the product A1A2,

X3(A1A2) =
⎛⎝ 0 0 A1A2

0 0 0
(A1A2)† 0 0

⎞⎠,

from the following commutator:

X3(A1A2) = UX3(iA1A2)U † = iU [X1(A1), X2(A2)]U †,

(A1)
where

U =

⎛⎜⎝
√−iI 0 0

0 I 0

0 0
√

iI

⎞⎟⎠.

Thus, the goal is to simulate the commutator of two Hermitian
operators. This can be accomplished with bounded error via
the second order of the Baker-Campbell-Hausdorff formula.
Define

l̃ (x, y) ≡ exeye−xe−ye−xe−yexey.

With the step size t/m, we have that [26]

l̃ (xt/m, yt/m) = e2[x,y]t2/m2+O(t4/m4). (A2)

Thus, iterating the above n′ = m2/(2t) = O(t2/εm) times,

l̃ (xt/m, yt/m)n2/(2t) = e[x,y]t+O(t3/m2) (A3)

correctly simulates e[x,y]t up to an error εm = O(t3/m2).
Putting all these together, the QMAT multiplication sub-

routine consumes n′ = m2/(2t) copies of eiX1(A1)t/m and
eiX2(A2)t/m (and their inverses), and outputs a unitary operator

U [l (iX1(A1)t/m, iX2(A2)t/m)]n′
U †, (A4)

that approximates eiX3(A1A2) up to an error εm in the operator
norm.

APPENDIX B: COMPLEXITY ANALYSIS

This Appendix describes the calculation for the time com-
plexity that leads to the result in Theorem 1. We separate
the algorithm into sequential steps as we have done with the
classical DM (Sec. II B), namely, the embedding of classical
data into the kernel K̂ , the calculation of the transition matrix
P, and the calculation of the eigendecomposition.

052410-9

APIMUK SORNSAENG et al. PHYSICAL REVIEW A 104, 052410 (2021)

1. Preparing the kernel

In creating K̂ , we consider only the time complexity com-
ing from storing classical data into qRAM (Sec. III A) as the
partial trace does not create additional time cost. Here we
have assumed a common position among researchers in the
field that encoding of classical data can be made efficient via
the existence of an oracle [18,22,28,31,38,39], and analyze
the algorithm based on this assumption. Note that practical
feasibility and resource estimation of implementing qRAM is
still an ongoing research topic [31,40–43]. Assuming that the
data consist of N vectors each with d features, the data can be
encoded into a qRAM of the size dN , which can be accessed
using O(log(dN)) operations (11) [38]. We assume here that
we are dealing with big data, i.e., d � N . Therefore, the time
cost becomes O(log N2) = O(log N).

2. Calculating the transition matrix

Next, we construct the exponential of P. We start with ex-
ponentiating the necessary matrices. Then we multiply these
matrices in order to create eıX3(D)t . Next, we inverse the degree
matrix D before constructing the transition matrix P = D−1K .

The time cost of creating exponentials depends on whether
the quantum simulation of matrices or quantum state is used.
Creating exponentials from multiple copies of density matri-
ces, i.e., eiX3(K̂)t and eiX3(1̂)t , results in a time complexity of
O(t2/εe), where εe is the accuracy for the exponentiation [18].
Combined with the number of operations for storing the states,
which is O(log N), the time complexity is O(t2/εe log N).

Exponentials of sparse matrices can be simulated using
the method in Ref. [29] with query complexity of O(t +

log(1/εs)
log log(1/εs)), where εs is the accuracy of the method. For the

matrices eiX3(�)t and eiX3(�†)t , we also need to take into account
the gate complexity O(log N). Thus the time complexity for
preparing each of these exponentials is O(t log N).

To construct the degree matrix, we use the matrix multipli-
cation subroutine in Appendix A. This subroutine uses four
copies of each input exponential, which is multiplied and then
applied n′ times. In creating eiX3(K̂1⊗I) (Sec. IV A), the time
cost comes from multiplying the exponential of K̂ and of 1
whereas ⊗I is assumed to be a free operation. Therefore, the
time cost is O(n′(t2

m2εe
log N)). Given the condition that n′ =

m2

2t = O(t2

εm
) [26], we rewrite the time cost to O(t log Nε−1

e).
In the next two steps, we multiply � and �† into K1 ⊗ I .

Again, we apply the multiplication subroutine iteratively with
four copies of the result from the previous multiplication as
one of the inputs. These steps admit an additional order of εm

and t which leads the time cost of eiX3(D)t to be

TD(t) = O

[(
t1.5

ε0.5
m

+ t1.25

εeε0.75
m

)
log N

]
. (B1)

Next, the degree matrix D is inverted (Sec. IV B) by first
performing QPE that takes the prepared eiX3(D)t as the uni-
tary operator in QPE, then a controlled rotation. The time
cost of the QPE is O(TD/εD log m) [44], where m is the
number of eigenvalues which is m = N , and εD is the er-
ror of estimated phase. Assuming the controlled rotation is
executed in time O(1), we have accumulated a time cost of

TD + O(TD/εD log N) + O(1). The time complexity is thus
dominated by O(TD/εD log N).

The time TD (B1) is a function of t , which we now find
through error analysis of matrix inversion. As we are inverting
the eigenvalues of D to a function of 1/ 4

√
x [28], the error after

conditional rotation becomes εD = O(1/ 4
√

dit) < O(κ0.25
D /t).

Thus t = O(κ0.25
D /εD).

As the success probability of measuring |1〉 in the ancilla
qubit is 	(1/κ0.5

D), the number of rounds necessary to ob-
tain a successful result is O(κ0.5

D). To accelerate the process,
we use the amplitude amplification to amplify the success
probability in O(κ0.25

D) steps. Thus an overall complexity
becomes

TD−1/2 = O

[(
κ0.625

D

ε2.5
D ε0.5

m

+ κ0.5625
D

ε2.25
D εeε0.75

m

)
log2 N

]
. (B2)

The last step in constructing the symmetrized transition matrix
is multiplying the inverse square-root degree matrix to K̂ ,
which we perform in the exponential (Sec. IV B). Therefore,
we first need to exponentiate D−1/2 and K̂ using a time of
O(t2/(m2εe)) and 4n′ copies each. The time complexity for
constructing eiX3(S)t is therefore

TS (t) = O

[
TD−1/2

(
t1.5

ε0.5
m εe

+ t

εe

)
+ t1.5

ε0.5
m εe

log N

]
.

3. Eigendecomposition

In this section, we find the eigenvalues and eigenvectors
of S, using a second QPE algorithm (Sec. V). We take t =
O(1/εS) to perform the QPE in time O(log N) with accuracy
εS [44].

The third and final QPE is required to transform |si〉 to
the right eigenvector |vi〉 = D−1/2|si〉 of the transition matrix
P = D−1K . The complexity analysis proceeds analogously to
the analysis in Appendix B 2: the error analysis of matrix
inversion gives t = O(κ0.5

D /εD). As the success probability
of measuring |1〉 in the ancilla qubit is 	(1/κD), the num-
ber of rounds necessary to obtain a successful result is
O(κD). To accelerate the process, amplitude amplification is
used to amplify the success probability in O(κ0.5

D) steps. In-
corporating the time required to prepare copies of eiX3(D)t ,
the time complexity of the conditional rotation is hence
O(TD(κ0.5

D /εD)κ0.5
D log N/εD). Thus, the overall complexity of

the eigendecomposition of the transition matrix becomes

O

[
TS

(
1

εS

)
log N

εS
+ TD

(
κ0.5

D

εD

)
κ0.5

D log N

εD

]
, (B3)

which proves Theorem 1.
We repeat the QPE and measure the eigenvalue register in

the computation basis until we find sufficiently many copies of
all eigenpairs for tomography. The process is not deterministic
and we can only talk about the expected number of repetitions
required. The task of drawing items (with replacement) dis-
tributed according to a given probability distribution {pi}N

i=1
until one collects all N distinct items is known as the coupon
collector’s problem, and an upper bound on the expected num-
ber of draws is known to be (maxi{pi}/ mini{pi})N log N [34].
Once we repeat the QPE and measure the eigenvalue register
in the computation basis until we obtain O(N log N/εt) copies

052410-10

QUANTUM DIFFUSION MAP FOR NONLINEAR … PHYSICAL REVIEW A 104, 052410 (2021)

of each eigenpair, the pure-state tomography algorithm of
Ref. [33] recovers a classical vector that is εt close in �2-norm
to the eigenvector. The above facts together with Theorem 1
immediately imply Lemma 1.

Finally, in the case of uniformly random coupons, i.e.,
pi = p j for all i, j ∈ {1, . . . , N}, there exists a gate-efficient
quantum algorithm that solves the coupon collector’s problem
in time O(N) [35], giving Lemma 2.

[1] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, A global
geometric framework for nonlinear dimensionality reduction,
Science 290, 2319 (2000).

[2] M. Belkin and P. Niyogi, Laplacian eigenmaps and spectral
techniques for embedding and clustering, in Advances in Neural
Information Processing Systems 14 (MIT Press, Cambridge,
MA, 2001), pp. 585–591.

[3] L. McInnes, J. Healy, N. Saul, and L. Großberger, UMAP: Uni-
form manifold approximation and projection, J. Open Source
Softw. 3, 861 (2018).

[4] M. Scholz, F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig, Non-
linear PCA: A missing data approach, Bioinformatics 21, 3887
(2005).

[5] L. van der Maaten and G. Hinton, Visualizing data using t-SNE,
J. Mach. Learn. Res. 9, 2579 (2008).

[6] R. R. Coifman and S. Lafon, Diffusion maps, Appl. Comput.
Harmon. Anal. 21, 5 (2006).

[7] S. Lafon, Diffusion maps and geometric harmonics, Ph.D.
thesis, Yale University, 2004.

[8] B. Nadler, S. Lafon, I. Kevrekidis, and R. Coifman, Diffusion
maps, spectral clustering and eigenfunctions of Fokker-Planck
operators, in Proceedings of the 18th International Conference
on Neural Information Processing Systems, edited by Y. Weiss,
B. Schölkopf, and J. Platt (MIT Press, Cambridge, MA, 2006),
Vol. 18.

[9] K. R. Moon, D. van Dijk, Z. Wang, S. Gigante, D. B. Burkhardt,
W. S. Chen, K. Yim, A. van den Elzen, M. J. Hirn, R. R.
Coifman, N. B. Ivanova, G. Wolf, and S. Krishnaswamy, Visu-
alizing structure and transitions in high-dimensional biological
data, Nat. Biotechnol. 37, 1482 (2019).

[10] C. L. Ecale Zhou, S. Malfatti, J. Kimbrel, C. Philipson, K.
McNair, T. Hamilton, R. Edwards, and B. Souza, multiPhATE:
Bioinformatics pipeline for functional annotation of phage iso-
lates, Bioinformatics 35, 4402 (2019).

[11] J. F. Rodriguez-Nieva and M. S. Scheurer, Identifying topolog-
ical order through unsupervised machine learning, Nat. Phys.
15, 790 (2019).

[12] Y. Long, J. Ren, and H. Chen, Unsupervised Manifold Clus-
tering of Topological Phononics, Phys. Rev. Lett. 124, 185501
(2020).

[13] A. Lidiak and Z. Gong, Unsupervised Machine Learning of
Quantum Phase Transitions Using Diffusion Maps, Phys. Rev.
Lett. 125, 225701 (2020).

[14] A. Kerr, G. Jose, C. Riggert, and K. Mullen, Automatic learning
of topological phase boundaries, Phys. Rev. E 103, 023310
(2021).

[15] Y. Che, C. Gneiting, T. Liu, and F. Nori, Topological quantum
phase transitions retrieved through unsupervised machine learn-
ing, Phys. Rev. B 102, 134213 (2020).

[16] J. Wang, W. Zhang, T. Hua, and T.-C. Wei, Unsupervised learn-
ing of topological phase transitions using the Calinski-Harabaz
index, Phys. Rev. Research 3, 013074 (2021).

[17] P. Rebentrost, A. Steffens, I. Marvian, and S. Lloyd, Quantum
singular-value decomposition of nonsparse low-rank matrices,
Phys. Rev. A 97, 012327 (2018).

[18] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum principal
component analysis, Nat. Phys. 10, 631 (2014).

[19] Y. Li, R.-G. Zhou, R. Xu, W. Hu, and P. Fan, Quantum algo-
rithm for the nonlinear dimensionality reduction with arbitrary
kernel, Quantum Sci. Technol. 6, 014001 (2020).

[20] S. Apers and R. de Wolf, Quantum speedup for graph spar-
sification, cut approximation and Laplacian solving, in IEEE
61st Annual Symposium on Foundations of Computer Science
(FOCS) (IEEE, New York, 2020), pp. 637–648.

[21] I. Kerenidis and J. Landman, Quantum spectral clustering,
Phys. Rev. A 103, 042415 (2021).

[22] I. Kerenidis, J. Landman, A. Luongo, and A. Prakash, q-means:
A quantum algorithm for unsupervised machine learning, in
Advances in Neural Information Processing Systems 32, edited
by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc,
E. Fox, and R. Garnett (Curran Associates, 2019).

[23] R. Chatterjee and T. Yu, Generalized coherent states, reproduc-
ing kernels, and quantum support vector machines, Quantum
Inf. Comput. 17, 1292 (2017).

[24] The Wine data set is obtained from D. Hua and C. Graff, UCI
machine learning repository (2017), https://archive.ics.uci.edu/
ml/datasets/Wine.

[25] L. N. Trefethen and D. Bau III, Numerical Linear Algebra
(SIAM, Philadelphia, 1997), Vol. 50.

[26] L. Zhao, Z. Zhao, P. Rebentrost, and J. Fitzsimons, Compil-
ing basic linear algebra subroutines for quantum computers,
Quantum Mach. Intell. 3, 21 (2021).

[27] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum Algorithm
for Linear Systems of Equations, Phys. Rev. Lett. 103, 150502
(2009).

[28] I. Cong and L. Duan, Quantum discriminant analysis for dimen-
sionality reduction and classification, New J. Phys. 18, 073011
(2016).

[29] G. H. Low and I. L. Chuang, Optimal Hamiltonian Simulation
by Quantum Signal Processing, Phys. Rev. Lett. 118, 010501
(2017).

[30] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum
Random Access Memory, Phys. Rev. Lett. 100, 160501
(2008).

[31] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Quantum machine learning, Nature (London)
549, 195 (2017).

[32] An N × N matrix is s sparse if there are at most s nonzero
entries per row. An N × N matrix is sparse if it is at most
polylog(N) sparse.

[33] I. Kerenidis and A. Prakash, A quantum interior point method
for LPs and SDPs, ACM Trans. Quantum Comput. 1, 1 (2020).

[34] N. B. Shank and H. Yang, Coupon collector problem
for non-uniform coupons and random quotas, Electron. J.
Combinatorics 20, P33 (2013).

052410-11

https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.21105/joss.00861
https://doi.org/10.1093/bioinformatics/bti634
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1038/s41587-019-0336-3
https://doi.org/10.1093/bioinformatics/btz258
https://doi.org/10.1038/s41567-019-0512-x
https://doi.org/10.1103/PhysRevLett.124.185501
https://doi.org/10.1103/PhysRevLett.125.225701
https://doi.org/10.1103/PhysRevE.103.023310
https://doi.org/10.1103/PhysRevB.102.134213
https://doi.org/10.1103/PhysRevResearch.3.013074
https://doi.org/10.1103/PhysRevA.97.012327
https://doi.org/10.1038/nphys3029
https://doi.org/10.1088/2058-9565/abbe66
https://doi.org/10.1103/PhysRevA.103.042415
https://archive.ics.uci.edu/ml/datasets/Wine
https://doi.org/10.1007/s42484-021-00048-8
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1088/1367-2630/18/7/073011
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1038/nature23474
https://doi.org/10.1145/3406306
https://doi.org/10.37236/3348

APIMUK SORNSAENG et al. PHYSICAL REVIEW A 104, 052410 (2021)

[35] S. Arunachalam, A. Belovs, A. M. Childs, R. Kothari, A.
Rosmanis, and R. de Wolf, Quantum coupon collector, in 15th
Conference on the Theory of Quantum Computation, Commu-
nication and Cryptography (TQC 2020), Leibniz International
Proceedings in Informatics (LIPIcs), edited by S. T. Flammia
(Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 2020), Vol. 158, pp. 10:1–10:17.

[36] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, Quantum singular
value transformation and beyond: Exponential improvements
for quantum matrix arithmetics, in Proceedings of the 51st
Annual ACM SIGACT Symposium on the Theory of Computing,
STOC 2019 (Association for Computing Machinery, New York,
2019), pp. 193–204.

[37] J. M. Martyn, Z. M. Rossi, A. K. Tan, and I. L. Chuang, A grand
unification of quantum algorithms, arXiv:2105.02859.

[38] P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum Support
Vector Machine for Big Data Classification, Phys. Rev. Lett.
113, 130503 (2014).

[39] H. Yamasaki, S. Subramanian, S. Sonoda, and M. Koashi,
Learning with optimized random features: Exponential speedup
by quantum machine learning without sparsity and low-rank

assumptions, in Advances in Neural Information Processing
Systems 33, edited by H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (Curran Associates, Red Hook, NY,
2020), pp. 13674–13687.

[40] N. Jiang, Y.-F. Pu, W. Chang, C. Li, S. Zhang, and
L.-M. Duan, Experimental realization of 105-qubit ran-
dom access quantum memory, npj Quantum Inf. 5, 28
(2019).

[41] C. T. Hann, C.-L. Zou, Y. Zhang, Y. Chu, R. J. Schoelkopf, S. M.
Girvin, and L. Jiang, Hardware-Efficient Quantum Random Ac-
cess Memory with Hybrid Quantum Acoustic Systems, Phys.
Rev. Lett. 123, 250501 (2019).

[42] O. Di Matteo, V. Gheorghiu, and M. Mosca, Fault-tolerant re-
source estimation of quantum random-access memories, IEEE
Trans. Quantum Eng. 1, 1 (2020).

[43] C. T. Hann, G. Lee, S. M. Girvin, and L. Jiang, Resilience
of quantum random access memory to generic noise, PRX
Quantum 2, 020311 (2021).

[44] D. Dervovic, M. Herbster, P. Mountney, S. Severini, N. Usher,
and L. Wossnig, Quantum linear systems algorithms: A primer,
arXiv:1802.08227.

052410-12

http://arxiv.org/abs/arXiv:2105.02859
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1038/s41534-019-0144-0
https://doi.org/10.1103/PhysRevLett.123.250501
https://doi.org/10.1109/TQE.2020.2965803
https://doi.org/10.1103/PRXQuantum.2.020311
http://arxiv.org/abs/arXiv:1802.08227

