
PHYSICAL REVIEW A 104, 052409 (2021)

Variational quantum algorithm based on the minimum potential energy
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Computer-aided engineering techniques are indispensable in modern engineering developments. In particular,
partial differential equations are commonly used to simulate the dynamics of physical phenomena, but very
large systems are often intractable within a reasonable computation time, even when using supercomputers. To
overcome the inherent limit of classical computing, we present a variational quantum algorithm for solving the
Poisson equation that can be implemented in noisy intermediate-scale quantum devices. The proposed method
defines the total potential energy of the Poisson equation as an expectation of certain observables, which are
decomposed into a linear combination of Pauli operators and simple observables. The expectation value of
these observables is then minimized with respect to a parameterized quantum state. Because the number of
decomposed terms is independent of the size of the problem, this method requires relatively few quantum
measurements. Numerical experiments demonstrate the faster computing speed of this method compared with
classical computing methods and a previous variational quantum approach. We believe that our approach brings
quantum computer-aided techniques closer to future applications in engineering developments.
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I. INTRODUCTION

Partial differential equations (PDEs) are frequently used
to describe the dynamics of physical phenomena such as
heat conduction, fluid dynamics, and solid mechanics [1].
Solving these problems as quickly as possible is a key fac-
tor in accelerating engineering developments that combine
computer simulations and real-world experiments. Although
many advances have been made in terms of treating very large
physical systems using classical computers [2,3], obtaining
solutions within a reasonable computational time is increas-
ingly intractable. State-of-the-art computational techniques
can perform simulations of systems with up to tens of billions
of degrees of freedom using Fugaku, which is one of the
most powerful supercomputers; these simulations typically
take several hours [4,5].

Another possible and attractive approach that would sig-
nificantly reduce the computational costs of solving PDEs is
the application of quantum computing. Quantum computing
has attracted considerable attention over recent decades as a
potential means of providing faster and more powerful com-
putation than classical computing.

Quantum algorithms for solving linear systems have been
developed [6,7] and provide an exponential speedup over
classical algorithms when the coefficient matrix of the lin-
ear system is sparse. Cao et al. [8] developed an algorithm
for solving the Poisson equation, which is one of the most
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important PDEs in various areas of engineering, such as
electrostatics [9] and computational fluid dynamics [10,11].
Although it is widely believed that the above-mentioned quan-
tum algorithms will demonstrate quantum supremacy once
fault-tolerant quantum computers with sufficient qubits and
error correction techniques are ready, it is expected to be a
long time until such a quantum computer can be realized.
Thus, recent interest in quantum computing has focused on
the development of quantum algorithms that perform some
meaningful computations with a small number of qubits and
a shallow circuit. In other words, it is important to construct
a quantum algorithm that can be implemented on so-called
noisy intermediate-scale quantum (NISQ) devices [12].

Variational quantum algorithms (VQAs) [13] are possi-
ble candidates for use on NISQ devices, as they exhibit
several advantages over classical algorithms. In VQAs, a cer-
tain cost function is written as a function of the expectation
value of some observables, and this function is evaluated
on a quantum computer using a trial quantum state pre-
pared by a parameterized quantum circuit. This cost function
evaluation is iteratively performed while the classical param-
eters are updated so as to minimize the cost function. Thus,
VQAs are effectively hybrid quantum-classical algorithms.
A well-known example of a VQA is a variational quantum
eigensolver (VQE) [14] in which the cost function is the
expectation of the system Hamiltonian. The VQE was origi-
nally developed to calculate the lowest eigenvalue of a system
Hamiltonian via parameterized quantum circuits, also called
ansatz [15], and has been widely studied in terms of the
quantum circuits suitable for hardware architectures [16,17]
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and the construction of efficient optimizers [18–20]. Another
popular VQA is the quantum approximate optimization algo-
rithm (QAOA) [21], which can be used to solve combinational
optimization problems. The QAOA was originally based on
the concept of adiabatic quantum computing [22,23]; it has
since been extended to more general families of operators
and is thus widely known as the quantum alternating operator
ansatz [24].

VQAs for solving linear systems have also been proposed.
Bravo-Prieto et al. [25] proposed a VQA for a linear system
in which the system matrix is written as a linear combination
of unitary operators. This algorithm prepares a quantum state
whose amplitude is proportional to the solution of a linear
system output by the Harrow-Hassidim-Lloyd algorithm [6].
Liu et al. [26] presented a scheme for efficiently solving the
Poisson equation by explicitly decomposing a system ma-
trix derived from the finite difference discretization of the
Poisson equation. This scheme requires O(log2N ) expectation
calculations at every iteration in the optimization procedure,
where N is the size of the problem. However, these methods
provide normalized solutions and do not explicitly provide
the norm of the solutions. In the field of classical physics,
the unknown quantities of PDEs directly describe physical
quantities whose norms are not necessarily equal to 1. For
example, the temperature field in steady-state heat conduction
is governed by the Poisson equation, and we need to know
the scale of the temperature when assessing whether the tem-
perature in a certain device exceeds the operating temperature
limit. In an engineering sense, therefore, the norms of these
physical quantities provide important information.

This paper describes a method for solving the Poisson
equation by formulating the cost function based on the con-
cept of the minimum potential energy. This approach naturally
leads to an expression for the norm of the solutions. The
system matrix of the discretized Poisson equation is split into
a linear combination of the tensor product of Pauli operators
and simple observables. The number of decomposed terms is
independent of the system size, i.e., O(1), which significantly
reduces the required number of expectation calculations on
quantum computers.

The remainder of this paper is organized as follows. In
Sec. II, the optimization problem for solving the Poisson
equation is formulated based on the concept of VQAs. Sec-
tion III describes the numerical implementation based on this
formulation, and then Sec. IV provides several results from
numerical experiments. Finally, the conclusions to this study
are presented in Sec. V.

II. FORMULATION

A. Derivation of optimization problem

Consider the Poisson equation defined in an open bounded
domain � ⊂ Rd , where d is the number of spatial dimensions.
Let u(x) denote the state field at the spatial coordinate x ∈ Rd .
Consider a function f (x) : � → C. The Poisson equation is
then defined as

−∇2u(x) = f (x) in �, (1)

where ∇2 is the Laplace operator. As typical boundary con-
ditions, the Neumann and Dirichlet boundary conditions are,
respectively, defined as

− n · ∇u(x) = 0 on �N, (2)

u(x) = 0 on �D, (3)

where �N and �D denote the boundaries on which the Neu-
mann and Dirichlet boundary conditions are, respectively,
imposed, n is the normal vector pointing outward from the
boundary of the domain �, and �N ∪ �D = ∂�, which means
that any point on ∂� is included in either �N or �D. In the
following, the spatial coordinate x is omitted for readability.

Let us consider the total potential energy, defined as

E := 1

2

∫
�

∇v∗ · ∇v d� − 1

2

∫
�

v∗ f d� − 1

2

∫
�

f ∗v d�,

(4)
for v ∈ V with

V := {v ∈ H1(�) | v = 0 on �D}, (5)

where H1(�) is a Sobolev space. The stationary condition of
the total potential energy with respect to a function v yields

0 = dE (v; δv)

= 1

2

∫
�

∇δv∗ · ∇v d� + 1

2

∫
�

∇v∗ · ∇δv d�

− 1

2

∫
�

δv∗ f d� − 1

2

∫
�

f ∗δv d�

= 1

2

∫
�N

δv∗n · ∇v d� − 1

2

∫
�

δv∗(∇2v + f ) d�

+ 1

2

∫
�N

δv(n · ∇v)∗ d� − 1

2

∫
�

δv(∇2v + f )∗ d�,

(6)

where dE (v; δv) represents the Gâteaux derivative of E with
respect to v in the direction δv ∈ V . In Eq. (6), Gauss’s the-
orem was applied from the second line to the third, and the
integration on �D vanished because the trace of δv = 0 on the
boundary where the Dirichlet boundary condition is imposed.
Because δv is arbitrary, the above stationary condition recov-
ers the Poisson equation from the second and fourth terms of
the right-hand side of Eq. (6), which is known as the principle
of minimum potential energy. This means that minimizing the
total potential energy with respect to the function v yields the
state field u, governed by the Poisson equation.

Now, to derive the cost function, Eq. (4) is discretized using
some technique such as the finite difference or finite element
method. The discretized version of the total potential energy,
Eh, can be written as

Eh := 1
2v∗ · Av − 1

2v∗ · f − 1
2 f ∗ · v, (7)

where v and f denote vectors with component values of v

and f , respectively, at the nodes discretizing the domain �.
A is a positive-definite symmetric matrix obtained from the
discretization of the first term in Eq. (4) into the quadratic
form. Let |v〉 and | f 〉 be the state vectors encoding v and f ,
respectively. Without loss of generality, the squared norm of
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f can be assumed to be 1 from the linearity of the Poisson
equation, which means that | f 〉 can be regarded as a quantum
state. However, it should be noted that |v〉 is not necessarily a
quantum state because the squared norm of the solution vector
is not necessarily 1. To represent the solution vector using a
parameterized quantum state |ψ (θ)〉 with parameter vectors θ,
we thus introduce a parameter r ∈ R and then represent |v〉 =
r|ψ (θ)〉. Substituting |v〉 = r|ψ (θ)〉 and | f 〉, respectively, for
v and f in Eq. (7), we obtain

Eh = 1
2 r2〈ψ (θ) | A | ψ (θ)〉
− 1

2 r〈ψ (θ) | f 〉 − 1
2 r〈 f | ψ (θ)〉. (8)

Introducing the quantum state | f , ψ (θ)〉 := (|0〉| f 〉 +
|1〉|ψ (θ)〉)/

√
2, the discretized version of the total potential

energy Eh in Eq. (7) can be described as

Eh(r, θ) = 1
2 r2〈ψ (θ) | A | ψ (θ)〉
− r〈 f , ψ (θ) | X ⊗ I⊗n | f , ψ (θ)〉, (9)

where I = |0〉〈0| + |1〉〈1|, X = |0〉〈1| + |1〉〈0|, and n =
log2 N , where N is the number of nodes. Because r and θ

parametrize |v〉, minimizing the total potential energy with
respect to |v〉 corresponds to the minimization of Eh(r, θ) in
Eq. (9) with respect to r and θ. The optimization problem that
solves the Poisson equation can, therefore, be formulated as

min
r,θ

Eh(r, θ). (10)

Letting ropt and θopt denote the solution of this optimiza-
tion problem, the state vector that encodes the solution of
the Poisson equation is |u〉 = ropt|ψ (θopt )〉. Here, these two
minimizations with respect to r and θ can be performed se-
quentially, i.e., minimizing Eh with respect to r, followed by
θ as

min
r,θ

Eh(r, θ) = min
θ

Eh[ropt (θ), θ], (11)

where ropt (θ) is the optimal value of r for a fixed value of
θ. As the cost function Eh is parabolic with respect to r, the
optimal solution of r for a given θ is analytically derived
by the following necessary condition for optimality, which
requires that the partial derivative of Eh(r, θ) with respect to r
is equal to 0:

0 = ∂Eh(r, θ)

∂r

= r〈ψ (θ) | A | ψ (θ)〉 − 〈 f , ψ (θ) | X ⊗ I⊗n | f , ψ (θ)〉.
(12)

Then, we have

ropt (θ) = 〈 f , ψ (θ) | X ⊗ I⊗n | f , ψ (θ)〉
〈ψ (θ) | A | ψ (θ)〉 . (13)

Consequently, r can be deleted from the cost function, and the
optimization problem is to minimize the following Eq. (14)
with respect to θ:

Eh[ropt (θ), θ] = −1

2

[〈 f , ψ (θ) | X ⊗ I⊗n | f , ψ (θ)〉]2

〈ψ (θ) | A | ψ (θ)〉 . (14)

Note that the denominator 〈ψ (θ) | A | ψ (θ)〉 is positive for
arbitrary quantum states |ψ (θ)〉 owing to the positive definite-
ness of the operator A.

B. Evaluation of cost function

In this paper, we focus on the one-dimensional Poisson
equation, discretized by the finite element method (FEM)
[27], in which the mesh size of all finite elements is 1. For
N nodes in one dimension, the matrix A is described using
first-order elements, depending on the boundary conditions,
as follows: With periodic boundary conditions,

Aperiodic :=

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 0 . . . 0 −1
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
...

. . .
...

0 . . . 0 −1 2 −1
−1 0 . . . 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ RN×N . (15)

With Dirichlet boundary conditions,

ADirichlet :=

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
...

. . .
...

0 . . . 0 −1 2 −1
0 . . . 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ RN×N . (16)

With Neumann boundary conditions,

ANeumann :=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
...

. . .
...

0 . . . 0 −1 2 −1
0 . . . 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ RN×N . (17)

The matrix ADirichlet is the same as that derived in previous
research [26] using the finite difference method (FDM). In
one dimension, the matrices derived from the FEM using first-
order elements coincide with those from the central difference
scheme in the FDM.

While previous research [26] has shown that the matrix
ADirichlet can be decomposed into O(n) terms consisting of
Pauli and simple operators, the present study provides the
decomposition of the above matrices Aperiodic, ADirichlet, and
ANeumann into O(1) terms consisting of Pauli operators and
simple observables. The matrix Aperiodic can be split into two
matrices as follows:

Aperiodic = ATeven + ATodd , (18)
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where

ATeven :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 . . . 0
−1 1 0 0 . . . 0
0 0 1 −1 . . . 0
0 0 −1 1 . . . 0
...

. . .
...

0 . . . 0 0 1 −1
0 . . . 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(19)

ATodd :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0 −1
0 1 −1 0 . . . 0
0 −1 1 0 . . . 0
...

. . .
...

0 0 1 −1 0
0 . . . 0 −1 1 0

−1 0 . . . 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(20)

Because ATeven can be written in a simple form using Pauli
operators as

ATeven = I⊗n−1 ⊗ (I − X ), (21)

and ATeven and ATodd are interchanged by shifting the node
number towards +1, ATodd can also be written using Pauli
operators as

ATodd = P−1[I⊗n−1 ⊗ (I − X )]P, (22)

where P is a shift operator defined as

P :=
∑

i∈[0,2n−1]

|(i + 1) mod 2n〉〈i|. (23)

Considering the differences between matrices depending on
the three types of boundary conditions in Eqs. (15)–(17), these
matrices can now be described as follows using the tensor
products of the Pauli operators, a shift operator, and a simple
Hermitian I0 = |0〉〈0|:

Aperiodic = I⊗n−1 ⊗ (I − X ) + P−1[I⊗n−1 ⊗ (I − X )]P, (24)

ADirichlet = Aperiodic + P−1
(
I⊗n−1
0 ⊗ X

)
P, (25)

ANeumann = Aperiodic − P−1
[
I⊗n−1
0 ⊗ (I − X )

]
P. (26)

The expectation values of observables including a shift opera-
tor can be evaluated as follows by applying the shift operator,
which is unitary, to the quantum state:〈

φ | P−1HP | φ〉 = 〈φ′ | H | φ′〉, (27)

where |φ〉 is an arbitrary n-qubit state and |φ′〉 = P|φ〉. Now,
the denominator of Eq. (14) is described using a linear com-
bination of the Pauli operators and simple Hermitians I0, I1,
and the numerator of Eq. (14) is originally expressed by the
Pauli operators. Because the expectation values of the identity
operator are 1, i.e.,

〈φ | I⊗n | φ〉 = 1, (28)〈
φ | P−1I⊗nP | φ〉 = 〈φ′ | I⊗n | φ′〉 = 1, (29)

the number of terms to be evaluated by a quantum com-
puter is three for the periodic boundary condition, four for
the Dirichlet boundary condition, and five for the Neumann
boundary condition; of these, one term is for the numerator of
Eq. (14) and the others are for the linear combination in the
denominator of Eq. (14).

The above discussion can easily be extended to d-
dimensional problems using the FDM and FEM. When using
the FDM, the cost function is defined by the d-dimensional
system matrix Ad , that is,

Ad := A ⊗ I⊗(d−1) + I ⊗ A ⊗ I⊗(d−2) + · · · + I⊗(d−1) ⊗ A,

(30)

instead of A [8,26]. This increases the number of terms to be
measured by a factor of d compared with the one-dimensional
case, i.e., the number of terms to be measured is O(d ). When
using the FEM, the decomposition of Ad into a linear com-
bination of Pauli operators is derived by defining a graph
corresponding to the finite elements, which is explained in
Appendix A.

III. IMPLEMENTATION

A. Overview of the algorithm

Here, we briefly describe the proposed algorithm.
Step 1. Initialize a set of parameters θ in a classical com-

puter.
Step 2. Evaluate the cost function Eh in Eq. (14) using a

quantum computer.
Step 3. If a certain terminal condition is satisfied, the opti-

mization procedure halts; otherwise, proceed to Step 4.
Step 4. Update the set of parameters using some classical

optimization scheme, then return to Step 2.
We use several kinds of terminal conditions in the numeri-

cal experiments. These will be specified in Sec. IV.

B. State preparation

In the proposed method, the quantum state |ψ (θ)〉 is pre-
pared by applying a sequence of parameterized quantum
gates U (θ), the so-called ansatz, to the |0〉⊗n state. We use
a hardware-efficient ansatz [16], specifically, an alternating
layered ansatz consisting of RY gates and controlled Z gates
[25], to constrain the amplitude in the real space. This is valid
in the solution of the Poisson equation with f (x) ∈ R. In
the state-preparation stage, the state vector | f 〉, which cor-
responds to the source term of the Poisson equation, must
also be prepared. To encode arbitrary state vectors, amplitude
encoding techniques are required [28–30]. These encode clas-
sical data into the amplitudes of a quantum state. In the current
study, for simplicity, we assume that there is a unitary Uf that
efficiently prepares | f 〉 from |0〉⊗n (i.e., | f 〉 = Uf |0〉⊗n). The
quantum state | f , ψ (θ)〉 for evaluating the numerator of the
cost function in Eq. (14) is prepared using an auxiliary qubit
and controlled versions of the parameterized quantum circuit
U (θ) and the unitary Uf of the quantum circuit shown in
Fig. 1, which is more expensive than circuits preparing |ψ (θ)〉
and | f 〉. Note that when we constrain the amplitudes of |ψ (θ)〉
and | f 〉 in the real space, the numerator of the cost function
can also be evaluated without the quantum state | f , ψ (θ)〉 as
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FIG. 1. Quantum circuit for preparing | f , ψ (θ)〉 := [|0〉| f 〉 +
|1〉|ψ (θ)〉]/√2. The leftmost qubit is shown in the bottom line of
the circuit.

follows:

[〈 f , ψ (θ) | X ⊗ I⊗n | f , ψ (θ)〉]2

= 〈ψ (θ) | f 〉〈 f | ψ (θ)〉 {ifIm[〈ψ (θ) | f 〉] = 0}
= 〈ψ (θ)|Uf |0〉〈0|U †

f |ψ (θ)〉, (31)

where the first equality holds when the amplitudes of |ψ (θ)〉
and | f 〉 are in the real space.

C. Quantum circuit for the shift operator

The shift operator P is represented by a sequence of mul-
ticontrolled Toffoli gates with, at most, n − 1 control lines, as
shown in Fig. 2. With k � 3 denoting the number of control
lines, a k-controlled Toffoli gate can be decomposed into
2k − 4 relative-phase Toffoli gates and a Toffoli gate using
k − 2 auxiliary qubits [31]. Because a shift operator has k-
controlled Toffoli gates for 3 � k � n − 1, a CNOT gate, and
an X gate, it can be expressed by (n − 2)(n − 3) relative-
phase Toffoli gates, n − 3 Toffoli gates, a CNOT gate, and an
X gate. Consequently, a quantum circuit for a shift operator
requires O(n2) depth and 2n − 3 qubits, including auxiliary
qubits. Note that this implementation of the shift operator P
is the major bottleneck for making a quantum circuit shallow,
and so it is challenging to perform the proposed method di-
rectly on NISQ devices. Thus, an efficient implementation of
the shift operator is a crucial aspect that we will address in
future research. For example, Oomura et al. [32] proposed
an efficient implementation of the Toffoli gate employing
the IBM Q Open Pulse Systems, which halves the gate time
and improves the fidelity. We believe that such pulse design
approaches are promising.

The decomposition of the matrix A introduced in a previ-
ous approach [26] can also be used in our proposed method.
Though this decomposition yields O(n) terms to be measured,
the fact that the shift operator is not used means that the
quantum circuit remains shallow. With the use of this de-
composition, the previous method requires the expectations
of X ⊗ A and A2, which yield 2n + 1 and 4n + 1 terms to

FIG. 2. Quantum circuit for the shift operator.

be measured, respectively, while our formulation requires the
expectations of X ⊗ I and A, which yield 1 and 2n + 1 terms
to be measured, respectively. Therefore, our proposed method
has the advantage that the number of terms to be measured is
roughly one-third of that in the previous method.

D. Number of shots for expectation estimation

To estimate the expectation value of a certain observable
using a quantum computer, a quantum circuit with state prepa-
ration and measurement is run many times to sample an
observable value and apply the Monte Carlo approach. Each
run of a quantum circuit to obtain a sample is referred to as
a “shot.” In this section, we estimate the number of shots
required to estimate the expectations.

In the proposed method, the expectations to be esti-
mated are 〈 f , ψ (θ) | X ⊗ I⊗n | f , ψ (θ)〉 and 〈ψ (θ) | A | ψ (θ)〉,
where the latter consists of several terms depending on the
boundary conditions, as mentioned in Sec. II B. Let q( j)

i de-
note the jth sample value for estimating the ith expectation
value. Here, q( j)

1 denotes the value of the jth sample of
〈 f , ψ (θ) | X ⊗ I⊗n | f , ψ (θ)〉, whereas q( j)

�2 denotes the value
of the jth sample of 〈ψ (θ) | A | ψ (θ)〉. In the following dis-
cussion, the parameter values θ are assumed to be fixed and
are omitted to simplify the notation. Using Si shots, the ith
expectation value q̄i is estimated as follows:

q̄i :=
∑Si

j=1 q( j)
i

Si
. (32)

Regarding q( j)
i as a random variable with a mean value of

μi and a variance of σ 2
i , the mean and variance of q̄i are

written as

E[q̄i] = μi, (33)

Var[q̄i] =
∑Si

j=1 Var[q( j)
i ]

S2
i

=
∑Si

j=1 σ 2
i

S2
i

= σ 2
i

Si
. (34)

The variance of q̄i corresponds to a squared standard error of
q( j)

i , the standard error of which is σi/
√

Si.
Now, the cost function Eh in Eq. (14) is written using μi,

and is assumed to be estimated as follows using the approxi-
mated expectation values:

Eh = −1

2

μ2
1∑m

i=2 μi
≈ −1

2

q̄2
1∑m

i=2 q̄i
=: g(q̄1, . . . , q̄m), (35)

with g(q̄1, . . . , q̄m) denoting the approximated cost function,
where m = 3 for the periodic boundary condition, m = 4 for
the Dirichlet boundary condition, and m = 5 for the Neu-
mann boundary condition, which corresponds to the number
of terms to be evaluated derived in Sec. II B.

Note that sampling using quantum computers is performed
independently for each term of the expectation, leading to
Cov(q̄i, q̄i′ ) = 0 for i �= i′, where Cov(q̄i, q̄i′ ) is the covariance
of q̄i and q̄i′ . Using the first-order Taylor series expansion of
g(q̄1, . . . , q̄m) around μi for i ∈ [1, m], the mean squared error
ε2 between Eh and g(q̄1, . . . , q̄m) in Eq. (35) is then written as
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follows:

ε2 = r2
opt

(
σ 2

1

S1
+ 1

4
r2

opt

m∑
i=2

σ 2
i

Si

)
. (36)

A detailed derivation of the above equation is provided in
Appendix B. In the proposed method, for simplicity, we use
the same number of shots, denoted by S, for all sampling
processes, which yields

ε2 ≈ r2
opt

(
σ 2

1 + 1

4
r2

opt

m∑
i=2

σ 2
i

)
1

S
. (37)

This equation implies that the mean square error is inversely
proportional to the number of shots.

E. Time complexity

Here, we analyze the time complexity of the proposed
method in terms of state preparation, number of quantum cir-
cuits, number of shots, and the number of iterations required
to optimize the parameter set θ. Note that the time complexity
of the classical computing parts, such as parameter initializa-
tion and update, depends on the classical implementation and
optimizers; thus, it is omitted from this analysis.

The time complexity of state preparation represents the
time required for setting up the quantum circuit before per-
forming the measurements to estimate a certain expectation
value. Therefore, the time complexity of state preparation,
denoted by TP, can be estimated by the depth of the quantum
circuit of state preparation:

TP := O(Dansatz + Denc + Dshift ) (38)

= O(Dansatz + Denc + n2), (39)

where Dansatz, Denc, and Dshift denote the circuit depths of the
ansatz, amplitude encoding, and shift operator, respectively.

To estimate the cost function value using a quantum com-
puter, several quantum circuits are required, corresponding to
the numerator of Eq. (14) and each term in Eqs. (24)–(26) in
the denominator of Eq. (14). The required number of quantum
circuits, TC , is

TC := O(1) (40)

because TC = 3 for periodic boundary conditions, TC = 4
for Dirichlet boundary conditions, and TC = 5 for Neumann
boundary conditions, independent of the scale of the problem,
n. Furthermore, when we use gradient-based optimizers, we
need several quantum circuits, the number of which is pro-
portional to the number of parameters in the parameter set θ,
to evaluate the gradient of the cost function. As the number
of parameters is O(nDansatz), the number of quantum circuits
required, denoted by TG, is

TG := O(nDansatz). (41)

To evaluate the cost function and its gradient, each quan-
tum circuit must be run many times for the sampling required
to estimate the expectation values. Based on the discussion in
Sec. III D, the required number of shots is

TS := O

(
1

ε2

)
. (42)

In the proposed method, the above-mentioned evaluations
of the cost function and its gradient through quantum circuits
are repeated while the parameter set θ is updated, as discussed
in Sec. III A. The number of iterations is strongly dependent
on the classical optimization solver and the terminal condition
setting. As the discussion of classical optimization solvers is
beyond the scope of this paper, let Tit denote the number of
iterations, for simplicity.

Consequently, the total time complexity can be derived as

T := TitTP(TC + TG)TS

= O

[
Tit(Dansatz + Denc + n2)nDansatz

ε2

]
. (43)

The time complexity for solving the Poisson equation by
classical computing is O(N log2 N ) [33], where N is the size
of the matrix A, i.e., N = 2n. Thus, the proposed method has
reduced time complexity compared with classical algorithms,
as long as the number of optimization iterations Tit, the depth
of the ansatz Dansatz, and the depth of the quantum circuit
for the amplitude encoding Denc are relatively small, i.e.,
O[poly(n)].

The time complexity of the previous method [26] can also
be evaluated through a similar procedure. Here, only the result
is provided:

T = O

[
Tit(Dansatz + Denc)n2Dansatz

ε2

]
. (44)

Hence, if either the depth of the ansatz or that of the ampli-
tude encoding is greater than O(n), the proposed method has
reduced time complexity compared with the previous method.
As for amplitude encoding, a depth of O(n2) is required to
encode arbitrary real-valued inputs [30], which implies that
the proposed method has reduced time complexity compared
with the previous method.

F. Barren plateaus

Note that the proposed cost function will suffer from
the problem of exponentially vanishing gradients, i.e., bar-
ren plateaus, because of the definition of the cost function
and the use of an alternating layered ansatz [34]. Because
the operator ATeven = I⊗n−1 ⊗ (I − X ) in the denominator
of the cost function acts nontrivially on only one qubit, i.e.,
the operator is local, the expectation of the operator is resilient
to the problem of barren plateaus. However, the operator
ATodd = P−1[I⊗n−1 ⊗ (I − X )]P acts nontrivially on all qubits
because of the shift operator, i.e., it is global, and so the
expectation of the operator will be affected by barren plateaus.
Moreover, although the operator X ⊗ I in the numerator of
the cost function is local, the expectation of the operator will
be affected by barren plateaus because the numerator inher-
ently evaluates the inner product of states |ψ (θ)〉 and | f 〉 by
definition, which is a global quantity. Consequently, the cost
function as a whole will be affected by barren plateaus, even
though one term is resilient to the problem. Therefore, the
required order of shots needed to evaluate the gradients will
be exponential with respect to a certain error because of the
exponentially vanishing gradients. We will attempt to alleviate
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this problem in future research. A more detailed discussion is
provided in Appendix D 1.

IV. NUMERICAL EXPERIMENTS

This section describes the results of several numerical
experiments that demonstrate the validity of the proposed
method. The proposed method was implemented in QISKIT

version 0.23 [35], an open-source framework for working with
quantum computers. The Statevector Simulator backend in
AER, which is a high-performance quantum computing sim-
ulator operating with QISKIT, was used for the calculations,
except for those reported in Sec. IV B 3, where the QASM
Simulator backend was used. As an optimizer for updating θ,
we employed the Broyden-Fletcher-Goldfarb-Shanno method
[36–39], with the gradient of the cost function evaluated by
quantum computing. An analytic derivation of the expression
for the gradient is provided in Appendix C.

In the experiments reported below, the unitary Ub for
preparing | f 〉 was set as

Ub = H⊗nX ⊗ I⊗(n−1), (45)

where H represents a Hadamard gate. This unitary Ub prepares
| f 〉 in the form of a step function from 1/2n/2 to −1/2n/2. The
number of layers of the ansatz was fixed at 5.

A. Solutions for three types of boundary conditions

First, we provide solutions obtained by the proposed
method for the three types of boundary conditions to show
the applicability of the proposed method to these basic types.
Here, the Statevector Simulator backend in AER was used to
evaluate the proposed method in an ideal environment without
any noise or sampling errors.

In this experiment, the optimization procedure was ter-
minated when the norm of the gradients became less than
the predetermined threshold value. The optimization was per-
formed 10 times from randomly set initial parameters θ for
each condition. When imposing the periodic or Neumann
boundary conditions on both edges, a regularization term εI
with ε = 10−3 was added to the system matrix A to prevent
the matrix from becoming singular.

Figures 3(a)–3(c) show the components of the solution
vectors on each node from 10 trials when n = 5. As shown
in these figures, the solutions for the periodic and Dirichlet
boundary conditions are similar to each other, whereas the
Neumann boundary condition gives a totally different solu-
tion when the input vector | f 〉 is prepared using the unitary
operator in Eq. (45). Figures 3(a)–3(c) also indicate that the
proposed algorithm underestimates the norms of the solution
vectors, although the directions of the solution vectors given
by the proposed method are in good agreement with those
from classical computing.

Figure 4 shows the trace distance εtr between the solutions
obtained by the proposed method and the classical compu-
tation when calculating A−1 f with respect to the number of
qubits. The trace distance εtr between the trial state |ψ (θ)〉 and
the normalized ground truth |ū〉 := |u〉/√〈u | u〉 is defined as

εtr := 1
2 Tr(

√
(|ψ〉〈ψ | − |ū〉〈ū|)2) =

√
1 − |〈ψ | ū〉|2. (46)
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FIG. 3. Distribution of solutions. The components of the solution
vectors on each node are plotted. (a) Periodic boundary condi-
tions. (b) Dirichlet boundary conditions. (c) Neumann boundary
conditions.

The plots and error bars represent the mean values and the
standard deviations of 10 experiments. This figure shows that
the trace distance εtr is less than 0.01 for all cases, which
results in the fidelity 〈ψ | ū〉2 being greater than 0.9999. These
trace distance and fidelity values compare favorably with
those reported in previous research [25,26]. Therefore, the
errors between the solution vectors obtained by the proposed
algorithm and a classical approach are mainly caused by er-
rors in the norms, and the directions of the solution vectors
given by the proposed method actually agree with those from
classical computing. Because the errors of the solution depend
on the Hilbert space expressed by the ansatz, we hope to
conduct future research on the ansatz that is most suitable for
expressing the solutions of certain PDEs.

052409-7



SATO, KONDO, KOIDE, TAKAMATSU, AND IMOTO PHYSICAL REVIEW A 104, 052409 (2021)

FIG. 4. Trace distances εtr vs the number of qubits, n. The mean
values of 10 trials are plotted, with the error bars representing the
standard deviations. The x axis is slightly shifted for different legends
for visibility.

B. Comparison of the proposed method
with the previous method

We now compare the proposed method with the previous
approach [26] to evaluate the performance of the proposed
method. In the previous method, the cost function to be mini-
mized is formulated as

E (θ) = 〈ψ (θ) | A(I − | f 〉〈 f |)A | ψ (θ)〉, (47)

which corresponds to the maximization of the cosine simi-
larity of A|ψ (θ)〉 and | f 〉. Because the cosine similarity does
not take into account the norm information, the previous
method does not explicitly provide the norm. Note that the
norm can be calculated once the normalized solution has
been obtained. Letting r denote the norm of the solution, the
equation Ar|ψ (θ)〉 = | f 〉, which holds at the optimal point of
θ if the expressibility of the ansatz is sufficiently high, yields
the following expression:

r = 1√〈ψ (θ) | A2 | ψ (θ)〉 . (48)

We also implemented the previous method using QISKIT by
referring to the original paper.

In the following experiments, except those reported in
Sec. IV B 1, the proposed method used the Dirichlet boundary
conditions imposed on both edges. The results are compared
with those of the previous approach using the Dirichlet bound-
ary conditions.

1. Dependency of the number of circuit executions per cost
function evaluation on the number of qubits

First, we examined the dependency of the number of circuit
executions on the number of qubits to evaluate the scala-
bility of the proposed method. For randomly set parameters
θ ∈ [0, 4π ], the number of circuit executions for evaluating a
cost function value was recorded for both the proposed and
previous methods.

Figure 5 illustrates the number of circuit executions per
cost function evaluation with respect to the number of qubits
for both the proposed and previous methods [26]. This figure
clearly shows that the proposed method only requires O(1)
measurements per cost function evaluation, whereas the previ-

FIG. 5. Number of circuit executions per cost function evalua-
tion, TC , vs the number of qubits for both the proposed and previous
methods [26].

ous method requires O(n) measurements. This result confirms
the validity of the proposed formulation given in Sec. II B,
implying that our proposed method significantly reduces the
required number of expectation calculations on quantum com-
puters.

2. Dependency of the number of iterations on the number of qubits

Next, we examined the dependency of the number of op-
timization iterations on the number of qubits to evaluate the
scalability of the classical computing part of the proposed
method.

In this experiment, the terminal condition was based on
the tolerance of the trace distance εtr between the trial state
|ψ (θ)〉 and the normalized ground truth |ū〉 := |u〉/√〈u | u〉,
which is the same criterion used in previous research [25].
Note that this metric only evaluates the difference in direction
between the trial state and the true solution; the difference in
the norm cannot be determined. In spite of this defect, we used
the metric to compare the proposed method with the previous
approach according to the same criterion used in the previous
method. The tolerance of the trace distance was successively
set to εtr = 0.1, 0.03, 0.01.

For each condition, the optimization was run 10 times,
using randomly set initial parameters in [0, 4π ]. Figure 6
shows the decadic logarithm of the number of optimization it-
erations with respect to the decadic logarithm of the number of
qubits for both the proposed method and the previous method
[26]. The plots and error bars represent the mean values and
the standard deviations of 10 experiments, respectively. This
figure clearly shows that the number of iterations is positively
correlated with the number of qubits. Although it is difficult
to assert the time complexity of the number of iterations
numerically because of the error bars, these plots were fitted
to the lines that minimize the squared errors of fitting. The
lines for the proposed method have slopes of 2.6 for εtr = 0.1,
2.3 for εtr = 0.03, and 2.5 for εtr = 0.01. This implies that
Tit in Eq. (43) is, at most, O(n2.6) in this experiment. For the
previous method, the lines have slopes of 3.5 for εtr = 0.1, 3.6
for εtr = 0.03, and 4.2 for εtr = 0.01. Therefore, it seems that
the number of iterations with respect to the number of qubits is
of similar order in both the proposed method and the previous
method.
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FIG. 6. Decadic logarithm of the number of optimization iterations, Tit , vs the number of qubits, n, for both the proposed and previous
methods [26]. The points show the mean values of 10 experiments and the fitted lines minimize the squared errors of fitting. The error bars
represent the standard deviation of 10 experiments. The x axis is slightly shifted for different legends for visibility.

3. Dependency of the sampling errors on the number of shots

Next, we examined the effect of the number of shots on
the expectation estimations. The QASM Simulator backend
was used to evaluate the sampling errors in the environment
without any noise.

For randomly set parameters θ ∈ [0, 4π ], the squared error
between the ground truth and the estimation value of the cost
function was evaluated. The former was calculated by the
Statevector Simulator and the latter by the QASM Simulator
(i.e., sampling). The cost function was evaluated 10 times by
sampling for each number of shots.

Figure 7 shows the decadic logarithm of the squared error
of the cost function with respect to the decadic logarithm
of the number of shots for the proposed method. The points
show the mean values of the 10 experiments and the error
bars represent their standard deviations. Fitting lines are also
provided in the plots. This figure clearly indicates that the
squared error decreases as the number of shots increases. The
mean and standard deviation of the slopes are −1.11 and
0.12, respectively, while the theoretical slope is −1, as derived
in Eq. (37). Note that it does not make sense to compare
the magnitude of errors between different numbers of qubits.
Because this figure is plotted for a fixed parameter, which is
set randomly for each number of qubits, the plots necessarily
exhibit monotonicity with respect to n. We also examined the

effect of the number of shots on the expectation estimations
for the previous method, and the results are illustrated in
Appendix D 2.

In addition to the cost function evaluation, it is important
to precisely evaluate the gradients when using a gradient-
based optimization method. Therefore, we also evaluated the
errors between the gradient evaluated by the sampling ob-
tained using the QASM Simulator and that computed by the
Statevector Simulator with fixed parameters.

As a metric to evaluate the errors, we used the cosine
similarity, which measures the similarity of directions, as the
directions of the gradients are more important to optimizers
than their norms. Figure 8 shows the decadic logarithm of “1
− cosine similarity” with respect to the number of shots for
both the proposed and previous methods. This figure clearly
shows that the cosine similarity increases as the number of
shots increases. When n = 10, the slope of the fitting line
increases. This is caused by the existence of barren plateaus,
whereby more shots are required to evaluate small gradients
precisely. The means and standard deviations of the slopes of
the fitted lines for n = 2, . . . , 10 (which includes cases that
do not appear in Fig. 8) are −0.99 and 0.14 for our proposed
method and −0.98 and 0.03 for the previous method, respec-
tively. Therefore, it seems that the gradient estimation for a
given number of shots is of similar order in both the proposed
and previous methods.

FIG. 7. Decadic logarithms of cost function error ε vs the number of shots S for the proposed method. The optimization was run 10 times
with fixed parameters for each number of shots. The mean values are plotted, with the error bars representing the standard deviations. The
mean and standard deviation of the slopes for n = 2, . . . , 10 (which includes cases that are not shown in this figure) are −1.11 and 0.12,
respectively. The x axis is slightly shifted for different legends for visibility.
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FIG. 8. Decadic logarithms of “1 − cosine similarity” vs the number of shots S for the proposed and previous methods [26] based on our
implementation. The optimization was run 10 times with fixed parameters for each number of shots. The mean values are plotted, with the
error bars representing the standard deviations. The means and standard deviations of the slopes of the fitted lines for n = 2, . . . , 10 (which
includes cases that are not shown in this figure) are −0.99 and 0.14 for our proposed method and −0.98 and 0.03 for the previous method,
respectively. The x axis is slightly shifted for different legends for visibility.

However, we can clearly observe that the proposed method
has longer error bars, i.e., a larger standard deviation of
sampling, than the previous method. This comes from the dif-
ference in the definition of the cost function, with the proposed
method considering the norm of the solution vector as well as
its direction in the optimization procedure. This implies that
more shots are required to estimate the norm of the solution in
addition to its direction.

V. CONCLUSIONS

This paper has presented a VQA for solving the Poisson
equation based on the minimum potential energy. The main
contributions of the present study are as follows: (1) we have
provided an explicit decomposition of the system matrix for
the Poisson equation into O(1) terms consisting of simple
observables, (2) the proposed method provides information
about the norm of the solution vectors in addition to the
direction of the vectors, and (3) the time complexity of the
proposed algorithm has been derived and verified. The first
contribution implies that the proposed method only requires
a small number of quantum measurements, compared with
conventional approaches, at every iteration of the optimiza-
tion procedure. The second contribution enhances the ability
of VQAs to solve PDEs because the norm information is
essential when using the calculation results for engineering
developments. As for the third contribution, we estimated the
time complexity of the proposed method and demonstrated
that it has significant potential for reducing the computation
time of classical computing algorithms. The number of op-
timization iterations and the depth of the ansatz depend on
the classical optimization and the architecture of the ansatz,
respectively. To derive the theoretical total time complexity,
these aspects will be discussed in future work.

We believe the present study elevates the application of
quantum computing to the field of computer-aided engineer-
ing and, moreover, design optimization.
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APPENDIX A: DECOMPOSITION OF STIFFNESS MATRIX
IN FINITE ELEMENT METHODS USING GRAPH THEORY

First, a one-dimensional problem is considered. Let us
consider an N-node cycle graph G = (V, E ), where V and
E represent node and edge sets, respectively. This N-node
cycle graph corresponds to the one-dimensional finite element
with a periodic boundary condition. A clique is defined as
a subset of several nodes that form a complete subgraph. A
tessellation T is then defined as a set of cliques such that all
nodes belong to one clique. The tessellation T includes edges
whose endpoints belong to the tessellation. Generally, several
tessellations can be defined in a graph, and there exists a set
of tessellations such that all edges of the graph are included
in at least one tessellation. Such a set of tessellations is called
a tessellation cover [40]. Assuming that N = 2n, two tessella-
tions of the tessellation cover of the N-node cycle graph can
be defined as

Teven := {C2i | i ∈ [0, 2n−1 − 1]}, (A1)

Todd := {C2i+1 | i ∈ [0, 2n−1 − 1]}, (A2)

where Ci := {vi, vi+1} is a clique consisting of the i-th node vi

and the (i + 1)th node vi+1. Note that we define vN := v0 to
simplify the notation.

FIG. 9. Example of tessellations for an 8-node cycle graph. Red
and blue ellipses indicate the tessellations Teven and Todd, respectively.
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(a)

(b)

(c)

FIG. 10. Example of two-dimensional finite elements and the corresponding graph: (a) an element with node numbers, (b) a 3 × 3 two-
dimensional square mesh, (c) a graph corresponding to the two-dimensional mesh. Rectangles drawn by red lines, blue dash-dotted lines, green
dashed lines, and magenta dotted lines indicate separate tessellations.

Figure 9 illustrates an example of these tessellations for an
8-node cycle graph, where the red line represents a tessella-
tion Teven and the blue dash-dotted line represents the other
tessellation Todd.

The decomposed matrices ATeven and ATodd in Eqs. (19) and
(20) can then be expressed as the sums of the element stiffness
matrices related to elements in each tessellation Teven and Todd,
respectively.

The above discussion can easily be extended to two-
dimensional problems. Let us consider the finite element
method in the two-dimensional Poisson equation. For a first-
order quadrilateral element of length 1 in Fig. 10(a), the
element stiffness matrix is described as

Ae := 1

6

⎡
⎢⎣

4 −1 −1 −2
−1 4 −2 −1
−1 −2 4 −1
−2 −1 −1 4

⎤
⎥⎦

= 1

6
(4I ⊗ I − I ⊗ X − X ⊗ I − 2X ⊗ X ). (A3)

Now, let us describe the total stiffness matrix for the mesh
in Fig. 10(b) using the Pauli operators. Here, for simplicity,
we assume that periodic boundary conditions are imposed on
all edges of the mesh. Let Nx and Ny denote the numbers of
columns and rows of nodes, respectively. That is, the number
of nodes is N = Nx × Ny. For example, in Fig. 10(b), Nx = 4
and Ny = 4.

We now define a graph corresponding to the mesh, as
shown in Fig. 10(c). Each node vi of the graph corresponds
to node i of the mesh, and the graph has edges between nodes
within the same elements. Because of the periodic boundary
conditions, nodes corresponding to the edges of the mesh are
also connected, e.g., v0 and v3, v0 and v12, and so on. For clear
visibility, nodes with dashed circles are added on the upper
and right sides.

Assuming that Nx = 2nx and Ny = 2ny , four tessellations
in the tessellation cover of the N-node graph can be defined
as

T0 := {
C2ix+2iyNx

∣∣ ix ∈ [0, 2nx−1 − 1], iy ∈ [0, 2ny−1 − 1]
}
, (A4)

T1 := {
C2ix+1+2iyNx | ix ∈ [0, 2nx−1 − 1], iy ∈ [0, 2ny−1 − 1]

}
, (A5)

T2 := {
C2ix+(2iy+1)Nx | ix ∈ [0, 2nx−1 − 1], iy ∈ [0, 2ny−1 − 1]

}
, (A6)

T3 := {
C2ix+1+(2iy+1)Nx | ix ∈ [0, 2nx−1 − 1], iy ∈ [0, 2ny−1 − 1]

}
, (A7)

where Ci := {vi, vi+1, vNx , vNx+1} is the ith clique defined on the graph. Note that we define vi�N := vi mod N to simplify the
notation. In Fig. 10(c), rectangles with red lines, blue dash-dotted lines, green dashed lines, and magenta dotted lines represent
T0, T1, T2, and T3, respectively.

Let |i〉 be the quantum state corresponding to node vi of the graph. The quantum state |i〉 consists of two quantum registers,
|ix〉 and |iy〉, for each direction, as |i〉 := |iy〉|ix〉, where |ix〉 and |iy〉 consist of nx and ny qubits, respectively. The sum of the
element stiffness matrix for the elements related to the tessellation T0, denoted as AT0 , can then be expressed as

AT0 = 1

6
[4(I⊗ny−1 ⊗ I ) ⊗ (I⊗nx−1 ⊗ I ) − (I⊗ny−1 ⊗ I ) ⊗ (I⊗nx−1 ⊗ X )

− (I⊗ny−1 ⊗ X ) ⊗ (I⊗nx−1 ⊗ I ) − 2(I⊗ny−1 ⊗ X ) ⊗ (I⊗nx−1 ⊗ X )]

= 1

6
[4I⊗(nx+ny ) − I⊗ny ⊗ (I⊗nx−1 ⊗ X ) − (I⊗ny−1 ⊗ X ) ⊗ I⊗nx − 2(I⊗ny−1 ⊗ X ) ⊗ (I⊗nx−1 ⊗ X )], (A8)
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where the first ny tensor products are for the y direction (row direction) and the latter nx tensor products are for the x direction
(column direction). As the nodes of the cliques in the tessellation T1 can be expressed by adding 1 to the node numbers of the
nodes of cliques in the tessellation T0, the sum of the element stiffness matrix for the elements related to the tessellation T1,
denoted as AT1 , can be described as follows:

AT1 = P−1
x AT0 Px, (A9)

where Px is a shift operator in the x direction defined as

Px :=
∑

ix ∈ [0, 2nx − 1]
iy ∈ [0, 2ny − 1]

|iy〉|(ix + 1) mod 2nx 〉〈iy|〈ix|. (A10)

Similarly, the sum of the element stiffness matrix for the elements related to the tessellations T2 and T3, denoted as AT2 and AT3 ,
respectively, can be described as

AT2 = P−1
y AT0 Py, AT3 = P−1

x P−1
y AT0 PxPy, (A11)

where Py is a shift operator in the y direction defined as

Py :=
∑

ix ∈ [0, 2nx − 1]
iy ∈ [0, 2ny − 1]

|(iy + 1) mod 2ny〉|ix〉〈iy|〈ix|. (A12)

Consequently, the total stiffness matrix A can be described as the sum of the stiffness matrices related to each tessellation:

A = AT0 + AT1 + AT2 + AT3 . (A13)

For Dirichlet and Neumann boundary conditions, we just have to add terms to adjust the stiffness matrices of the edge elements.

APPENDIX B: DERIVATION OF THE MEAN SQUARED ERROR BETWEEN THE EXACT
COST FUNCTION AND THAT ESTIMATED BY SAMPLING

Here, the mean squared error between the exact cost function value and that estimated by sampling is derived using the Taylor
series expansion. The first-order Taylor series expansion of g(q̄1, . . . , q̄m) around μi for i ∈ [1, m] is given as

g(q̄1, . . . , q̄m) = Eh +
m∑

i=1

∂g

∂ q̄i

∣∣∣∣
q̄i=μi

(q̄i − μi ) + o[(q̄i − μi )
2], (B1)

where

g(q̄1, . . . , q̄m) = −1

2

q̄2
1∑m

i=2 q̄i
. (B2)

Assuming that Cov(q̄i, q̄i′ ) = 0 for i �= i′, the mean squared error between the exact cost function value and that estimated by
sampling can be evaluated as follows:

ε2 = E[(g − Eh)2] ≈ E

{[
m∑

i=1

∂g

∂ q̄i

∣∣∣∣
q̄i=μi

(q̄i − μi )

]2}

=
m∑

i=1

m∑
j=1

∂g

∂ q̄i

∣∣∣∣
q̄i=μi

∂g

∂ q̄ j

∣∣∣∣
q̄ j=μ j

E[(q̄i − μi )(q̄ j − μ j )] =
m∑

i=1

(
∂g

∂ q̄i

∣∣∣∣
q̄i=μi

)2
σ 2

i

Si
[∵ Cov(q̄i, q̄ j ) = 0]

= μ2
1( ∑m

i=2 μi
)2

σ 2
1

S1
+ 1

4

μ4
1( ∑m

i=2 μi
)4

m∑
i=2

σ 2
i

Si
= μ2

1( ∑m
i=2 μi

)2

[
σ 2

1

S1
+ 1

4

μ2
1(∑m

i=2 μi
)2

m∑
i=2

σ 2
i

Si

]
= r2

opt

(
σ 2

1

S1
+ 1

4
r2

opt

m∑
i=2

σ 2
i

Si

)
,

(B3)

where δi j is Kronecker’s delta. The assumption that Cov(q̄i, q̄i′ ) = 0 for i �= i′ is based on the assumption that in quantum
computers, each shot is mutually independent. In the last transformation, we have used the following equation:

ropt = 〈 f , ψ | X ⊗ I⊗n | f , ψ〉
〈ψ | A | ψ〉 = μ1∑m

i=2 μi
. (B4)
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APPENDIX C: DERIVATIVE OF THE COST FUNCTION

The gradient of the cost function in Eq. (14) is now derived. The partial derivative of the cost function with respect to the
parameters θ yields

∂Eh

∂θ
= −

[〈 f , ψ (θ) | X ⊗ I⊗n | f , ψ (θ)〉] ∂

∂θ
〈 f , ψ (θ) | X ⊗ I⊗n | f , ψ (θ)〉

〈ψ (θ) | A | ψ (θ)〉

+ 1

2

[〈 f , ψ (θ) | X ⊗ I⊗n | f , ψ (θ)〉]2 ∂

∂θ
〈ψ (θ) | A | ψ (θ)〉

〈ψ (θ) | A | ψ (θ)〉2 . (C1)

Recalling that |ψ (θ)〉 = U (θ)|0〉⊗n, where U (θ) is a sequence of parameterized quantum gates, the following holds for the ith
parameter θi:

∂

∂θi
|ψ (θ)〉 = ∂

∂θi
U (θ)|0〉⊗n = 1

2
U (θ1, θ2, . . . , θi + π, . . .)|0〉⊗n, (C2)

under the assumption that the parameterized gates consist of either RX , RY , or RZ gates. Note that

|ψ (θ),i〉 := U (θ1, θ2, . . . , θi + π, . . .)|0〉⊗n (C3)

is a quantum state because U (θ1, θ2, . . . , θi + π, . . .) is a unitary operator.
Now, recall that | f , ψ (θ)〉 := [|0〉| f 〉 + |1〉|ψ (θ)〉]/√2, which yields

∂

∂θi
〈 f , ψ (θ) | X ⊗ I⊗n | f , ψ (θ)〉 = 1

4
[〈ψ (θ),i | f 〉 + 〈 f | ψ (θ),i〉] = 1

2
〈 f , ψ (θ),i | X ⊗ I⊗n | f , ψ (θ),i〉, (C4)

where | f , ψ (θ),i〉 := [|0〉| f 〉 + |1〉|ψ (θ),i〉]/
√

2. The following equation also holds:

∂

∂θi
〈ψ (θ) | A | ψ (θ)〉 = 1

2
[〈ψ (θ),i | A | ψ (θ)〉 + 〈ψ (θ) | A | ψ (θ),i〉] = 〈ψ (θ),i, ψ (θ) | X ⊗ A | ψ (θ),i, ψ (θ)〉, (C5)

where |ψ (θ),i, ψ (θ)〉 := [|0〉|ψ (θ),i〉 + |1〉|ψ (θ)〉]/√2.
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FIG. 11. Norm of gradients of the cost function and those of each term composing the cost function. The points show the mean values of 10
experiments from varying initial parameters and the error bars represent the standard deviation. (a) Norm of ∂Eh/∂θ. (b) Norm of ∂〈Aeven〉/∂θ,
where 〈Aeven〉 := 〈ψ (θ) | ATeven | ψ (θ)〉. (c) Norm of ∂〈Aodd〉/∂θ, where 〈Aodd〉 := 〈ψ (θ) | ATodd | ψ (θ)〉. (d) Norm of ∂〈X ⊗ I⊗n〉/∂θ, where
〈X ⊗ I〉 := 〈 f , ψ (θ) | X ⊗ I | f , ψ (θ)〉.
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FIG. 12. Decadic logarithms of cost function error ε vs the number of shots S for the previous method [26] based on our implementation.
The optimization was run 10 times with fixed parameters for each number of shots. The mean values are plotted, with the error bars representing
the standard deviations. The mean and standard deviation of the slopes of the fitted dashed line for n = 2, . . . , 10 (which includes cases that
are not shown in this figure) are −1.0 and 0.05, respectively.

Substituting Eqs. (C4) and (C5) into Eq. (C1), the gradient of the cost function is derived as

∂Eh

∂θi
= −1

2

[〈 f , ψ (θ) | X ⊗ I⊗n | f , ψ (θ)〉]〈 f , ψ (θ),i | X ⊗ I⊗n | f , ψ (θ),i〉
〈ψ (θ) | A | ψ (θ)〉

+ 1

2

[〈 f , ψ (θ) | X ⊗ I⊗n | f , ψ (θ)〉]2〈ψ (θ),i, ψ (θ) | X ⊗ A | ψ (θ),i, ψ (θ)〉
〈ψ (θ) | A | ψ (θ)〉2 . (C6)

Now, as all components of the gradient can be described as the expectations of observables, the gradient can be evaluated by
quantum computers.

APPENDIX D: SUPPLEMENTARY RESULTS OF NUMERICAL EXPERIMENTS

1. Barren plateaus

We examined the vanishing gradients of the cost function. Figure 11 illustrates the L2-norm of the gradients of the
cost function and those of each term composing the cost function, i.e., 〈ψ (θ) | ATeven | ψ (θ)〉, 〈ψ (θ) | ATodd | ψ (θ)〉, and
〈 f , ψ (θ) | X ⊗ I | f , ψ (θ)〉. These gradients were calculated using the Statevector Simulator. The number of layers of the ansatz
was set to 5. The points show the mean values of 10 experiments with different randomly set parameters and the error bars
represent the standard deviations. As shown in these figures, the gradient of the expectation of the operator ATeven , which is local,
does not vanish, while the gradients of the other terms, which are global, vanish. As a result, the gradient of the cost function as
a whole vanishes. The alleviation of barren plateaus will be addressed in future research.

2. Dependency of the cost function error on the number of shots for the previous method

Figure 12 shows the decadic logarithm of the squared error of the cost function with respect to the decadic logarithm of
the number of shots for the previous method [26]. In a similar fashion to our proposed method in Fig. 7, the squared error
decreases as the number of shots increases. The mean and standard deviation of the slopes of the fitted lines are −1.01 and
0.04, respectively. Although a comparison of the proposed and previous methods from these figures is difficult because of the
different definitions of the cost function, it can be deduced that the mean squared error in the cost function evaluation has a
similar dependency on the number of shots in both methods.
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