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Effective protection of quantum coherence by a non-Hermitian driving potential
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We investigate the effects of non-Hermitian driving potential on quantum coherence in a bipartite system. The
results show that the dynamical localization will revive after being destroyed by the Hermitian interaction, which
provides evidence of the restoration of quantum coherence by a non-Hermitian driving potential. Besides, the en-
tanglement between the two subsystems also decays with the boosting of non-Hermitian driving strength, which
gives more evidence that non-Hermitian driving potential will protect quantum coherence. The physics behind
this phenomenon is the domination of the quasieigenstate with maximum imaginary value of the quasieigenvalue
over the dynamics of the non-Hermitian system. Our discovery establishes a restoration mechanism of quantum
coherence in interacting and dissipative quantum systems which is highly expectable in updated experiments
from many-body physics to quantum information.
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I. INTRODUCTION

As the fingerprint of quantum coherence, localization of
particles is a longstanding problem in different fields of
physics, such as condensed matter physics and quantum
chaos. The landmark study of Anderson discovered that the
diffusion of electrons in disordered potential is frozen, which
is the well-known Anderson localization (AL) [1]. The suc-
cessful observation of the AL phenomenon in acoustic waves
[2,3], optics [4,5], and matter waves [6,7] has proved it a uni-
versal behavior caused by wave interference. In periodically
driven systems [8,9], an analog of the AL is the dynamical
localization (DL) taking place in the momentum space. Inter-
estingly, the eigenequation of the Floquet operator of δ-kick
systems is mathematically equivalent to that of the Anderson
model, which makes the DL established on the same footing
as the AL, namely, both of them are the common phenomenon
resulting from quantum coherence [10]. Remarkably, DL has
already been realized in recent experiments by loading cold
atoms in a periodical laser kicking [11–17], which greatly
facilitates the investigation of the effects of interatomic in-
teraction on quantum coherence and thereby leads to the
appearance of novel transport phenomenon of matter waves
[18].

The behaviors of quantum coherence in the presence of
interatomic interaction are a fundamental problem which has
potential application in the fields of quantum information
and quantum computation. Previous investigations in quantum
chaos have reported that the quantum coherence is fragile. As
it is destroyed by sufficiently strong interaction, a wide spec-
trum of diffusion from the power-law diffusion ∝ tα [19–26]
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to exponential diffusion ∝ eβt [27–30] has been found. More
recently, a theoretical study proves that any perturbation, no
matter how weak it is, will be enough to destroy AL, which
demonstrates the disappearance of quantum coherence and
provides a solid theoretical foundation for future investiga-
tions [18]. However, the research on quantum coherence under
many-body interaction is still inconclusive. Recent works re-
port the existence of many-body localization, which indicates
the appearance of quantum coherence [31]. On the other hand,
the effects of interaction on quantum coherence are closely
related to the fundamental problem of quantum-classical tran-
sition. It is known that the interaction with an environment
even consisting of 1 degree of freedom is able to destroy
quantum coherence, causing the emergence of the classically
chaotic diffusion from the underlying quantum dynamics,
namely, the appearance of quantum-classical correspondence
(QCC) [17,32–41].

The common understanding of the quantum decoherence
by interaction is based on the assumption of the Hermiticity
of quantum mechanics. The rich physics in non-Hermitian
systems has recently attracted extensive interest [42,43], since
these intriguing behaviors in open quantum systems (e.g.,
optics propagation in dissipative medium, elementary excita-
tion in condensate matter, the evolution of cold atoms with
limited life span, etc.) can all be described by non-Hermitian
Hamiltonians [44–48]. Exotic transport behaviors, for in-
stance, unidirectional reflection and nonreciprocal diffraction
of optics, greatly promote the exciting application of non-
Hermitian physics in the actual control of light [49] and
heat transport [50]. In addition, non-Hermiticity has been
recognized as a fundamental modification of quantum me-
chanics [51,52], which opens new prospects for the theoretical
physics. In this context, the novel physics of quantum coher-
ence in the presence of interaction in non-Hermitian systems
demands urgent investigation.

2469-9926/2021/104(5)/052405(9) 052405-1 ©2021 American Physical Society

https://orcid.org/0000-0003-3027-9092
https://orcid.org/0000-0002-1496-8528
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.052405&domain=pdf&date_stamp=2021-11-08
https://doi.org/10.1103/PhysRevA.104.052405


KAI-QIAN HUANG, WEN-LEI ZHAO, AND ZHI LI PHYSICAL REVIEW A 104, 052405 (2021)

In the present work, we study the effects of non-
Hermiticity on the quantum coherence, which is displayed
by the dynamics of quantum diffusion and entanglement via
two coupled kicked rotors with non-Hermitian kicking po-
tential. Interestingly, the results reveal that strong enough
non-Hermitian driving can destroy the QCC of the diffusion
dynamics and lead to the appearance of DL, which is the
signature of the recovery of quantum coherence [53]. The
entanglement of the subsystems is gradually reduced by in-
creasing the strength of the non-Hermitian driving, even if
the initial state is of maximum entanglement. The underlying
physics is that an arbitrary state evolves to the quasieigenstate
(QES) with the maximum imaginary part of the complex
quasieigenvalue (QEV).

In the field of quantum chaos, it is widely accepted that
the phenomenon of DL is the signature of quantum coher-
ence in the diffusion dynamics [8–10]. The finding of DL
has triggered extensive investigations on the issue of how
the transition from quantum dynamics to classical dynamics,
namely, the quantum-classical transition, occurs. Previous in-
vestigations have shown that external noises [54] and coupling
[17,32–40] with environment can lead to the delocalization
and the QCC of diffusion, which is caused by the quantum
decoherence effects from the noises or the coupling. Taking
this into account, our result clearly demonstrates the pro-
tection of quantum coherence by the non-Hermitian kicking
potential, which is a meaningful discovery in the fields of
quantum information and quantum chaos. More recently, the
phenomenon of DL has been realized in a quantum hardware,
where the quantum coherence is crucial to ensure the validity
of the quantum simulations [55]. It is known that quantum
coherence is an important resource in quantum technology.
For example, in quantum error-correcting codes, the main
issue is to protect the quantum coherence of the subsystem
and prevent the leaking of information to the environment. In
quantum teleportation, one should also protect the information
of the system and reduce the decoherence effects of the envi-
ronment [55–59]. Therefore, our finding of the mechanism of
protection by Floquet driving may be of fundamental interest
in the fantastic fields of quantum computation and quantum
communication.

The paper is organized as follows. In Sec. II, we describe
our model and show the phenomenon of dynamical localiza-
tion induced by a non-Hermitian driving potential. In Sec. III,
we show our theoretical analysis. A summary is presented in
Sec. IV.

II. MODEL AND RESULTS

The Hamiltonian of the bipartite system reads

H = H1 + H2 + HI , (1)

where Hj ( j = 1 and 2) represents the Hamiltonian of indi-
vidual particles, and HI is the interaction. Each subsystem is a
kicked rotor for which the Hamiltonian takes the form

Hj = p j
2

2
+ VK (θ j )

∑
n

δ(t − tn), (2)

with

VK (θ j ) = (Kj + iλ j ) cos(θ j ), (3)

where p j is the angular momentum operator, θ j is the angle
coordinate, Kj denotes the strength of the real part of the
kicking potential, and λ j is the strength of its imaginary part.
The interacting part reads

HI = εh̄eff cos(θ1) cos(θ2)
∑

n

δ(t − tn), (4)

with ε being the interaction strength and h̄eff being the effec-
tive Plank constant. All quantities are in dimensionless units.
An arbitrary state can be expanded on the basis of the product
states of the eigenstates of unperturbed rotors, i.e., |ψ〉 =∑

m,n ψm,n|m, n〉 with p|n〉 = nh̄eff |n〉 and 〈θ |n〉 = einθ /
√

2π .
The time evolution from t = tn to t = tn+1 is governed by the
Floquet operator |ψ (tn+1)〉 = U |ψ (tn)〉. Due to the δ kick, the
Floquet operator can be separated into two fractions,

U = Uf UK , (5)

where the evolution operator of the kinetic term takes the form

Uf = exp

(
− i

h̄eff

2∑
j=1

p2
j

2

)
, (6)

and for the kick term it is

UK = exp

[
− i

h̄eff

2∑
j=1

VK (θ j ) − i

h̄eff
HI (θ1, θ2)

]
. (7)

The non-Hermitian extension of the kicked rotor model has
been previously introduced to demonstrate the PT -symmetric
phase breaking in the Floquet system [60] and the non-
Hermitian effects on Floquet topological phases [61]. Based
on this, we make a generalization of the coupled kicked
rotors to the non-Hermitian regime, with which we can in-
vestigate the entanglement in non-Hermitian chaotic systems
[62,63]. Although the decoherence-induced QCC in a sys-
tem of coupled-Hermitian kicked rotors has been tentatively
experimented with [17], the experimental realization of the
case with the non-Hermitian kicking potential in Eq. (3) still
remains untouched; therefore, our present work is particularly
valuable as theoretical progress. Actually, experimental ad-
vances in both optics [44–48] and cold atoms [64–66] have
unveiled exotic phenomena in non-Hermitian systems, for
instance, the topological states [47] and the Floquet solitons
[48]. The periodical modulation of dissipation and coupling in
ultracold atoms has been used to experimentally engineer the
PT -symmetric phase transition [45]; therefore, we hope that
our theoretical model will be verified by further experiments.

To quantify the quantum diffusion, we have〈
p2

1

〉 = Tr
(
ρ1 p2

1

)
, (8)

which is marked as particle 1, with

ρ1 = 1

N Tr2(|ψ〉〈ψ |), (9)

where ρ1 is the reduced density matrix by partial matrix
tracing on the density matrix of the two-particle system ρ =
|ψ〉〈ψ |, and N is the norm of quantum states. Note that the
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FIG. 1. (a) Time dependence of the mean energy for particle 1
〈p2

1〉. The corresponding λ values are given. (b) Probability den-
sity distribution in the momentum space for particle 1 |ψ1|2 at
the time tn = 100. The fitting curves are the Gaussian function of
the form |ψ (p1)|2 ∝ exp(−p2

1/σ ) with σ ≈ 2500 (dashed line) and
the exponential localization |ψ (p1)|2 ∝ exp(−|p1|/ζ ) with ζ ≈ 2.5
(dash-dotted line) and 7.7 (dash-dot-dotted line). The parameters are
K = 5.0, ε = 5, and h̄eff = 0.06.

value of N will exponentially increase due to the appearance
of complex QEVs for sufficiently strong non-Hermitian kick-
ing. Therefore, the above definition of the expectation value
〈p2

1〉 reduces the contribution of the growth from the norm.
In numerical simulation, we set the initial state as the product
state of the ground state |ψ (t0)〉 = |00〉. Without loss of gener-
ality, we consider the case with K1 = K2 = K and λ1 = λ2 =
λ; namely, the two particles are identical. We also investigate
the case with λ1 = 0 and λ2 �= 0, which simulates the case of a
Hermitian particle experiencing the non-Hermitian effect, and
we find that there are no essential differences with λ1 = λ2.

Previous investigations on the Hermitian systems (i.e., λ =
0) have reported that the two-particle interaction is able to
destroy the quantum coherence if the interaction is strong
enough [17,32–40]. As a consequence, the quantum diffusion
is in consistence with its classical counterpart, i.e., the QCC.
In the Hermitian case, the classical dynamics is governed
by the mapping equation, which allows us to numerically
investigate the classical dynamics [67]. We consider the case
that the kick strength of the two particles is strong enough,
i.e., K = 5, so that the classical dynamics is fully chaotic. The
QCC of the Hermitian case is shown in Fig. 1(a), where one
can see that both the classical and the quantum mean energy
of particle 1 increase linearly with time, i.e., 〈p2

1(t )〉 = Dt .
In addition, the diffusion coefficient D almost equals that of
a single kicked rotor, i.e., D ≈ K2/2, because in our model
the interaction strength is negligibly small in the semiclassical
limits, i.e., h̄eff � 1 [see Eq. (4)]. It is worth noting that the
linear increase of the mean square of momentum, which is
traditionally termed as normal diffusion, is a character of
chaotic behavior. We further investigate the momentum dis-
tribution for the appearance of QCC. Our results show that
the momentum distribution is in the form of the Gaussian
function |ψ (p1)|2 ∝ exp(−p2

1/σ ), which is the brand mark of
chaotic diffusion in the momentum space and demonstrates
the disappearance of quantum coherence due to the interaction
[see Fig. 1(b) for λ = 0].

Interestingly, for a specific value of λ [e.g., λ = 0.05 in
Fig. 1(a)], the quantum diffusion of the system complies with

FIG. 2. (a) Time dependence of the IPR with h̄eff = 0.06. The
corresponding λ values are given. (b) Time-averaged IPR 〈I〉t versus
λ with h̄eff = 0.06 (squares), 0.1 (circles), and 0.15 (triangles). The
arrow marks the threshold value of λc. Other parameters are the same
as those in Fig. 1.

the classically chaotic diffusion during a finite time interval,
after which it will gradually approach saturation. This clearly
demonstrates the appearance of DL. From Fig. 1(a), one can
also see that the saturation value of 〈p2

1〉 decreases with the in-
crease of λ, which demonstrates that the extent of DL grows as
the strength of the non-Hermitian driving potential increases
[53]. To confirm the appearance of DL, we numerically in-
vestigate the momentum distribution at the time when the
mean value 〈p2

1〉 saturates. Our results show that the quantum
state is exponentially localized in the momentum space, i.e.,
|ψ (p1)|2 ∝ exp(−|p1|/ζ ) [see Fig. 1(b) for λ = 0.05], which
is in sharp contrast with the Gaussian distribution in the pres-
ence of QCC. Moreover, the localization length ζ decreases
with the increase of λ [see Fig. 1(b) for λ = 0.1], which is
consistent with the tendency of the mean energy 〈p2

1〉 with the
increase of λ, and thus is clear evidence of DL.

In order to quantify the localization of the wave packet, we
numerically investigate the inverse participation ratio (IPR),

I =
(∑

n |ψn|2
)2∑

n |ψn|4 . (10)

In the Hermitian case, the subsystem displays classically
chaotic diffusion for which the time-dependent probabil-
ity distribution is in the Gaussian form, i.e., |ψ (p)|2 =
exp[−p2/(K2t )]/(K2πt )1/2, with p being the momentum
and K being the kicking strength. It is then straightforward
to get an approximated expression of the IPR, i.e., I ≈
(
∫ +∞
−∞ |ψ (p)|4d p)−1 ∝ √

t [see λ = 0 in Fig. 2(a)], where
we have used the normalization condition

∑
n |ψn|2 = 1. For

a specific λ value (e.g., λ = 0.05), the IPR shows again a
power-law increase for a finite time interval, after which it
gradually saturates. Remember that for the same strength of
non-Hermitian kicking potential, the quantum state is expo-
nentially localized in the momentum space, i.e., |ψ (p1)|2 ∝
exp(−|p1|/ζ ) [see Fig. 1(b)]. The saturation value of IPR
is virtually proportional to the localization length of the
quantum state, i.e., I ≈ 1/

∑
p1

|ψ (p1)|4 
 ζ . We further nu-
merically investigate the time-averaged value of the IPR,
〈I〉t = 1

t f

∫ t f

0 I (t )dt for different λ values. It is worth noting
that, in the Hermitian case, the value of 〈I〉t is dependent on t f

since 〈I〉t ∝ 1
t f

∫ t f

0

√
tdt ∝ √

t f . In numerical simulations, we
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FIG. 3. (a) Linear entropy S versus time with λ = 0.0 (squares), 0.05 (circles), 0.07 (up triangles), 0.1 (down triangles), and 1 (diamonds).
(b)–(d) The eigenvalue ξ of the reduced density operator ρ1 at the time tn = 30 with λ = 0 (b), 0.05 (c), and 0.1 (d). Inset in panel (d):
Dependence of S at the time tn = 30 on λ. The initial state is a product state of the ground state |ψ (t0)〉 = |00〉. Bottom panels are the
same as in the above but for an initial state with the maximum entanglement, i.e., |ψ (t0)〉 = ∑

ψn,n+1|n, n + 1〉, with ψn,n+1 = N0e−n2/σ and
σ = 12 000. In panel (e), λ = 0.0 (squares), 0.05 (circles), 0.07 (up triangles), 0.1 (down triangles), and 1 (diamonds). In panels (f)–(h), the
eigenvalue ξ of ρ1 at the time tn = 50 for λ = 0.0 (f), 0.05 (g), and 0.1 (h). Inset in panel (h): S at the time tn = 50 versus λ. Other parameters
are the same as those in Fig. 1.

use two hundred kicks, i.e., t f = 200 to calculate 〈I〉t , which
is long enough to get the highly precise value of the saturation
of I with large λ, as I rapidly saturates with time. Figure 2(b)
shows that, for a specific h̄eff , 〈I〉t has a plateau for small
λ, and after a threshold λc it decreases with λ. The region
of plateau corresponds to the 〈I〉t of the Hermitian case,
because for λ < λc the quasienergies are all real. For λ > λc,
some of the quasienergies become complex. Moreover, the
number of these complex quasienergies increases with the
increase of λ. In this regime, a quantum state rapidly evolves
to the quasieigenstate with maximum imaginary quasienergy,
which is exponentially localized in the momentum space [see
Fig. 4(b)]. Our result clearly demonstrates that there is a
threshold λc value corresponding to the appearance of DL.

It is known that during the process of QCC the entan-
glement between the subsystems grows. A commonly used
quantity to measure the entanglement is the linear entropy

S(t ) = 1 − Tr
[
ρ2

1 (t )
]
. (11)

With the generation of entanglement, a pure state evolves to a
mixed one, correspondingly the value of S increases from zero
to almost unity [68,69] [see Fig. 3(a) for λ = 0]. This process
is accompanied by the disappearance of quantum coherence.
Therefore, it is believed that the decoherence effects induced
by interaction result in the QCC of diffusion dynamics. Our
results show that, for a specific λ value, the linear entropy
rapidly increases to saturation over time [see Fig. 3(a) for
λ = 0.05]. Interestingly, the saturation value decreases with
the increase of λ, and is almost zero for sufficiently large λ

[see the inset in Fig. 3(d)], which clearly demonstrates that the
non-Hermitian driving potential can reduce the entanglement

of the system. As a further step, we numerically investigate
the eigenvalue ξ of the reduced density operator ρ1 at the
time when the linear entropy saturates. Our results show that
for small λ [e.g., λ = 0.05 in Fig. 3(b)], there are many
eigenvalues. For an intermediate value of λ [e.g., λ = 0.07
in Fig. 3(c)], the number of ξ with large values reduces. For
large λ [e.g., λ = 0.1 in Fig. 3(d)], there is a ξ whose value is
almost unity, i.e., ξ ≈ 1. Note that the wide distribution of

FIG. 4. (a) Fidelity F = |〈ϕε |ψ (tn)〉|2 between the QESs |ϕε〉
and the quantum state |ψ (tn)〉 with tn = 100. The red (gray) dot
marks the value of F ≈ 1 corresponding to the maximum value
of εi = 64.62. (b) Comparison of momentum distributions between
the QES |ϕε〉 with εi = 64.62 (dashed line) and the quantum state
|ψ (tn = 100)〉 (solid line). The value of λ is λ = 2.0. Other parame-
ters are the same as those in Fig. 1.
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ξ indicates that the time-evolved quantum state is a mixed
state [70,71]. For the appearance of an eigenvalue of unity,
the quantum state becomes actually a pure state. Therefore,
our results demonstrate the transition of a quantum state from
the mixed state to an almost pure state as the strength of
the non-Hermitian kicking potential increases. It is a strong
evidence that the non-Hermitian driving potential effectively
protects the quantum coherence.

We further consider the case that the initial state is of
maximum entanglement, i.e., |ψ (t0)〉 = ∑

ψn,n+1|n, n + 1〉,
for which the component is in the distribution of the Gaussian
function ψn,n+1 = N0e−n2/σ , with N0 being the normalization
constant and σ = 12 000. The value of the linear entropy of
this state is unity, i.e., S(t0) = 1. We find that for λ = 0 the
value of S remains unity, i.e., S = 1, as time evolves. For small
λ [e.g., λ = 0.05 in Fig. 3(e)], the value of S decays from unity
with time evolution. For larger values of λ [e.g., λ = 0.07 and
0.1 in Fig. 3(e)], the value of S rapidly decays from unity
to saturation. We further investigate the saturation value of
S for different λ values. Our numerical results show that, for
λ values smaller than a threshold value λ < λc, the saturation
value decreases from unity to almost zero with the increase
of λ, and for λ > λc it increases to a fixed value with an
increasing λ [see the inset in Fig. 3(h)]. It clearly demonstrates
that the quantum coherence recovers with the increase of the
non-Hermitian driving potential. To confirm this finding, we
numerically investigate the eigenvalue of ρ1 when the linear
entropy saturates. Our numerical results show that, with the
increase of λ, the number of relatively large ξ decreases, and
for sufficiently large λ there is a ξ value equal to almost unity
[see Figs. 3(f)–3(h)]. This again demonstrates the transition
from a mixed state to a pure state under the effects of the
non-Hermitian driving potential, which is the signature of the
recovery of quantum coherence.

III. THEORETICAL ANALYSIS

The eigenequation of the Floquet operator has the expres-
sion U |ϕε〉 = e−iε |ϕε〉, where ε is the QEV and |ϕε〉 is the
corresponding QES. At the initial time, an arbitrary state can
be expanded on the basis of the QESs, namely, |ψ (t0)〉 =∑

ε Cε |ϕε〉. After the nth kick, the expansion of the state takes
the form |ψ (tn)〉 = U n|ψ (t0)〉 = ∑

ε Cεe−inε |ϕε〉. It is worth
noting that the QEVs become complex, i.e., ε = εr + iεi in
the condition that the λ value is large enough. Accordingly,
one can get |ψ (tn)〉 = ∑

ε Cεenεi e−inεr |ϕε〉. With time evolu-
tion, the components Cεenεi with εi > 0 will exponentially
increase, and that of negative εi exponentially decays. So, the
quantum state |ψ (tn)〉 will eventually evolve to the QES with
the maximum εi. To confirm our analysis, we numerically
investigate the fidelity between the QESs and the time-evolved
state F = |〈ϕε |ψ (tn)〉|2 when DL appears while the linear en-
tropy is almost zero for large enough λ values [e.g., tn = 100
and λ = 2.0 in Fig. 4(a)]. Our result shows that the value
of F is almost unity corresponding to the maximum value
of εi, i.e., εmax

i = 64.62 [see Fig. 4(a)], which demonstrates
the coincidence of the quantum state with the QESs of εmax

i .
Note that the QESs with complex QEVs are not orthogonal,;
hence, there are some nonzero values of F . We further display
both the quantum state |ψ (tn)〉 and the QES |ϕεi〉 of εmax

i

in the momentum space. The results again suggest that the
two states are in perfect agreement with each other, both of
which are extremely localized in the momentum space [see
Fig. 4(b)]. Therefore, the appearance of DL is rooted in the
localization of the QES with maximum εi. As the localization
length of this QES is very small, it can be safely regarded as
a pure state, which preserves the quantum coherence; hence,
the linear entropy is nearly zero [see the inset in Fig. 3(e)].
Even if we select a state with the maximum entanglement, it
will rapidly evolve to the QES of maximum εi. This process
corresponds to the decay of linear entropy from unity to a satu-
ration level as shown in Fig. 3(e). So the recovery of quantum
coherence in the coupled bipartite system is due to the fact
that the quantum states evolve to a QES with a maximum
value of the imaginary QEV. Moreover, this QES is virtually
a pure state. Our finding establishes a different mechanism of
decoupling by the non-Hermitian kick potential, which results
in the restoration of quantum coherence and is in some sense
universal in non-Hermitian periodical driven systems [67].

IV. SUMMARY

In this work, we investigate the dynamics of the quantum
diffusion and entanglement in a bipartite system with a non-
Hermitian kicking potential. For a strong enough λ value,
the quantum diffusion of 〈p2

1〉 follows the classically chaotic
way during the short time interval, after which it saturates.
The saturation values of 〈p2

1〉 decrease with the increase of
λ, which clearly demonstrates the enhancement of DL by
the non-Hermitian driving potential. The formation of DL
corresponds to the reducing of entanglement between the two
subsystems, for which the saturation level of linear entropy
decreases with the increase of λ. On the other hand, for maxi-
mum entanglement states, the linear entropy will decay from 1
to almost 0 during the evolving process, which again suggests
the recovery of quantum coherence. As a consequence, the
time-evolved state becomes a pure state, which is character-
ized by the formation of one significantly large eigenvalue of
the reduced density matrix. The mechanism is that a quan-
tum state finally evolves to a QES whose imaginary part of
the QEV is maximum. Our investigation reveals that non-
Hermiticity is useful to protect quantum coherence, which
provides new insights in the fields of quantum information
and quantum chaos.

ACKNOWLEDGMENTS

We are grateful to Jie Liu, Hua Yan, and Lewei He for
inspiring discussions. W.-L.Z. is supported by the National
Natural Science Foundation of China (Grants No. 12065009
and No. 11864014). Z.L. is supported by the Natural Sci-
ence Foundation of China (Grant No. 11704132) and the
Science and Technology Program of Guangzhou (Grant No.
201905001).

APPENDIX A: CLASSICAL AND QUANTUM PHASE SPACE

In the Hermitian case, the classical mapping equations of
the two-coupled kicked rotors read

pn+1
1 − pn

1 = K sin
(
θn

1

) + ε sin
(
θn

1

)
cos

(
θn

2

)
, (A1)
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FIG. 5. (a)–(c) Phase-space portrait of particle 1 of our model at
the time tn = 4 with K = 5 and ε = 0.3. Panel (a) shows (p, θ ) with
λ = 0. Panels (b) and (c) show (pr , θr) and (pi, θi) with λ = 2. The
red (gray) dots represent the fixed points with pr = θr = 0 and pi =
θi = 0. (d) Husimi distribution |〈�|ϕε〉|2 of the QES with εi = 64.62
and λ = 2 [see the dashed line in Fig. 4(b)]. Other parameters are the
same as those in Fig. 1.

θn+1
1 − θn

1 = pn+1
1 , (A2)

pn+1
2 − pn

2 = K sin
(
θn

2

) + ε cos
(
θn

1

)
sin

(
θn

2

)
, (A3)

θn+1
2 − θn

2 = pn+1
2 . (A4)

where pn
i (θn

i ) represents the angular momentum (coordinate)
of the ith particle at the time t = tn. We numerically investi-
gate the phase space for an ensemble of 200 000 trajectories
with the initial values θ0

1 and θ0
2 being uniformly distributed in

[−π, π ], and p0
1 = p0

2 = 0. Because the two rotors are iden-
tical, we plot the phase-space portrait of particle 1 (θn

1 , pn
1) in

Fig. 5(a). One can find that the classical phase space is almost
occupied by chaotic diffusion of trajectories, demonstrating
the chaotic dynamics of the system.

In the non-Hermitian case, one can extend the Hamilton
canonical equation to get the following mapping equations
[72–77]:

pn+1
1 − pn

1 = (
K + iλ

)
sin

(
θn

1

) + ε sin
(
θn

1

)
cos

(
θn

2 ), (A5)

θn+1
1 − θn

1 = pn+1
1 , (A6)

pn+1
2 − pn

2 = (K + iλ) sin
(
θn

2

) + ε cos
(
θn

1

)
sin

(
θn

2

)
, (A7)

θn+1
2 − θn

2 = pn+1
2 . (A8)

In addition, the classical trajectories are complex [72–77],

pn
j = pn

j,r + ipn
j,i, (A9)

θn
j = θn

j,r + iθn
j,i, (A10)

where pn
j,r (pn

j,i) denotes the real (imaginary) part of the
angular momentum of the jth particle, and θn

j,r (θn
j,i) is the cor-

responding angular coordinate. Plugging Eqs. (A9) and (A10)
into Eqs. (A5)–(A8) yields the following mapping equations:

pn+1
1,r − pn

1,r = K sin
(
θn

1,r

)
cosh

(
θn

1,i

) − λ cos
(
θn

1,r

)
sinh

(
θn

1,i

)
+ ε[sin

(
θn

1,r

)
cosh

(
θn

1,i

)
cos

(
θn

2,r

)
cosh

(
θn

2,i

) + cos
(
θn

1,r

)
sinh

(
θn

1,i

)
sin

(
θn

2,r

)
sinh

(
θn

2,i

)
], (A11)

pn+1
1,i − pn

1,i = K cos
(
θn

1,r

)
sinh

(
θn

1,i

) + λ sin
(
θn

1,r

)
cosh

(
θn

1,i

)
+ ε[cos

(
θn

1,r

)
sinh

(
θn

1,i

)
cos

(
θn

2,r

)
cosh

(
θn

2,i

) − sin
(
θn

2,r

)
sinh

(
θn

2,i

)
sin

(
θn

1,r

)
cosh

(
θn

1,i

)
], (A12)

θn+1
1,r − θn

1,r = pn+1
1,r , (A13)

θn+1
1,i − θn

1,i = pn+1
1,i , (A14)

pn+1
2,r − pn

2,r = K sin
(
θn

2,r

)
cosh

(
θn

2,i

) − λ cos
(
θn

2,r

)
sinh

(
θn

2,i

)
+ ε

[
sin

(
θn

2,r

)
cosh

(
θn

2,i

)
cos

(
θn

1,r

)
cosh

(
θn

1,i

) + cos
(
θn

2,r

)
sinh

(
θn

2,i

)
sin

(
θn

1,r

)
sinh

(
θn

1,i

)]
, (A15)

pn+1
2,i − pn

2,i = K cos
(
θn

2,r

)
sinh

(
θn

2,i

) + λ sin
(
θn

2,r

)
cosh

(
θn

2,i

)
+ ε

[
cos

(
θn

2,r

)
sinh

(
θn

2,i

)
cos

(
θn

1,r

)
cosh

(
θn

1,i

) − sin
(
θn

1,r

)
sinh

(
θn

1,i

)
sin

(
θn

2,r

)
cosh

(
θn

2,i

)]
, (A16)

θn+1
2,r − θn

2,r = pn+1
2,r , (A17)

θn+1
2,i − θn

2,i = pn+1
2,i . (A18)

Straightforward analysis of the above equation can reveal
a fixed point, i.e., θn

1,r = θn
1,i = θn

2,r = θn
2,i = 0 and pn

1,r =
pn

1,i = pn
2,r = pn

2,i = 0 [see Figs. 5(b) and 5(c)]. We make an
extension of the traditional definition of the phase space to
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FIG. 6. Top panels: Fidelity F = |〈ϕε |ψ (tn)〉|2 between the
QESs |ϕε〉 and the quantum state |ψ (tn = 100)〉 with ε = 5 (a) and
0 (b) for λ = 2. The red (gray) dots mark the maximum value of F ,
i.e., F ≈ 1, which corresponds to the maximum εi, i.e., εi = 64.62
in panel (a) and εi = 32.35 in panel (b). (c) Comparison of prob-
ability density distributions in momentum space for the four states
with maximum F : two QESs |ϕε〉 with (ε = 5, εi = 64.62) (solid
squares) and (ε = 0, εi = 32.35) (solid circles); two quantum states
|ψ (tn = 100)〉 with ε = 5 (empty squares) and ε = 0 (empty circles).
(d) The difference �E of 〈p2(t )〉 between ε = 0 and 5 versus λ. The
red (gray) line denotes the power-law decay, i.e., �E ≈ λ−β with
β ≈ 0.89. Inset: Time dependence of 〈p2〉 with ε = 0 (solid sym-
bols) and ε = 5 (empty symbols). From top to bottom, the symbols
correspond to λ = 1 (diamonds), 1.5 (circles), and 2 (squares). Other
parameters are the same as those in Fig. 1.

be (pr , θr) and (pi, θi) with respect to the complex trajecto-
ries. In numerical simulations, we set the initial trajectory as
θ0

1,i = θ0
2,i = p0

1,r = p0
2,r = p0

1,i = p0
2,i = 0, and θ0

1,r and θ0
2,r

are distributed uniformly in the interval [−π, π ]. Figure 5(b)
shows that the phase space (pr , θr) is chaotic, except for a
fixed point (pr = 0, θr = 0) and a regular trajectory (pr = θr ).
Interestingly, the phase space of the imaginary trajectories (pi,
θi) exhibits the diffusion around the trajectory pi = θi, which
has been reported in our previous investigations in Ref. [53].

To investigate the fingerprint of the classical phase
space on quantum dynamics, we numerically investigate
the Husimi distribution |〈�(θ0, p0)|ϕε〉|2 of the QES, where
|�(θ0, p0)〉 = ( α

π
)

1
4 exp[−α

2 (θ − θ0)2 + i p0

h̄eff
θ ] is the coherent

state centered at (θ0, p0) with α = 10, and |ϕε〉 is the QES.
We focus on the case with λ � λc so that the QESs are well

localized in the momentum space [i.e., λ = 2 in Fig. 4(b)]).
Interestingly, the Husimi distribution is centered at (p0 = 0,
θ0 = 0), which is just the fixed point of the classical phase
space. Moreover, the configuration of the Husimi distribution
is similar to that of the phase space (pi, θi) of imaginary
trajectories [see Figs. 5(c) and 5(d)]. This kind of connection
may have important insights into the quantum-classical corre-
spondence of chaotic systems.

APPENDIX B: DECOUPLING EFFECTS BY
NON-HERMITIAN KICKING POTENTIAL

Our results in Fig. 3 show that the non-Hermitian kicking
potential effectively suppresses the entanglement of subsys-
tems. This reveals that the non-Hermitian kicking potential
induces decoupling effects in the system. To confirm this is-
sue, we compare the dynamics of a subsystem between ε = 0
and 5 for large enough λ values. We numerically investigate
the fidelity between the QES |ϕε〉 and the quantum states
|ψ (tn)〉 of a subsystem with λ = 2. Here, the time-evolved
state is chosen from the region of DL, e.g., tn = 100. Fig-
ure 6(b) shows that for ε = 0 the value of F is almost unity
if εi is maximum (e.g., εi = 32.35), which demonstrates that
the time-evolved state |ψ (tn)〉 almost has full overlap with the
QES |ϕ(εi = 32.35)〉, which is similar to that of interacting
system with ε = 5 in Fig. 6(a). The reason has been revealed
in Sec. III. As a further step, we compare the probability
density distribution for the four states with maximum F : two
QESs |ϕε〉 with (ε = 5, εi = 64.62) and (ε = 0, εi = 32.35);
two quantum states |ψ (tn = 100)〉 with ε = 5 and ε = 0 in
Fig. 6(c). Interestingly, one can see that the profiles of the
four states have slight differences, which demonstrates that the
quantum state of ε = 5 has a very small difference from that
of ε = 0. Such a small difference is also represented by the
time evolution of 〈p2〉. The inset of Fig. 6(d) shows the time
dependence of 〈p2〉 for ε = 0 and 5, respectively. One can find
that for a specific λ value (e.g., λ = 1.5), 〈p2〉 increases for
a very short interval and then saturates, which demonstrates
the appearance of DL. Interestingly, the difference of the
saturation of 〈p2〉 between ε = 0 and 5 decreases with the
increase of λ. To confirm this point, we define the difference
of 〈p2〉 as �E = 〈p2

1〉t − 〈p2〉t , where 〈p2
1〉t (〈p2〉t ) is the time-

averaged value of the mean energy, i.e., 〈p2〉t = ∫ t f

0 〈p2〉dt/t f

with ε = 5 (ε = 0). We note that in our numerical experiments
t f is on the scale of hundreds of kicking periods due to the very
fast saturation of 〈p2〉. Figure 6(d) shows that the difference
of �E decreases in power law with λ, i.e., �E ≈ λ−β with
β ≈ 0.89. Therefore, our results present clear evidence that
the non-Hermitian kicking potential can effectively lead to the
decoupling of the two subsystems.
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