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Quantum advantage and noise reduction in distributed quantum computing
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Distributed quantum computing can provide substantial noise reduction due to shallower circuits. An experi-
ment illustrates the advantages in the case of a Grover search. This motivates study of the quantum advantage of
the distributed version of the Simon and Deutsch-Jozsa algorithms. We show that the distributed Simon algorithm
retains the exponential advantage, but the complexity deteriorates from O(n) to O(n2), where n = log2(N ). The
distributed Deutsch-Jozsa algorithm deteriorates to being probabilistic but retains a quantum advantage over
classical random sampling.
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I. INTRODUCTION

The IBM [1] quantum experience and Amazon Braket [2]
offer the opportunity to implement quantum algorithms on
many small and noisy quantum computers. More than 20
quantum computers, with at most 65 qubits, have been de-
ployed by IBM. None can communicate quantumly. The ques-
tion then arises what advantages and disadvantages distributed
quantum computing with classical communication offers.

Replacing quantum with classical resources usually leads
to a large overhead. For example, simulating n qubits requires
O(N = 2n) classical bits. More generally, simulating a quan-
tum circuit with n + k qubits with a quantum circuit with n
qubits requires1 O(2ck ) uses of the quantum circuits [3].

How much quantum advantage survives in distributed com-
puting depends on the algorithms. Cirac et al. [4,5] showed
that the distributed 3SAT retains a quantum advantage. Bravyi
et al. [3] estimated the overhead in classical computation for
sparse quantum circuits, and Peng et al. [6] derived related
results for tensor networks with limited connections between
clusters.

Distributed quantum computing can offer, besides the ob-
vious advantage of additional “virtual qubits,” the advantage
of significant noise reduction. This comes about because split-
ting an algorithm can result in a significant reduction in depth.
Since the noise in the output scales exponentially with the
depth of the circuit this can be a significant advantage. For
example, if the depth of a circuit is large enough, the output
of the quantum computer may be overwhelmed by noise,
but a shallower distributed computation may give significant
results. As far as we can tell, this simple, one may say trivial,
point has not been studied before.

We describe an experiment involving a Grover search [7]
that illustrates the advantage of distributed quantum comput-
ing over the undistributed computation. In addition, we study
the quantum advantage of distributed algorithms for two basic
textbook examples: Simon’s [8,9] and Deutsch and Jozsa’s
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1c is a function of n.

[10]. Since the Grover and Deutsch-Jozsa algorithms involve
the use of an Oracle we also consider the task of distributing
an Oracle.

As we shall see:
i. The distributed Simon’s algorithm retains the exponen-

tial speedup, albeit with a higher complexity (see Sec. V A).
ii. The quantum advantage of the distributed Deutsch-

Jozsa algorithm deteriorates dramatically (see Sec. VI).

II. DISTRIBUTED COMPUTATIONS
OF BOOLEAN FUNCTIONS

We restrict ourselves to a particular scheme of distributed
computing which suffices to cover the problems we consider.

A. Distributed classical computation

Consider a (classical) circuit with n bits that computes the
function

f : {0, 1}n �→ {0, 1}m, m � n − 1. (2.1)

The function can be split into its even and odd parts:
feven/odd:{0, 1}n−1 �→ {0, 1}m,

feven(y1, . . . , ym) = f (y1, . . . , ym, 0),

fodd(y1, . . . , ym) = f (y1, . . . , ym, 1). (2.2)

More generally,

feven(y1, . . . , ym) = f (y1, . . . , y j−1, 0, y j+1, . . . , ym+1),

fodd(y1, . . . , ym) = f (y1, . . . , y j−1, 1, y j+1, . . . , ym+1).
(2.3)

We assume that the even and odd parts can be computed by a
circuit with n − 1 bits. We can then distribute computing f to
two n − 1 bit processors.

B. Distributed quantum computation

Suppose Alice has a processor with n connected qubits and
Bob has two devices with n − 1 connected qubits each. The
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FIG. 1. The circuit corresponding to the DNF in Eq. (2.6). The
columns of control gates show C⊗nZ gates, in notation that manifests
the symmetry of the gates.

general state of Alice’s processor,

|ψ〉 =
N−1∑
j=0

ψ j | j〉 , N = 2n, (2.4)

is described by N amplitudes. The state of Bob’s two proces-
sors is

|φ1〉 ⊗ |φ2〉 , |φ j〉 =
N/2−1∑

k=0

φ jk |k〉 , (2.5)

and it, too, is described by 2N/2 = N amplitudes.
Alice’s quantum advantage comes from her ability to en-

tangle her n qubits. Bob cannot entangle the two processors
and can only entangle n − 1 qubits on each processor. Bob
has more qubits and shallower circuits. This is an advantage in
noisy quantum computers. Bob also has the advantage that his
measurements give 2(n − 1) bits of information, while Alice’s
measurement gives her only n bits of information. We do not,
however, make use of this advantage here.

C. Quantum circuits and the disjunctive normal form (DNF)

The Grover and Deutsch-Jozsa algorithms involve the use
of Oracles. We therefore face the problem of distributing an
Oracle without introducing bias. To do so we assume that the
Oracle is an algorithm with a standard form2 that allows us
to split it into the even and odd arguments. The reader who is
willing to accept this on good faith may want to skip to the
next section.

The Oracle, by definition, computes a Boolean function.
Any Boolean function can be represented by a DNF. (For an
elementary introduction see Appendix A). For example, the
DNF of the function that assigns 1 to 101 and 010 and 0
otherwise is

f (x0, x1, x2) = x0 · x̄1 · x2 + x̄0 · x1 · x̄2, (2.6)

where x j ∈ {0, 1} are logical variables (equivalently, binaries)
and x̄ j is the (logical) NOT, (equivalently, for binary x̄ j =
x j ⊕ 1). The + is the (logical) OR, normally denoted ∨.

In the general case with n logical variables x j, j ∈
1, . . . , n, the DNF can be a sum of a large number of terms;
each term is a product over all logical variables, and each
variable appears once either as x j or as x̄ j .

The quantum circuit that computes

Uf |x〉 = (−1) f (x) |x〉 (2.7)

2In computer science one normally does not worry about how the
Oracle does what it does. But for the case at hand, we need to.

can be read out from the DNF. For the DNF in Eq. (2.6) the
circuit is shown in Fig. 1. In the general case, a pair of X
gates decorates all the x̄’s and the n-fold product is represented
by CnZ .

Remark 2.1. The DNF is, in general, not the most compact
representation of the function f , and similarly, the corre-
sponding quantum circuit need not be the optimal circuit.
Optimization of quantum circuits is considered in [11].

The even and odd parts of f are easily constructed from the
DNF. If we use x0 as the bit that determines even or odd, then
fe/o and fo for the example in Eq. (2.6) are

fe = x1 · x̄2 and fo = x̄1 · x2. (2.8)

In the general case, all the x̄0 terms make the even part (with
x̄0 deleted) and all the x0 terms make the odd part (with x0

deleted). The DNF is then used to construct the n − 1 qubit
circuits for the even and odd parts.

In conclusion, given Alice’s n-qubit circuit corresponding
to the DNF, there is a simple procedure that constructs Bob’s
n − 1 qubit circuits for the even and odd parts of the function.

Algorithm 2.1 is for generating even and odd circuits. The
algorithm returns the requisite U o

fB
and U e

fB
:

UfA |1〉 ⊗ |ϕ〉 ≡ |1〉 ⊗ U o
fB

|ϕ〉 ,
(2.9)

UfA |0〉 ⊗ |ϕ〉 ≡ |0〉 ⊗ U e
fB

|ϕ〉 .

In Appendix B we describe the converse procedure
whereby, starting from Bob’s distributed quantum circuits,
Alice can generate her single quantum circuit.

III. DEPTH OF DISTRIBUTED COMPUTATION

Distributed algorithms have the advantage of a shallower
depth. This is evident for circuits given by the DNF: The depth
of the n-qubit circuit is distributed between the two n − 1
circuits. [See Eqs. (2.6) and (2.8).]

In the experiment (Sec. IV) the depth of the distributed
circuits was about a factor of 4 smaller than that of the undis-
tributed circuit. This is a consequence of the fact that the depth
of a CnZ circuit is considerably larger than the depth of a
Cn−1Z . We illustrate this with an example.

The gain in depth depends on the choice of gates. We use
the following rules [12]:

i. Any single-qubit gate is allowed.
ii. The only two-qubit gate allowed is CNOT.
iii. Gates that can be executed in parallel are grouped into

columns.
iv Consecutive single-qubit gates are counted as a single-

qubit gate.
Consider the circuit in Fig. 1 and its distributed cousins

in Fig. 2. To compute depth(UfA ) and depth(UfB ) we first
observe that

depth(C2Z ) = 11. (3.1)

This is shown in Fig. 3.

FIG. 2. The circuits corresponding to the DNF of Eq. (2.8).
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Algorithm 2.1: Splitting a circuit.

Result: two (n-1)-qubit circuits Ue
fB

, Uo
fB

1 Divide (UfA
)

2 parity ← 0;
3 Uo

fB
← 1;

4 Ue
fB

← 1;
5 if UfA

is not of DNF then
6 abort ;

7 foreach gate G in UfA
in the order they are executed from top to bottom do

8 if G is an X gate acting on the parity qubit a then
9 parity ← NOT (parity) ;

10 else if G is a C⊗(n−1)Z then
11 if parity == 1 then
12 append C⊗(n−2)Z to Ue

fB
;

13 else
14 append C⊗(n−2)Z to Uo

fB
;

15 else if G is a single qubit gate acting not on the parity qubit then
16 append G to its respective qubit both in Uo

fB
and Ue

fB
;

17 else
18 abort;

19 return Uo
fB

, Ue
fB

;

aThe parity qubit is defined as the qubit that distinguishes between the even and odd subspaces.

It follows that

depth(UfA ) = 3 + 2 × depth(C2Z ) = 25. (3.2)

To compute the depth of the corresponding distributed circuits
in Fig. 2 we first recall that

(3.3)

For the even circuit one combines the X gates with the
Hadamard gates. Hence both circuits have

depth
(
U e/o

fB

) = 3.

The example shows that distributed circuits can lead to a
substantial reduction in the depth of quantum circuits.

IV. DISTRIBUTED GROVER SEARCH: AN EXPERIMENT

In this section we describe an experiment carried out on
the IBMQ5 (ibmq_santiago). The data for the machine (at the
time of the experiments) are listed in Table I.

In the experiment a Grover search for a single target among
16 items (N = 16 and M = 1) was conducted on an undis-

FIG. 3. C2Z .

tributed circuit with n = 4 qubits and then on distributed
circuits with n = 3 qubits each. The target state in both cases
has been |1111〉.

We made use of the open-source Qiskit [13] library to gen-
erate the Grover search circuits, which were then run on real
(i.e., not simulated) machines. The circuit data are reported in
Table II.

Figure 5 shows the results for the undistributed Grover
search, and Fig. 7 those for the distributed Grover search.
Clearly, the undistributed search failed, while the distributed
search qubits succeeded in finding |1111〉.

The results are in agreement with what one should expect
for noisy machines that can handle a limited depth. For more
details about the expected and observed noise in the circuits,
see Appendix B.

A. Undistributed Grover search

The optimal number of Grover iterations with n = 4
(Fig. 4) is r = (π/4)

√
16 = π ≈ 3 and the (theoretical)

TABLE I. Machine data for IBM Santiago.

Single-qubit error O(2.2 × 10−4)
Two-qubit error ε ≈ 6.2 × 10−3

Coherence Tc ≈ 133 μs
Gate rate R ≈ 408 ns
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TABLE II. Circuit data for the undistributed computation with
n = 4 qubits and the two distributed circuits with n = 3 qubits. The
values are for the transpiled circuits.

Time Success
Qubits Gates CNOT steps Iterations Repetitions probability

4 519 291 396 3 8096 0.063
3 (odd) 140 55 93 2 8096 0.4
3 (even) 59 24 39 2 8096 NA

success probability is3 0.96. The circuit produced the his-
togram in Fig. 5 and manifestly failed to identify the target
|1111〉.

It is useful to extract from the histogram the frequencies of
bit-flip error in the target |1111〉. This is reported in Table III.
The data agree with a binomial distribution up to ±σ . The
large error probability for bit-flip, p0 ≈ 0.50, is the reason
for the failure of the search. p0 is in reasonable agreement
with the estimates based on the machine data in Table I (see
Appendix B).

B. Distributed Grover search

The distributed Grover search runs with two Oracles, one
for the ‘odd’ subspace and the other for the ‘even’ subspace,
both with n = 3 qubits. The target |1111〉 is encoded in the
odd Oracle and the even Oracle is “empty.” The optimal num-
ber of iterations in the odd circuit is r = (π/4)

√
8 ≈ 2, with

success probability p ≈ 0.95. The circuits are shown in Fig. 6.
The left histogram in Fig. 7 clearly identifies the correct

answer |111〉 (corresponding to |1111〉). The even circuit has
no marked element4 and this is borne out by the histogram on
the right.

It is instructive to look at the probability of bit-flip error.
The histogram in Fig. 7 leads to Table IV. The agreement with
a binomial distribution is only qualitative. The small bit-flip
error, p0 ≈ 0.30, is why the search succeeded. p0 can be
estimated from the machine data in Table I (see Appendix B).

V. DISTRIBUTED SIMON’S ALGORITHM

Period finding and the Zn
2 Fourier transform

Consider f : {0, 1}n �→ {0, 1}, a Boolean function periodic
with period s �= 0 under bitwise addition:

f (x ⊕ s) = f (x) ∀x ∈ {0, 1}n. (5.1)

3 p = sin2((2r + 1)θ ) ≈ 0.96, where p = sin θ = 1/
√

N .
4Although the formal optimum for M = 0 is r = ∞, the optimal

number of Grover iterations is actually r = 0.

FIG. 4. The undistributed Grover search circuit with n = 4 qubits.

FIG. 5. Histogram for the undistributed Grover algorithm with
n = 4 qubits searching for the target state |1111〉. The sampling error
is ±0.011. The search failed.

Task: Find s. This is a special case of Simon’s problem [9].
Period finding is the business of Fourier transforms. For

the case at hand, this is the Zn
2 Fourier transform. The circuit

in Fig. 8 reduces period finding to solving a set of linear
equations. Chasing the state |0〉⊗n through the circuit in Fig. 8,
using the identity

H⊗n |x〉 = 1√
N

∑
y

(−1)x·y |y〉 , (5.2)

one finds

H⊗n |0〉 = 1√
N

∑
x

|x〉

(−) f

−−→ 1√
N

∑
x

(−1) f (x) |x〉

= 1

2
√

N

∑
x

(−1) f (x)(|x〉 + |x ⊕ s〉)

H⊗n−−→ 1

2N

∑
y

(∑
x

(−1) f (x)+x·y
)

︸ ︷︷ ︸
=g(y)

(1 + (−1)s·y ) |y〉 .

(5.3)

Here g(y) is the Zn
2 Fourier transform of (−1) f . As such

it is localized on arguments related to the period as can be
seen from

2g(y) =
∑

x

(−1) f (x)+x·y +
∑

x

(−1) f (x⊕s)+(x⊕s)·y

= g(y)(1 + (−1)s·y ). (5.4)

TABLE III. The bit-flip error frequency in the search for the
target |1111〉 is well approximated by the binomial distribution.

No. of errors

0 1 2 3 4

Frequency 0.06 0.26 0.38 0.25 0.06
Binomial (n = 4, p0 ≈ 0.50) 0.06 0.25 0.38 0.25 0.06
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FIG. 6. The distributed circuits with n = 3 for the even and odd
arguments.

It follows that

g(y) = wyδ(s · y), (5.5)

where wy ∈ Z is the “weight” of the delta function. Inserting
this into Eq. (5.3) gives for the state exiting the circuit

1

N

∑
y j ·s=0

wy j |y j〉 . (5.6)

The outgoing state is therefore a linear combination of so-
lutions of s · y = 0 mod 2. The period is determined as the
solutions of the linear system

y j · s = 0 mod 2, wy j �= 0. (5.7)

The random outcomes of the measurement of the quantum
circuits give y j .

In the case where there are n independent vectors y j ,
Eq. (5.7) has a unique solution, s = 0. In the case where n − 1
vectors are independent there is a unique nontrivial period s,
etc. In the case where the sum in Eq. (5.6) has a single term
w0 for y = 0, Eq. (5.7) trivializes and any s is a solution: f is
a constant.

Remark 5.1. The weights {wy} are (at most) N integers that
satisfy Pythagoras, ∑

y·s=0

w2
y = N2. (5.8)

This imposes a (Diophantine) constraint on the allowed {wy}
which is independent of the function f .

Example 5.1. With N = 4, the solutions {wy} of Eq. (5.8)
are5

{|4|}, {|2|, |2|, |2|, |2|}. (5.9)

Not all of the solutions are realized as Fourier transforms
of (the phases of) Boolean functions. In fact, there are 16
Boolean functions of 2 bits:

(i) 2 constant functions, f (x1, x2) = 0 and f (x1, x2) = 1,
where s is arbitrary;

5In the sense that, for example, for the first set wy = |4|, meaning
either wy = +4 or wy = −4.

TABLE IV. Bit-flip error frequencies in the distributed search.

No. of errors

0 1 2 3

Frequency 0.40 0.36 0.19 0.05
Binomial (n = 3, p0 ≈ 0.30) 0.35 0.44 0.19 0.03

(ii) 6 balanced functions where 1 has two preimages—
these have a single nontrivial period; and

(iii) the 4 functions where 1 has a single preimage and 4
where 1 has three preimages, which are aperiodic with s = 0.

The Fourier transforms of the phase functions (−1) f are
(i) ±4δ(y) for the constant functions;
(ii) ±4δ(y − j), j ∈ 1, 2, 3, for the balanced functions;

and
(iii) ±2(1 − 2δ(y − j)), j ∈ 0, 1, 2, 3, for the aperiodic.
Consider the distributed algorithm in the case of a unique

s �= 0. Suppose first that s is even (e.g., s = 10). The dis-
tributed Oracle reduces to the problem for n − 1 qubits for the
even (odd) Oracles. This allows us to determine s after O(n)
queries.

In the case where s is odd, x and x ⊕ s have different
parities. The n − 2 queries of the distributed algorithm will
give the trivial result 2s = 0. One then needs to try again with
a different notion of even-odd, per Eq. (2.3). If the new notion
of even-odd gives s even, the next n − 2 queries will determine
s after a total of 3(n − 2) queries. If s is odd, we need to
repeat the process. The complexity of an algorithm is deter-
mined by the worst case corresponding to n repetitions. This
gives

O(n2). (5.10)

Remark 5.2. Similar arguments apply for the standard Si-
mon algorithm for f : {0, 1}n �→ {0, 1}n (which is represented
by a quantum circuit acting on 2n qubits). Consider two
quantum circuits each corresponding to the odd and even sub-
spaces, defining functions fe, fo : {0, 1}(n−1) �→ {0, 1}n (each
represented by a quantum circuit acting on 2n − 1 qubits).
Following steps similar to those in the paragraph above, we
find that the complexity in this case is also O(n2).

In summary, the complexity of the period finding of a phase
Oracle is

(i) O(N ) classically, the cost of the Zn
2 Fourier transform;

(ii) O(n) for the n-qubit quantum circuit; and
(iii) O(n2) for the distributed quantum circuit.

VI. DISTRIBUTED DEUTSCH-JOZSA ALGORITHM

A Boolean function f is called balanced if∑
x

(−) f (x) =
∑

x

(1 − 2 f (x)) = 0. (6.1)

There are (
N

N/2

)
, N = 2n (6.2)

balanced functions, a number which is superexponentially
large. There are, of course, only two constant Boolean func-
tions: f ≡ 0 and f ≡ 1.

The Deutsch-Jozsa task is, given the promise that f is
either constant or balanced, determine which it is.

If no error is tolerated, one needs N/2 + 1 classical queries
of f . If one is satisfied with a correct answer with a high
probability, then a few queries suffice. Indeed, the probability
that k random queries of a balanced function have the same
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FIG. 7. The two histograms for the distributed search with n = 3 qubits. The sampling error is ±0.011. The left histogram correctly
identified |111〉. The right histogram did not single out any state, as it should.

image under f is6

p =
(

1 − N

2N − 1

)
. . .

(
1 − N

2N − k + 1

)
. (6.3)

When k � N one has

p ≈
(

1

2

)k

. (6.4)

If one tolerates ε error probability,

k = O(log 1/ε) (6.5)

queries suffice.
The Deutsch-Jozsa circuit in Fig. 8 outputs

Prob(y = 0) =
∣∣∣∣∣ 1

N

∑
x

(−1) f (x)

∣∣∣∣∣
2

=
{

1, f ∈ const,
0, f ∈ balanced

(6.6)

and determines f , with no error, with a single query (assuming
that the quantum gates are error-free and the f is indeed either
balanced or constant).

Now consider the corresponding distributed Deutsch-Jozsa
algorithm. The even and odd parts of a constant function
are still constant functions. But the even and odd parts of a
balanced function need not be (two) balanced functions. The
distribution of 1 in the even function is the same as randomly
drawing N/2 stones from two urns with N/2 stones each, all
1 or all 0. The probability distribution for finding k 1’s in the

6The formula follows from repeated application of the fact that in
an urn with W white stones and B black stones, the probability of
picking a black stone is B/(B + W ).

FIG. 8. The Deutsch-Jozsa and the period-finding circuits.

even sequence is

Prob(k) =
(

N/2

k

)(
N/2

N/2 − k

)/(
N

N/2

)
. (6.7)

We are interested in the probability that the distributed cir-
cuit will (mis)identify a balanced function as constant. By
Eq. (6.6) this is related to the expectation of∣∣∣∣∣ 1

N

∑
x

(−1) fe(x)

∣∣∣∣∣
2

=
(

1 − 2

N

∑
x

fe(x)

)2

= 1 − 4

N

∑
x

fe(x) + 4

(
1

N

∑
fe(x)

)2

.

(6.8)

Evidently

E

(∑
x

fe(x)

)
=

∑
k

k Prob(k) = N

4
. (6.9)

As fe(x) and fe(y) are independent for x �= y and f 2
e (x) =

fe(x) we also have

E

(∑
x

fe(x)

)2

= E

(∑
x,y

fe(x) fe(y)

)
= E

(∑
x

fe(x)

)
= N

4
.

(6.10)

It follows that the expectation values that a single query of
the distributed circuit will make the mistake of identifying a
balanced f as constant is

E(y = 0| f = balanced) = 1

N
. (6.11)

Comparing with Eq. (6.5) we see that one needs O(n) classical
queries to get the same margin of error as a single quantum
query.

In summary, the complexity of the Deutsch-Jozsa problem
is

(i) 1 + N/2 classical queries for a deterministic result,
(ii) a single quantum query (for an error-free circuit),

052404-6



QUANTUM ADVANTAGE AND NOISE REDUCTION IN … PHYSICAL REVIEW A 104, 052404 (2021)

(iii) a single query of a distributed quantum circuit for
O(1/N ) error, and

(iv) O(n) classical queries for O(1/N ) error.
The first two entries imply an O(N ) quantum advantage

and the last two entries an O(n) advantage of distributed
quantum computing.

VII. CONCLUSION

Distributed quantum computing with classical communi-
cation on ideal devices is, in general, inferior to undistributed
quantum computing. However, in the context of the cur-
rently available noisy small computers that offer no error
corrections, distributed computing offers two advantages:
amalgamated qubit resources and shallow circuits with sig-
nificant noise reduction.
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APPENDIX A: THE DNF OF QUANTUM CIRCUITS

For the sake of simplicity and concreteness we illustrate an
algorithm that works for any Boolean function f : {0, 1}n →
{0, 1}m by considering the special case where n = 2 and
m = 1.

1. From the truth table to the DNF [14]

The disjunctive normal form [15] of a Boolean function
can be calculated directly from the truth table of the function.
Consider the following.

x0 x1 f (x)
0 0 1
0 1 0
1 0 1
1 1 0

The DNF form of f is given by

fDNF(x) = x̄0 · x̄1 + x0 · x̄1, (A1)

where x̄ denotes NOT(x).
We only need to consider the rows where f (x) = 1. For

every such row we build out of the arguments x0 and x1 a
Boolean statement made of only NOT and AND operations
(conjunctive) so that an argument that takes the value 1 is
written as is, while an argument with value 0 is negated. For
the example,

(i) the first row is described by x̄0 · x̄1 and
(ii) the third row is described by x0 · x̄1.

Generalization: In the case of general n do the same with n
variables. For a different m repeat the process for each fi(x).

The DNF extracted from the truth table is not, in general,
the simplest DNF formula of the function. For example, f in
Eq. (A1) can be written more simply as

fDNF = x̄1.

FIG. 9. The DNF circuit for the function gate of Eq. (A1).

The optimal DNF formula can be calculated using Karnaugh
maps [16].

2. From the DNF to the quantum circuit [17]

The quantum circuit for any f : {0, 1}n → {0, 1}m can be
built with X gates and C⊗nX gates. To see this recall that
the Toffoli gate [18] gives the conjunction of its arguments
fT (x0, x1) = x0 · x1. The quantum circuit for calculating the
function in Eq. (A1) is shown in Fig. 9. (It can be simplified
using XX ≡ 1.)

Generalization: For the case of n conjuctions, a similar con-
struction works with C⊗nX replacing the Toffoli.

For Boolean functions whose output is a string of m bits one
simply adds additional target qubits.

3. Phase Oracles

The same method can be used to construct the phase Oracle
for (−1) f (x). This is done by replacing C⊗nX with C⊗(n−1)Z
gates; for example, the circuit for the phase gate of the func-
tion in Eq. (A1) is shown in Fig. 10.

APPENDIX B: THE EXPERIMENT:
ADDITIONAL DETAILS

1. Splitting the Grover Oracle

Alice and Bob each get the same n-qubit Oracle. Alice uses
the Oracle as is. Bob uses the following algorithm to split the
Oracle to the two computers B1 and B2.

Algorithm B.1: Distributed Grover algorithm.

Result: The binary index of a desired element from
the whole set.

1 BobGrover (Uf )
2 Uodd, Ueven ← Divide(Uf ) ;
3 res1 ← Grover(B1, Ueven) ;
4 res2 ← Grover(B2, Uodd) ;
5 if Ueven(res1) == 1 then
6 return res1 + ’0’ ;

7 return res2 + ’1’ ;
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FIG. 10. Phase gate for the function in Eq. (A1).

2. A depolarizing channel model for the errors

A simple model of the noise in circuits is in terms of
depolarizing channels:7

ρ �→ λρ + 1 − λ

2
1, −1/3 � λ � 1. (B1)

The probabilities that a qubit |ψ〉 gives the correct (1) or
incorrect (0) answer are

p0 = 1 − λ

2
, p1 = 1 + λ

2
. (B2)

Assuming independence, the probability of m bit-flip errors in
an n-qubit register is (

n

m

)
pm

0 pn−m
1 . (B3)

The expected number of errors in the register is

np0 (B4)

and the probability of the correct answer in all n qubits is(
1 + λ

2

)n

. (B5)

3. Decoherence and gate errors

The decoherence associated with each time step is repre-
sented by a polarizing channel with λ �→ μc, and the gate

7The condition on λ guarantees complete positivity [19].

TABLE V. The bit-flip errors p0 computed from the histogram
and p̄0 computed from the IBM machine data.

Qubits p0 p̄0 λ

4 0.50 0.47 0.05
3 (odd) 0.30 0.23 0.54

errors by a polarizing channel with λ �→ μg. The composition
of polarizing channels is ordinary multiplication. It follows
that, for a circuit with T time steps and Ng noisy gates, there
is a channel where

λ ≈ μT
c μ

Ng
g . (B6)

Since the dominant error is in the two-qubit gates, Ng is the
number of two-qubit gates.

From Table I

log μc = − R

Tc
≈ −3 × 10−3 �⇒ μc ≈ 0.997,

μg = 1 − ε ≈ 0.994. (B7)

An estimate for λ is then8

λ ≈ (0.997)T · (0.994)Ng. (B8)

This allows us to compare the experimentally observed proba-
bility of bit-flip error p0 computed via Eq. (B4) and the data in
Tables III and IV with the expected bit-flip error p̄0 computed
via Eqs. (B2) and (B8) using the IBM machine data in Table I
(see Table V). The qualitative agreement between p0 and p̄0

gives some support to the noise model as the depolarizing
channel.

8Since T, Ng = O(1000) we need to keep three significant figures.
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