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In the conventional axiomatic formalism of quantum mechanics, a physical measurement of a quantum
observable is mathematically represented by the spectral decomposition of the Hermitian operator associated
with the observable. This constitutes the scenario of a Lüders (projective) measurement, which includes a von
Neumann (rank-one projective) measurement as a special and prominent instance. In this context, the measure-
ment is called sharp in the sense that each measurement operator is an orthogonal projection (eigenprojection
of the observable). In the modern operational formalism, a measurement is represented by a positive-operator
valued measure (POVM), which consists of a family of non-negative definite operators (measurement operators,
effects) summing to the identity. In this scenario, a measurement is called unsharp (fuzzy) if some measurement
operators are not orthogonal projections. A natural question arises as to how to quantify unsharpness of a
measurement. In this work, we address this issue in terms of uncertainty. For this purpose, we study a family of
observables associated with a measurement and their uncertainty. By exploiting the difference between the (total)
measurement uncertainty and the observable uncertainty, we are led to some information-theoretic quantifiers of
unsharpness. We reveal their basic properties and illustrate them through some important measurements. In
particular, we characterize Lüders measurements and equiangular POVMs as extreme measurements in terms of
unsharpness.
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I. INTRODUCTION

In the traditional formalism of quantum mechanics, a quan-
tum system is mathematically described by a complex Hilbert
space, with a quantum state represented by a non-negative
definite operator with unit trace (density operator), and a
physical observable represented by a Hermitian (self-adjoint)
operator [1–3]. Measuring an observable K in a state ρ of a
finite-dimensional system means performing the Lüders (pro-
jective) measurement K = {�i : i = 1, 2, . . . , n} induced by
the spectral decomposition K = ∑

i λi�i [4]. It should be em-
phasized here that �i, as eigenprojectors of K , are mutually
orthogonal projections. Such a measurement is called sharp,
for the apparent reason that in such a setting, different mea-
surement outcomes corresponding to different eigenvalues λi

can be unambiguously discriminated due to orthogonality. In
particular, when all �i are of rank one, the measurement
reduces to a von Neumann measurement, the traditional one
in quantum formalism.

When measuring an observable K (equivalently, the cor-
responding family of spectral projections K) in the state ρ,
one obtains the outcome λi with probability pi = tr(ρ�i ).
Consequently, one gets a random variable (a function taking
values in the measurement outcome space) � with probability
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distribution P(� = λi ) = pi. The average value (statistical
expectation) E (�) = ∑

i piλi of the random variable � coin-
cides with the corresponding average value Eρ (K ) = tr(ρK )
of the quantum observable K (in the state ρ), that is,

E (�) = Eρ (K ), (1)

which follows readily from E (�) = ∑
i piλi =∑

i tr(ρ�i )λi = tr[ρ(
∑

i λiEi )] = tr(ρK ) = Eρ (K ). This
fundamental coincidence of average values, although rather
trivial, leads one naturally to guess that the variance

Var(�) = E [� − E (�)]2 =
∑

i

piλ
2
i −

( ∑
i

piλi

)2

of the random variable � may also coincide with the corre-
sponding variance

Vρ (K ) = tr(ρK2) − (trρK )2

of the quantum observable K (in the state ρ), that is,

Var(�) = Vρ (K ). (2)

This is indeed the case, as can be readily checked by noting
that K2 = ∑

i λ
2
i �i due to the spectral decomposition.

However, in the modern formalism of quantum mechan-
ics, a measurement is represented by a positive-operator
valued measure (POVM) E = {Ei : i = 1, 2, . . . , n}, with Ei

non-negative definite operators (not necessarily projections)
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summing to the identity operator [5–12] or, more generally,
by an instrument [13,14]. For simplicity, we focus on mea-
surements described by discrete POVMs. Such a measurement
E is called unsharp (fuzzy) if at least one effect, say Ej , is
not a projection. If we assign a real numerical value αi ∈ R
to the outcome corresponding to the measurement operator
(effect) Ei for each i, then similar to the above situation, we
obtain a random variable � with probability distribution pi =
P(� = αi ) = tr(ρEi ) and a corresponding quantum observ-
able K = ∑

i αiEi (not necessarily a spectral decomposition).
In stark contrast to Eq. (1) for the average values, which is
actually also true for any POVM, Eq. (2) for the variances
may fail to be true for K induced by a general POVM due to
unsharpness. In fact, the sharpness (i.e., the assumption of all
measurement operators being orthogonal projections) of the
measurement plays a crucial role in establishing Eq. (2) for
Lüders measurements.

Motivated by the above well-known observation, we are
naturally led to consider the failure of Eq. (2) as an indication
of unsharpness of the measurement involved. This work is de-
voted to elaborating on this idea and quantifying unsharpness
of measurements via uncertainty, which in turn is quantified
by variance. More specifically, by exploring the difference
between the variance of the random variable and that of the
quantum observable, we introduce some quantifiers of un-
sharpness of measurements, reveal their basic properties, and
provide some insight into the structure of measurements.

Due to the increasing interest and importance in both theo-
retical and practical considerations of general POVMs since
the 1960s [15–37], issues related to quantitative aspects of
unsharpness have been studied by many authors. For example,
a noise operator (also called uncertainty operator) was intro-
duced implicitly or explicitly in Refs. [30–33]. Applications
of the noise operator and the associated decomposition of
variance to uncertainty relations and other issues were inves-
tigated in Refs. [14,34,35]. The notion of resolution width
of a measurement was used as a quantifier of unsharpness in
Ref. [36], which has a clear interpretation in terms of actual-
izability. The problem of intrinsic unsharpness of a measuring
device was addressed in [37], where an entropic measure of
unsharpness based on the average Shannon entropy of prob-
ability distribution was explored. Inspired by these studies of
unsharpness, we take a similar starting point to exploit the
interplay between the variance of random variables and quan-
tum observables. We introduce several matrices (different
from the noise operator) and related quantities to characterize
and quantify unsharpness. We note that although variance, as
a simple and ubiquitous quantity, has been extensively and
intensively studied and used ever since the inception of quan-
tum mechanics, there are still novel aspects and applications
awaiting exploration. Some recent applications of variance in
characterizing coherence and nonclassicality were presented
in Refs. [38,39].

This work is structured as follows. In Sec. II, as a prelimi-
nary discussion, we describe two different kinds of variance
(uncertainty) associated with a POVM by introducing pa-
rameters as measurement values. In Sec. III, we quantify
unsharpness of POVMs in terms of the uncertainty difference.
We further reveal basic properties of the quantifiers of un-
sharpness. We illustrate unsharpness through some important

POVMs. In Sec. IV, we characterize the Lüders measure-
ments, the POVMs induced by equiangular tight frames,
as well as the symmetric informationally complete POVMs
(SIC-POVMs), as extremal measurements in terms of un-
sharpness. Finally, we summarize the results and discuss some
perspectives in Sec. V. For simplicity, we focus on finite-
dimensional quantum systems and discrete POVMs with finite
elements (effects). Although the idea and methods may be
adapted to the infinite-dimensional cases and some results can
be carried over to the general cases, it is an important and
highly nontrivial issue to address the general situation.

II. PRELIMINARY

To motivate and to facilitate later discussions, in this
section we collect and derive some elementary properties
concerning uncertainty of a POVM. These results are well
known or can be straightforwardly verified. We will exploit
uncertainty of a POVM in terms of two different versions of
variance: variance of a random variable vs variance of a quan-
tum observable (Hermitian operator). Both emerge naturally
from a POVM coupled to a state.

Consider a measurement in a d-dimensional quantum sys-
tem represented by a POVM,

E = {Ei : i = 1, 2, . . . , n},
which consists of non-negative definite operators Ei summing
to the identity, that is, Ei � 0 and

∑
i Ei = 1 (resolution of

identity) [5–12]. Each measurement operator Ei, which is
called an effect, corresponds to an experimental outcome. If
all tr(Ei ) are equal, then the POVM is called homogenous,
and if all effects are of rank one, then the POVM is called
rank one. When all Ei are orthogonal projections, the POVM
reduces to a Lüders measurement and one recovers the con-
ventional measurement formalism in terms of the spectral
decomposition of a Hermitian operator representing the quan-
tum observable. The probability of obtaining the ith outcome
of the measurement (when the system is in a state ρ) is
stipulated as

pi = tr(ρEi )

via the celebrated Born rule.
In the above setup, the measurement outcomes are only

distinguished by the label i, and no physical values are as-
signed to them. In practice, and for our purpose of quantitative
study of uncertainty and unsharpness in an operational way,
it is helpful to introduce parameters to represent the mea-
surement outcomes in order to employ the full power of
quantitative analysis. Thus we argument the POVM E = {Ei :
i = 1, 2, . . . , n} with a vector α = (α1, α2, . . . , αn) ∈ Rn, and
call the combination (E,α) a measurement scenario, with αi

interpreted as the measurement value corresponding to the
effect Ei. Associated with a measurement scenario (E,α),
there are two natural objects, which are of special significance
in our approach to unsharpness, as follows:

(1) The quantum observable

Kα =
∑

i

αiEi, (3)
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FIG. 1. A measurement scenario (E, α) induces two natural ob-
jects: random variable ξα (via coupling with state ρ) vs quantum
observable Kα. Their averages agree, but their variances in general
disagree. This difference may be exploited to quantify the unsharp-
ness (deviation from the Lüders measurements) of the measurement
E .

which is a Hermitian operator summarizing the weighted ef-
fects. Here, α = (α1, α2, . . . , αn) ∈ Rn. In the conventional
formalism of measurement, if K = {�i : i = 1, 2, . . . , n} is
a Lüders measurement and α = (λ1, λ2, . . . , λn) (the vector
consisting of the spectrum of a quantum observable K =∑

i λi�i ), then Kα = K is exactly the original observable
inducing the measurement K.

(2) The random variable ξα with probability distribution
pi = P(ξα = αi ) = tr(ρEi ), i = 1, 2, . . . , n, which records
the measurement outcomes of performing the measurement
E in a state ρ and the corresponding probabilities as a func-
tion (rather than an operator). This should be compared with
the quantum observable Kα defined by Eq. (3). The essential
distinction lies in that the quantum observable is a Hermitian
operator (independent of the state ρ) constructed from the
POVM via a linear combination of effects, while the random
variable (depending on the state ρ) is a function derived from
measuring the POVM (in the state ρ) with the probabilities de-
termined via the Born rule. Thus it is more rigorous to denote
the random variable ξα as ξα,ρ . But, for notational simplicity,
we just use the simpler one. We illustrate the comparison
between them in Fig. 1.

For the quantum observable Kα, we have the average value

Eρ (Kα) = tr(ρKα)

and the conventional variance

Vρ (Kα) = tr
(
ρK2

α

) − (trρKα)2. (4)

For the random variable ξα, we have the average value

E (ξα) =
∑

i

piαi,

which coincides with the average value Eρ (Kα) = tr(ρKα) of
the quantum observable Kα (in the state ρ), as can be readily
checked from

E (ξα) =
∑

i

tr(ρEi )αi = tr
(
ρ

∑
i

Eiαi

)
= tr(ρKα).

This coincidence indicates that the quantum observable Kα is
indistinguishable from the random variable ξα in terms of their
average values. For the variance of the random variable ξα, we

have

Var(ξα ) = E
(
ξ 2
α

) − (Eξα)2 =
∑

i

piα
2
i −

( ∑
i

piαi

)2
. (5)

For notational convenience and to explicitly indicate the de-
pendence on E, ρ, and α, we denote the above variance as

Vρ (E,α) = Var(ξα). (6)

If we introduce an n × n matrix V ρ (E ) with matrix entries

[V ρ (E )]i j = δi j tr(ρEi ) − tr(ρEi )tr(ρEj ),

then

Vρ (E,α) = αV ρ (E )αT ,

which is a quadratic form of α ∈ Rn. Here, T denotes trans-
pose of the vectors.

The variance Vρ (E,α) = Var(ξα) of the random variable ξα

summarizes the uncertainty of the measurement outcomes and
has the following properties.

Lemma 1. It holds that
(a) Vρ (E,α) � 0,∀ α or, equivalently, the real matrix

V ρ (E ) is non-negative definite. Vρ (E,α) = 0 if and only if all
αi with P(ξα = αi ) �= 0 are equal, i.e., the random variable ξα

is a constant with probability 1.
(b) Vρ (E,α) possesses unitary covariance in the sense that

VUρU † (UEU †,α) = Vρ (E,α),

where U is any unitary operator on the system Hilbert
space and UEU † = {UEiU † : i = 1, 2, . . . , n} for E = {Ei :
i = 1, 2, . . . , n}.

(c) Vρ (E,α) is concave in ρ and convex in α.

(d) If E = {Ei : i = 1, 2, . . . , n} is a Lüders measurement,
then Vρ (E,α) reduces to the conventional variance Vρ (Kα)
of the quantum observable Kα = ∑

i αiEi (in the state ρ) as
defined by Eq. (4), i.e.,

Vρ (E,α) = Vρ (Kα).

Although the above properties are simple or well known,
they are important and, for completeness, we sketch the proof.
Item (a) is clear since Vρ (E,α) = Var(ξα) is the variance of
a real-valued random variable ξα, and thus is always a non-
negative number. The variance of a random variable vanishes
if and only if it is a constant with probability 1. Consequently,
Vρ (E,α) = Var(ξα) = 0 holds if and only if ξα is a constant
with probability 1, that is, all αi with P(ξα = αi ) �= 0 are
equal.

Items (b) and (c) can be checked straightforwardly.
Item (d) follows from

Vρ (E,α) =
∑

i

piα
2
i −

( ∑
i

piαi

)2

=
∑

i

tr(ρEi )α
2
i −

[ ∑
i

tr(ρEi )αi

]2

= tr
(
ρ

∑
i

Eiα
2
i

)
−

[
tr
(
ρ

∑
i

Eiαi

)]2

= tr(ρK2
α ) − (trρKα)2

= Vρ (Kα).
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In the above derivation, the assumption of Lüders measure-
ment plays a crucial role since, under this condition, Ei are
orthogonal projections and Kα = ∑

i αiEi is the spectral de-
composition of Kα, which implies that K2

α = ∑
i α

2
i Ei. This is

not true in general if Kα = ∑
i αiEi is not a spectral decompo-

sition.
Now a natural question arises as to the relation between

Vρ (E,α) (variance of the random variable ξα) and Vρ (Kα)
(variance of the quantum observable Kα). To address this
issue, we introduce

Fρ (E,α) = Vρ (E,α) − Vρ (Kα), (7)

which serves as a starting point for our approach to unsharp-
ness. The symbol F refers to fuzziness (unsharpness). To gain
a clearer picture of the structure of the above quantity, let us
define an n × n matrix Fρ (E ) with matrix entries

[Fρ (E )]i j = δi j tr(ρEi ) − tr(ρ{Ei, Ej}), (8)

where {Ei, Ej} = (EiEj + EjEi )/2 denotes the anticommuta-
tor (Jordan product, symmetric product) of the operators. It
can be directly checked that

Fρ (E,α) = αFρ (E )αT , (9)

which shows that Fρ (E,α), like Vρ (E,α), is a quadratic form
of α.

In this context, we recall some early studies of
unsharpness. For α = (α1, α2, . . . , αn) ∈ Rn, let α2 =
(α2

1, α
2
2, . . . , α

2
n ) (Hadamard product, entrywise product

of vectors). The noise operator

Nα = Kα2 − K2
α (10)

was introduced and studied in Refs. [14,30–36]. From
Eqs. (5)–(7), we have

Fρ (E,α) = Vρ (E,α) − Vρ (Kα)

= Var(ξα) − Vρ (Kα)

=
∑

i

α2
i tr(ρEi ) −

[∑
i

αitr(ρEi )
]2

− tr
(
ρK2

α

) + [
tr(ρKα)

]2

=
∑

i

α2
i tr(ρEi ) − tr

(
ρK2

α

)
= tr(ρNα),

which shows that the average value of the noise operator Nα is
the fuzziness Fρ (E,α), i.e.,

Fρ (E,α) = tr(ρNα). (11)

We stress that Fρ (E,α) is expressed as a quadratic form of
α with the corresponding matrix Fρ (E ) being an operator on
Cn, while the noise operator Nα acts on the d-dimensional
system Hilbert space. These two quite different operators are
related as

αFρ (E )αT = tr(ρNα). (12)

The quantity Fρ (E,α) defined by Eq. (9) has the following
basic properties.

Lemma 2. It holds that

(a) Fρ (E,α) � 0,∀ α or, equivalently, the real matrix
Fρ (E ) is non-negative definite. If Fρ (E,α) = 0 for all ρ and
α ∈ Rn, then Ei are orthogonal projections, that is, E = {Ei :
i = 1, 2, . . . , n} is a Lüders measurement.

(b) Fρ (E,α) possesses unitary covariance in the sense that

FUρU † (UEU †,α) = Fρ (E,α),

where U is any unitary operator and UEU † = {UEiU † : i =
1, 2, . . . , n} for E = {Ei : i = 1, 2, . . . , n}.

(c) Fρ (E,α) is affine in ρ and convex in α.

We proceed to establish the above results.
To prove item (a), we first define

X = Kα

√
ρ =

∑
i

αiEi
√

ρ, α = (α1, α2, . . . , αn) ∈ Rn,

then X † = √
ρKα = ∑

i αi
√

ρEi. By
∑

i Ei = 1 and twice use
of the Cauchy-Schwarz inequality, we have

|tr(X †X )|2 =
∣∣∣tr(X †

∑
i

αiEi
√

ρ
)∣∣∣2

=
∣∣∣∣∣
∑

i

tr
[
(X †√Ei )(αi

√
Ei

√
ρ )

]∣∣∣∣∣
2

�
∣∣∣∣∣
∑

i

[
tr(X †√Ei )(X

†√Ei )
†
] 1

2

×
[
tr(αi

√
Ei

√
ρ )(αi

√
Ei

√
ρ)†

] 1
2

∣∣∣∣
2

=
∣∣∣∣∣
∑

i

[
tr(X †EiX )

] 1
2
[
tr(α2

i Eiρ)
] 1

2

∣∣∣∣∣
2

�
∑

i

tr(X †EiX )
∑

i

tr
(
α2

i Eiρ
)

= tr(X †X )
∑

i

tr
(
α2

i Eiρ
)
,

which implies that

tr(X †X ) �
∑

i

tr
(
α2

i Eiρ
)
.

This is equivalent to

tr
(
ρK2

α

)
�

∑
i

α2
i pi

since tr(X †X ) = tr(
√

ρKαKα
√

ρ ) = tr(ρK2
α ) and tr(Eiρ) =

pi. Now, from Eq. (3), we have tr(ρKα ) = ∑
i αi pi, and from

Eqs. (4) and (6), we obtain

Vρ (Kα) � Vρ (E,α),

which is equivalent to Fρ (E,α) � 0, the desired result. We
remark that the non-negativity of the difference of the variance
already appeared explicitly or implicitly in Refs. [14,30–36],
and our alternative proof here is only for completeness and for
illuminating further features of the variance difference.

If Fρ (E,α) = 0 holds for all ρ and α, then by Eq. (9), we
know that Fρ (E ) must be the zero matrix. Thus, we have

[Fρ (E )]ii = tr
[
ρ
(
Ei − E2

i

)] = 0, ∀ ρ,
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which implies that Ei − E2
i = 0 (i.e., Ei are projectors). Also,

when i �= j,

[Fρ (E )]i j = −tr(ρ{Ei, Ej}) = 0, ∀ ρ,

which implies tr({Ei, Ej}) = 0. Because Ei and Ej are both
non-negative definite operators, it follows that EiEj = 0 for
i �= j. Consequently, Ei are orthogonal projections, i.e., E =
{Ei : i = 1, 2, . . . , n} is a Lüders measurement. Conversely, if
E = {Ei : i = 1, 2, . . . , n} is a Lüders measurement, it can be
readily verified that Fρ (E,α) = 0 for all ρ and α. In this case,
Fρ (E ) is the zero matrix.

Item (b) can be checked straightforwardly.
For item (c), since Fρ (E,α) can be expressed as

Fρ (E,α) =
∑

i

tr(ρEi )α
2
i − tr

(
ρK2

α

)
,

we see clearly that it is affine in ρ. Because Fρ (E,α) is a
quadratic form of the vector α, it follows that it is convex
in α.

In view of Lemma 2, we call Fρ (E,α), as defined by
Eq. (7), the extra variance of the measurement scenario (E,α)
(in the state ρ). In contrast, we call Vρ (E,α), as defined by
Eq. (6), the total variance, and Vρ (Kα), as defined by Eq. (4),
the irreducible variance, of the measurement scenario (E,α)
(in the state ρ). Consequently, we have classified the variance
of a measurement scenario into three categories, which satisfy
the decomposition relation:

Total variance = Irreducible variance + Extra variance.

Symbolically,

Vρ (E,α) = Vρ (Kα) + Fρ (E,α).

Such a kind of decomposition of variance was studied by
several authors [14,33,35,36]. This is a motivation for our
investigations of the unsharpness of measurements in the next
section. The above decomposition is reminiscent of several
information-theoretical decompositions in the literature: (1)
the decomposition of total correlations into quantum correla-
tions and classical correlations [40–42], (2) the decomposition
of a quantum observable into a quantum fluctuation part and
a classical part [43], and (3) the decomposition of total uncer-
tainty into quantum uncertainty and classical uncertainty [44].

We emphasize that although we will only regard the nu-
merical vector α associated with the measurement effects as
an ancillary tool (extrinsic quantity) for quantifying intrinsic
unsharpness, in fact, these numerical values are essential in
studying uncertainties and are of basic physical significance
in practical experiments.

III. QUANTIFYING UNSHARPNESS OF MEASUREMENTS

After the above preparation, now we proceed to study the
unsharpness of measurements in terms of uncertainty. The
parameter vector α plays a significant role in the study of
measurement uncertainty and actual recording of outcomes.
In our approach, we have separated the effects of α from
those of the original measurement E since we have expressed
Fρ (E,α) as a quadratic form of α in Eq. (9). Thus, in order
to introduce some intrinsic quantities for the measurement E,

we only need to focus on the matrix Fρ (E ) defined by Eq. (8),

which summarizes certain features of extra uncertainty of the
measurement E (in the state ρ) via Eq. (9), i.e., unsharpness
of E . This quantity still depends on the state ρ. In order to
get some quantities intrinsic only to the measurement, it is
desirable to get rid of the state dependence. Two intuitive and
simple approaches manifest themselves immediately.

(1) We may take ρ simply to be the maximally mixed state
1/d; then we come to the matrix

F1/d (E ) = (ri j ),

with ri j = [δi j tr(Ei ) − tr(EiEj )]/d and i, j = 1, 2, . . . , n.

(2) We may take the average of Fρ (E ) over the state ρ.

Since Fρ (E ) is affine in ρ, this will yield essentially the same
result as the above.

For notational simplicity, we omit the subscript in F1/d (E )
and denote

F(E ) = F1/d (E ),

which may be called the unsharpness matrix of E . The basic
properties of the n × n matrix F(E ) are as follows.

Proposition 1. It holds that
(a) F(E ) � 0 (zero matrix), that is, F(E ) is a non-negative

definite matrix. Moreover, the equality holds if and only if
E = {�i : i = 1, 2, . . . , n} is a Lüders measurement.

(b) F(E ) is concave for the inner mixture of E in the sense
that

F[cE + (1 − c)G] � cF(E ) + (1 − c)F(G),

where c ∈ [0, 1], and cE + (1 − c)G = {cEi + (1 − c)Gi :
i = 1, 2, . . . , n} for E = {Ei : i = 1, 2, . . . , n} and G = {Gi :
i = 1, 2, . . . , n}.

(c) F(E ) is concave for the outer mixture of E in the sense
that

F[cE ∪ (1 − c)G] � cF(E ) ⊕ (1 − c)F(G),

where c ∈ [0, 1], and cE ∪ (1 − c)G = {cEi : i =
1, 2, . . . , n} ∪ {(1 − c)Gj : j = 1, 2, . . . , m} for E = {Ei :
i = 1, 2, . . . , n} and G = {Gj : j = 1, 2, . . . , m}.

Before proving the above statements, we first illustrate the
operational meaning of the above two types of mixture of
measurements, which are different procedures for combining
measurements into new ones. The inner mixture concerns two
measurements E and G with the same number of (ordered)
effects, and arises from performing a measurement whose
ith effect is a probabilistic combination of the ith effect of
E and that of G. This leads to the measurement {cEi + (1 −
c)Gi : i = 1, 2, . . . , n}, which is precisely the inner mixture
cE + (1 − c)G of E and G (convex combination). In con-
trast, the outer mixture concerns two measurements E and G
whose numbers of effects can be arbitrary, and arises from
performing the measurement E with probability c and the
measurement G with probability 1 − c. This combined mea-
surement leads to the measurement {cE1, cE2, . . . , cEn, (1 −
c)G1, (1 − c)G2, . . . , (1 − c)Gm}, which is precisely the
outer mixture cE ∪ (1 − c)G (randomization). For further
elaboration on the operational mixtures of measurements, see
Sec. 3.1.5 in Ref. [13].

Now we proceed to prove Proposition 1.
Item (a) follows readily from Lemma 2 [item (a)].

From item (a), we see that the unsharpness of any
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Lüders measurement vanishes. Phrased alternatively, a Lüders
measurement is sharp, as it should be.

For item (b), note that the Gram matrix Z = (zi j ) with
matrix entries zi j = tr[(Ei − Gi )(Ej − Gj )] is clearly non-
negative definite. Now direct manipulation leads to

F[cE + (1 − c)G] − cF(E ) − (1 − c)F(G) = c(1 − c)Z,

which implies the desired result.
In order to establish item (c), for any real vectors

α = (α1, α2, . . . , αn) ∈ Rn and β = (β1, β2, . . . , βm) ∈ Rm,

denote αβ = (α1, α2, . . . , αn, β1, β2, . . . , βm) ∈ Rn+m, and
consider the three measurement scenarios (E,α), (G,β), and
[cE ∪ (1 − c)G,αβ] with the associated quantum observables
Kα = ∑

i αiEi, Jβ = ∑
j β jG j, and

Sαβ =
∑

i

αicEi +
∑

j

β j (1 − c)Gj = cKα + (1 − c)Jβ.

The corresponding random variables are ξα, ηβ, and ζαβ

with probability distributions P(ξα = αi ) = tr(ρEi ), P(ηβ =
β j ) = tr(ρGj ), and

P(ζαβ = αi ) = tr(ρcEi ), i = 1, 2, . . . , n,

P(ζαβ = β j ) = tr[ρ(1 − c)Gj], j = 1, 2, . . . , m.

Direct calculation shows that

Var(ζαβ ) − cVar(ξα) − (1 − c)Var(ηβ )

= c(1 − c)[E (ξα) − E (ηβ )]2 � 0,

which is equivalent to

Vρ[cE ∪ (1 − c)G,αβ] � cVρ (E,α) + (1 − c)Vρ (G,β).

Noting that the variance Vρ (K ) is convex in the observable K ,
we have

Vρ (Sαβ ) � cVρ (Kα) + (1 − c)Vρ (Jβ ).

Combining the above two inequalities yields

Fρ[cE ∪ (1 − c)G,αβ] � cFρ (E,α) + (1 − c)Fρ (G,β).

In particular, taking ρ = 1/d to be the maximally mixed state
and recalling that F1/d (·) = F (·), we obtain

αβF[cE ∪ (1 − c)G](αβ)T

= F [cE ∪ (1 − c)G, (α,β)]

� cF (E,α) + (1 − c)F (G,β)

= cαF(E )αT + (1 − c)βF(G)βT

= αβ[cF(E ) ⊕ (1 − c)F(G)](αβ)T ,

which implies the desired result,

F[cE ∪ (1 − c)G] � cF(E ) ⊕ (1 − c)F(G).

In view of Proposition 1, we call F(E ) the unsharpness
matrix of E . In order to obtain a measure of unsharpness as a
single numerical quantity (rather than a matrix), we may take
a suitable functional of the matrix. Recall that a unitarily in-
variant norm ‖ · ‖ of matrices satisfies ‖UXV ‖ = ‖X‖ for any
unitary operators U and V [45,46]. Typical unitarily invariant
norms include the Frobenius norm, the l p norm with p � 1,

as well as the Ky Fan norm. Actually, any unitarily invariant

norm has the form ||X || = g(s1, s2, . . . , sn) with si the singular
values of the matrix X , and g is any non-negative, subadditive,
symmetric function on Rn

+ satisfying g(s1, s2, . . . , sn) = 0 if
and only if s1 = s2 = · · · = sn = 0 [47]. For any unitarily
invariant norm ‖ · ‖ of matrices, one may employ ‖F(E )‖ as a
numerical quantifier of unsharpness. For simplicity, we define
the quantity

f (E ) = ‖F(E )‖1

as a measure of unsharpness (fuzziness) of the measure-
ment E, with the smaller norm corresponding to the smaller
unsharpness (larger sharpness) of the measurement. Here,
‖X‖1 = ∑

i j |xi j | is the l1 norm of the matrix X = (xi j ). This
quantity has the following properties.

Proposition 2. It holds that
(a) f (E ) � 0, and the equality holds if and only if E is a

Lüders measurement.
(b) f (E ) is concave for the inner mixture of E in the sense

that

f [cE + (1 − c)G] � c f (E ) + (1 − c) f (G),

where c ∈ [0, 1], and cE + (1 − c)G = {cEi + (1 − c)Gi :
i = 1, 2, . . . , n} for E = {Ei : i = 1, 2, . . . , n} and G = {Gi :
i = 1, 2, . . . , n}.

(c) f (E ) is concave for the outer mixture of E in the sense
that

f [cE ∪ (1 − c)G] � c f (E ) + (1 − c) f (G),

where c ∈ [0, 1], and cE ∪ (1 − c)G = {cEi : i =
1, 2, . . . , n} ∪ {(1 − c)Gj : j = 1, 2, . . . , m} for E = {Ei :
i = 1, 2, . . . , n} and G = {Gj : j = 1, 2, . . . , m}.

We sketch the proof. Clearly, item (a) follows readily from
Proposition 1 [item (a)].

Item (b) follows from Proposition 1 [item (b)] as

‖F(cE + (1 − c)G)‖1 � ‖cF(E ) + (1 − c)F(G)‖1

= c‖F(E )‖1 + (1 − c)‖F(G)‖1.

The last equation is due to the fact that each entry of the matrix
F(E ) is of the same sign with the corresponding entry of the
matrix F(G). In fact, all diagonal entries of both matrices
F(E ) and F(G) are non-negative, and all off-diagonal entries
of both matrices are nonpositive.

To prove item (c), note that from Proposition 1 [item (c)],
we have

‖F(cE ∪ (1 − c)G)‖1 � ‖cF(E ) ⊕ (1 − c)F(G)‖1.

But for the l1 norm, we have ‖X ⊕ Y ‖1 = ‖X‖1 + ‖Y ‖1 and,
consequently,

‖F[cE ∪ (1 − c)G]‖1 � c‖F(E )‖1 + (1 − c)‖F(G)‖1,

which is the desired result.
In Ref. [37], the interesting entropic quantity (called device

uncertainty)

Dρ (E ) =
n∑

i=1

mi∑
k=1

tr(ρ�ik )h(λik )

was introduced to characterize the unsharpness of the
measurement E = {Ei : i = 1, 2, . . . , n} via the spectral
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decompositions

Ei =
mi∑

k=1

λik�ik

of all constituent effects Ei. Here, h(λik ) = −λik lnλik is the
entropy function. This quantity has several nice properties.
Due to the need for spectral decompositions of all the effects,
it may be difficult to calculate. Our quantifiers of unsharpness,
apart from sharing similar properties, are easier to calculate
and directly accessible to experiments since only variancelike
quantities are involved.

Let us illustrate unsharpness through some important mea-
surements.

(1) Weak measurement. For the weak measurement E (t ) =
{E1(t ), E2(t )} on a qubit system with t ∈ (0, 1] and [48]

E1(t ) = 1 − t

2
|0〉〈0| + 1 + t

2
|1〉〈1|,

E2(t ) = 1 + t

2
|0〉〈0| + 1 − t

2
|1〉〈1|,

straightforward calculation yields

F(E (t )) = 1 − t2

4

(
1 −1
−1 1

)
.

We see that the above matrix is a decreasing (in the sense
of matrix order) function of the parameter t ∈ (0, 1], which
captures the strength of the measurement. This is consistent
with our physical intuition: The smaller t is, the farther away
E (t ) is from a Lüders measurement, and the larger the un-
sharpness is. In particular, for t = 1, the measurement is a
Lüders measurement and the unsharpness vanishes. Moreover,

f (E (t )) = ‖F(E (t ))‖1 = 1 − t2.

(2) Equiangular POVM. An equiangular tight frame with
n elements is a set {|ψi〉 : i = 1, 2, . . . , n} of n pure states
(unit vectors) in a d-dimensional Hilbert space satisfying
|〈ψi|ψ j〉|2 = a for i �= j and

∑
i |ψi〉〈ψi| = b1 for some

constants a � 0, b > 0 [49–53]. Such a structure can be con-
sidered as equidistant points in a complex projective space. It
is known that if such a frame exists, then

d � n � d2, a = n − d

d (n − 1)
, b = n

d
.

However, it may happen that equiangular tight frames with n
elements fail to exist for certain n ∈ [d, d2]. For instance, if
d = 3, then there is no equiangular tight frame for n = 5, 8
[52].

Any equiangular tight frame {|ψi〉 : i = 1, 2, . . . , n} in-
duces naturally a measurement E = {Ei : i = 1, 2, . . . , n},
with

Ei = d

n
|ψi〉〈ψi|.

In this case, E = {Ei : i = 1, 2, . . . , n} is actually a homoge-
nous rank-one POVM. We will call it an equiangular POVM
(EA-POVM). In particular, when n = d2, an EA-POVM is
a symmetric, informationally complete measurement (SIC-
POVM) [54–59]. In some sense, EA-POVMs are natural
generalizations of von Neumann measurements.

From the definition of an equiangular tight frame, we read-
ily obtain that

F(E ) = n − d

n2
1 − n − d

n2(n − 1)

⎛
⎜⎜⎝

0 1 · · · 1
1 0 · · · 1
...

...
. . . 1

1 1 · · · 0

⎞
⎟⎟⎠,

where 1 is the identity matrix of order n. Consequently,

f (E ) = ‖F(E )‖1 = 2

(
1 − d

n

)
.

In particular, for n = d, we have f (E ) = 0, which corre-
sponds to von Neumann measurements, and for n = d2, we
have

f (E ) = 2

(
1 − 1

d

)
,

which is the unsharpness of SIC-POVMs.

IV. CHARACTERIZING EA-POVM VIA MINIMAL
UNSHARPNESS

Since, for general n, the existence of an EA-POVM with n
effects is still an open issue, in this section, we only consider
the case when an EA-POVM E = {Ei : i = 1, 2, . . . , n} with
n effects Ei exists. Such a measurement is highly symmetric
in the sense that both tr(Ei ) and tr(EiEj ) (for i �= j) are con-
stants. In fact,

tr(Ei ) = d

n
, tr(EiEj ) = n − d

d (n − 1)
, i �= j.

Due to their symmetry, one may expect that EA-POVMs have
certain extreme properties. Indeed, we have the following
result.

Proposition 3. EA-POVMs achieve the minimal value of
unsharpness in the sense that for any homogenous POVM E,

it holds that

‖F(EEA)‖ � ‖F(E )‖, (13)

where EEA denotes any EA-POVM with the same number of
effects as that in E, and ‖ · ‖ is any unitarily invariant norm of
matrices.

To establish the above result, we invoke the theory of ma-
jorization [45,46,60]. Let EEA = {EEA

i : i = 1, 2, . . . , n} have
n effects, and for any real vector x = (x1, x2, . . . , xn) ∈ Rn, let
x↓ = (x↓

1 , x↓
2 , . . . , x↓

n ) be the vector obtained by rearranging
x in a nonincreasing order. Recall that the vector x weakly
majorizes another vector y, denoted by x �w y, means that
[60]

j∑
i=1

x↓
i �

j∑
i=1

y↓
i , j = 1, 2, . . . , n.

If, furthermore,
∑n

i=1 x↓
i = ∑n

i=1 y↓
i , then one says that x ma-

jorizes y, denoted by x � y. Heuristically, if x � y, then the
vector y is “flatter” (more “chaotic,” more “spread out,” and
more “uniform”) than x.

Let λ(X ) and s(X ) denote the eigenvalue spectrum and
singular value spectrum of a matrix X , respectively, arranged
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as vectors in Rn. By the properties of the EA-POVM EEA =
{EEA

i : i = 1, 2, . . . , n}, we get the matrix entries

[F(EEA)]i j =
{ n−d

n2 , i = j
− n−d

n2(n−1) , i �= j.

Consequently, the matrix F(EEA) has the spectrum

λ[F(EEA)] = n − d

n(n − 1)
(1, 1, · · · , 1, 0) ∈ Rn.

In particular,

tr[F(EEA)] = (n − 1)
n − d

n(n − 1)
= 1 − d

n
.

For any homogenous POVM E = {Ei : i = 1, 2, . . . , n}
with n effects, let ρi = nEi/d; then ρi � 0 and, from tr(Ei ) =
d/n (homogeneity), we know that tr(ρi ) = 1, which implies
that tr(ρ2

i ) � 1. Consequently,

tr[F(E )] = 1 − 1

d

n∑
i=1

tr(E2
i ) = 1 − 1

d

(
d

n

)2 n∑
i=1

tr(ρ2
i )

� 1 − 1

d

(
d

n

)2

n = 1 − d

n
= tr[F(EEA)]. (14)

Therefore,

λ[F(E )] � tr[F(E )]

n − 1
(1, 1, · · · , 1, 0)

�w
tr[F(EEA)]

n − 1
(1, 1, · · · , 1, 0)

= λ[F(EEA)].

Here, the above “�” follows from the fact that F(E ) always
has a zero eigenvalue with eigenvector (1, 1, . . . , 1) ∈ Rn

since

∑
j

[F(E )]i j = 1

d

[
tr(Ei) −

∑
j

tr(EiEj )

]
= 0, ∀ j.

The above “�w” follows from inequality (14). Because the
real matrix F(·) is non-negative definite, we have λ[F(·)] =
s[F(·)]. Consequently, the above weak majorization relation
is just s[F(E )] �w s[F(EEA)]. Since any unitarily invariant
norm is monotone with respect to the partial order induced
by weak majorization of the vectors of singular values of the
matrices [45], the desired Eq. (13) follows.

V. DISCUSSION

Given the increasing interest and usage of general mea-
surements described by POVMs in both foundational and
experimental aspects of quantum mechanics, in particular in
quantum information science, it is desirable to characterize
how a POVM deviates from a traditional Lüders measure-
ment. While the latter is usually referred to as sharp, the
former is termed unsharp (fuzzy) if it is not a Lüders mea-
surement. Thus a natural question arises as to how to quantify
the degree of unsharpness of a POVM. Following previous

studies in Refs. [14,30–37], we have explored this issue in
terms of the uncertainty of random variables and quantum
observables induced by a POVM. We have quantified the
unsharpness of a discrete POVM (measurement) at two levels:
matrix level and numerical level. Unitarily invariant norms
and majorization are exploited to produce various quantities
of unsharpness. Our quantifiers of unsharpness are intrinsic
quantities depending only on the original POVM in a rather
simple way. They are easy to compute since they involve only
pairwise overlaps between the effects in the POVM. Further-
more, a characterization of equiangular POVMs as extreme
measurements in terms of unsharpness is naturally obtained.

It remains to investigate the theoretical implications and
experimental applications of unsharpness in characterizing the
structure of POVMs. In particular, classifying and ordering
POVMs according to certain measures of unsharpness may be
useful in revealing information-theoretic aspects of quantum
measurements.

We have not addressed the issue of the operational meaning
of the quantifiers of unsharpness, which is an important prob-
lem under further investigation. Since these quantifiers are all
expressed as the difference of the variance of the observables
derived from POVMs, some hints of operational significance
may be read from that of the variance. Of course, it is more
relevant to reveal their operational meaning in quantum foun-
dations and quantum information tasks.

It is well known that by the celebrated Naimark dilation
[61–63], any POVM can be dilated to a Lüder measurement
in a higher-dimensional ambient system. Consequently, the
relation between dilation and unsharpness is of basic impor-
tance for further investigations. Some studies of applications
of Naimark dilation in characterizing and quantifying entan-
glement are presented in Refs. [64,65].

We have worked only in finite-dimensional systems and
discrete POVMs. The most general setup of measurements
in quantum theory is formulated in terms of operations and
instruments [13,14,18], which is playing an increasingly im-
portant role in the foundational studies of quantum theory. It is
desirable to extend the results to infinite-dimensional quantum
systems, such as continuous systems in quantum optics. It
seems this is highly nontrivial. We note that a fundamental
difference between finite dimensions and infinite dimensions
is that the maximally mixed states (proportional to the identity
operators) only exist in finite dimensions, while our present
approach to get a quantifier independent of the states relies
on the existence of the maximally mixed states. This shows
that a naive and direct generalization from finite dimensions to
infinite dimensions is impossible, but new methods and ideas
are required.
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