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What compels quantum measurement to violate the Bell inequalities? Suppose that regardless of measurement,
one can assign to a spin- 1

2 particle (qubit) a definite value of spin, called c-valued spin variable, but it may
take any continuous real number. Suppose further that measurement maps the c-valued spin variable from
the continuous range of possible values onto the binary standard quantum spin values ±1 while preserving
the bipartite correlation. Here, we show that such c-valued spin variables can indeed be constructed. In this
model, one may therefore argue that it is the requirement of conservation of correlation which compels quantum
measurement to violate the Bell inequalities when the prepared state is entangled. We then discuss a statistical
game which captures the model of measurement, wherein two parties are asked to independently map a specific
ensemble of pairs of real numbers onto pairs of binary numbers ±1, under the requirement that the correlation
is preserved. The conservation of correlation forces the game to respect the Bell theorem, which implies that
there is a class of games no classical (i.e., local and deterministic) strategy can ever win. On the other hand, a
quantum strategy with an access to an ensemble of entangled spin- 1

2 particles and circuits for local quantum spin
measurement can be used to win the game.

DOI: 10.1103/PhysRevA.104.052226

I. INTRODUCTION

Bell showed in 1964 [1] that certain correlations be-
tween the outcomes of two spacelike separated quantum
measurements over entangled states violate his eponymous
inequalities. Any model that reproduces the quantum corre-
lation must therefore give up at least one of the plausible
premises based on which the Bell inequalities are derived:
predetermination or realism, locality, and free choice or no su-
perdeterminism [1,2]. See Ref. [3] for other possible premises
and the different combination of the premises underlying the
Bell inequalities. Hitherto, there is no general consensus as to
the precise implication of the above Bell theorem concerning
the nature of physical realities and/or the structure of cau-
sation underlying the microscopic phenomena [4–21]. The
alternative possible explanations of the violation of the Bell
inequalities arguably cannot be separated from the different
resolutions of the long-standing measurement problem which
is central in the debate about the meaning of quantum me-
chanics [22]. For example, Bohmian mechanics [23], which
resolves the measurement problem by introducing a hidden
variable determining the measurement outcomes, must have a
gross nonlocality to comply with the Bell theorem. By con-
trast, Copenhagen interpretation rejects the presence of such
variables and argues that the violation of Bell inequalities does
not imply nonlocality [24,25].

But what compels measurement to violate the Bell inequal-
ities? Are there some profound principles that measurement
must obey so that it is willing to give up plausible and intuitive
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concepts such as locality [23], determinism [24,25], and/or
free choice [26,27]? In an attempt to better understand this
question, let us first suppose that, regardless of measurement,
one can assign to a spin- 1

2 particle (or, a generic qubit) a
definite (i.e., determinate) value of spin, called c-valued spin
variable. Moreover, let us assume that the c-valued spin vari-
able may take on any continuous real number prior to the
measurement, and the spin measurement maps it onto the
standard binary quantum spin values ±1. While measurement
in general changes the c-valued spin variable, it is natural to
require that measurement preserves the statistical correlation
between the c-valued spin variables of two particles. Can real
c-valued spin variables be constructed which meet the above
conditions for measurement? A positive answer is given in the
present work.

In the above model of measurement, we may therefore
argue that it is the requirement of conservation of correlation
which compels the violation of Bell inequalities for entangled
state with bizarre possible implications, in a similar fashion
that assuming the constancy of speed of light for all inertial
coordinate systems implies counterintuitive observable effects
such as time dilation. To make the idea more transparent,
we then construct a game of spacelike joint mappings as
follows. Suppose that Alice and Bob, isolated from one an-
other, are given a pair of real numbers, one pair at a time,
sampled from a specific distribution associated with a vec-
tor in four-dimensional complex Hilbert space. We ask them
to independently map the pair of real numbers onto a pair
of binary numbers ±1, with a constraint that their outputs
must preserve the statistical correlation of the inputs. Is there
a classical (i.e., local and deterministic) joint strategy for
Alice and Bob to always win the game? We show that the
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requirement of conservation of correlation forces Alice and
Bob’s joint strategy to comply with the Bell theorem. This
implies that for certain initial correlations associated with
nonfactorizable vector in the Hilbert space, Alice and Bob
will never win the game using any classical joint strategy, i.e.,
their mappings will violate the conservation of correlation.
They can instead win the game by running a quantum strat-
egy using an ensemble of entangled pair of spin- 1

2 particles
(qubits) and quantum circuits for local measurement of spin
observables.

II. REAL C-VALUED SPIN VARIABLES AND
CONSERVATION OF BIPARTITE CORRELATION IN

MEASUREMENT

In this article, for our purpose, we only consider systems
of two spin- 1

2 particles (or, a pair of arbitrary physical qubits),
referred to as particle 1 and particle 2. First, we choose a set
of basis vectors {|η12〉} of the four-dimensional Hilbert space,
so that

∑
η12

|η12〉 〈η12| = Î12, where Î12 is the 4 × 4 identity
matrix. We refer to such a complete set of basis vectors as the
reference coordinate basis, and assume that it is factorizable,
i.e., {|η12〉} = {|η1〉 |η2〉}, where {|ημ〉} is the complete basis
of the Hilbert space associated with particle μ, μ = 1, 2.
Then, regardless of any measurement, given a preparation
represented by a pure quantum state |ψ12〉 of the two particles,
the “c-valued spin variable” assigned to particle μ along a
direction represented by a unit vector �nμ in three-dimensional
space, within the reference basis {|η12〉} with 〈η12|ψ12〉 �= 0,
is defined as follows:

s̃�nμ
(η12, ξ |ψ12)

.= Re

{ 〈η12|σ̂�nμ
|ψ12〉

〈η12|ψ12〉
}

+ ξ

h̄
Im

{ 〈η12|σ̂�nμ
|ψ12〉

〈η12|ψ12〉
}
.

(1)

Here, σ̂�nμ

.= �nμ · �̂σ , where �̂σ = (σ̂x, σ̂y, σ̂z ) is the vector of the
Pauli operators, and ξ is a real-valued global-nonseparable
variable. σ̂�nμ

in the numerator is the shorthand for σ̂�nμ
⊗ Îν ,

μ �= ν, μ, ν = 1, 2, where Îν is the 2 × 2 identity matrix of
the Hilbert space of the particle ν.

We further assume that the probability distribution for the
coordinate value η12 follows the Born’s rule, i.e.,

Pr(η12|ψ12) = | 〈η12|ψ12〉 |2. (2)

Moreover, ξ is assumed to fluctuate randomly on a micro-
scopic timescale independent of the prepared quantum state
|ψ12〉, the spin observable σ̂�nμ

, and the reference basis {|η12〉},
with its first two moments are given by

ξ
.=

∑
ξ

ξχ (ξ ) = 0, ξ 2 = h̄2, (3)

where χ (ξ ) is the probability distribution of ξ , and the sum-
mation is replaced by a suitable integration for a continuous
ξ . The ensemble average of any function f (s̃�n1 , s̃�n2 ) of two
c-valued spin variables for a given preparation |ψ12〉 is then

defined as in the conventional probability theory:
〈
f
(
s̃�n1 (η12, ξ |ψ12), s̃�n2 (η12, ξ |ψ12)

)〉
.=

∑
η12

∑
ξ

f
(
s̃�n1 , s̃�n2

)
χ (ξ )Pr(η12|ψ12). (4)

The above definition of c-valued spin variables can be
extended to general quantum observables acting on general
quantum states [28]. It was initially conceived for phase-
space variables to study a specific epistemic (i.e., statistical)
restriction underlying the incompatibility between quantum
observables for position and momentum [29,30]. We note that
the two terms on the right-hand side of Eq. (1) can be op-
erationally interpreted respectively as the real and imaginary
parts of weak value obtained in weak measurement with posts-
election [31–34]. They can also be interpreted respectively as
the optimal estimate of the left-hand side and the associated
estimation error [35–40]. However, in this work, we are not
concerned with such operational interpretations. Rather, the
c-valued spin variable is defined independently of any kind of
measurement. Hence, unlike the weak value and the scheme
of optimal estimation above, in this article, the reference basis
is fixed once and for all; i.e., it cannot be varied freely by the
experimenter.

Notice first that, unlike the standard quantum spin val-
ues, given |ψ12〉, {|η12〉}, and ξ , the c-valued spin variable
s̃�nμ

(η12, ξ |ψ12) defined in Eq. (1) for any direction �nμ has
always definite value. Moreover, s̃�nμ

(η12, ξ |ψ12) may take
on continuum real numbers depending on the continuous
parametrization of |ψ12〉 and �nμ associated with the spin
observable σ̂�nμ

, as expected for variables in classical me-
chanics; see an example below. Next, the value assignment
of s̃�nμ

(η12, ξ |ψ12) of particle μ depends in general on the
global prepared quantum state |ψ12〉 of the two particles. In
the specific case when the prepared quantum state is factor-
izable, i.e., |ψ12〉 = |ψ1〉 |ψ2〉, where |ψ1〉 and |ψ2〉 are the
quantum states associated with the independent preparation
of the particle 1 and particle 2, respectively, then, noting that
〈η12|σ̂�nμ |ψ12〉

〈η12|ψ12〉 = 〈ημ|σ̂�nμ |ψμ〉
〈ημ|ψμ〉 , μ = 1, 2, one has

s̃�nμ
(η12, ξ |ψ12) = Re

{ 〈ημ|σ̂�nμ
|ψμ〉

〈ημ|ψμ〉
}

+ ξ

h̄
Im

{ 〈ημ|σ̂�nμ
|ψμ〉

〈ημ|ψμ〉
}

= s̃�nμ
(ημ, ξ |ψμ); (5)

namely, given the value of ξ , the c-valued spin variable asso-
ciated with particle μ is independent of that associated with
particle ν, μ �= ν. However, even when the two particles are
independently prepared, the c-valued spins associated with
the two particles, i.e., s̃�n1 (η1, ξ |ψ1) and s̃�n2 (η2, ξ |ψ2), are in
general instantaneously connected via the global variable ξ

regardless of their spatial distance. There is an exception.
When |ψμ〉 in Eq. (5) is given by one of the eigenstates of
σ̂�nμ

, which is just the case after the measurement of σ̂�nμ
, the

second term on the right-hand side vanishes. Moreover, the
first term is exactly equal to the eigenvalue o�nμ

of σ̂�nμ
so

that we have s̃�nμ
= o�nμ

= ±1 independent of ξ . Hence, in
this specific case, the two c-valued spins associated with two
independently prepared particles are fully independent of each
other, given by the standard quantum spin values.
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Next, although the c-valued spin variables are always
determinate in the absence of measurement, they satisfy a
complementarity principle, in the following sense. Consider
two spin operators σ̂�nμ

and σ̂�n′
μ

associated with particle μ, so
that [σ̂�nμ

, σ̂�n′
μ
] �= 0, μ = 1, 2. Then, for any preparation |ψ12〉,

the associated c-valued spin variables, i.e., s̃�nμ
(η12, ξ |ψ12)

and s̃�n′
μ
(η12, ξ |ψ12), cannot simultaneously equal to ±1 in-

dependent of ξ [28]. For example, if for a given |ψ12〉 we
have s̃�nμ

(η12, ξ |ψ12) = ±1 independent of ξ , which is the
case when |ψ12〉 is the eigenstate of σ̂�nμ

, then we must
have s̃�n′

μ
(η12, ξ |ψ12) �= ±1 fluctuating randomly with ξ and

vice versa. This captures the quantum complementarity be-
tween σ̂�nμ

and σ̂�n′
μ

in the Copenhagen interpretation; that
is, the two noncommuting spin operators cannot be jointly
measured and thus assigned ±1 values simultaneously. In-
deed, like the standard quantum spin values, the variances
of the c-valued spin variables defined in Eq. (1) satisfy the
Heisenberg-Kennard-Robertson-Schrödinger uncertainty re-
lation [28].

The above observation shows that the c-valued spin vari-
ables defined in Eq. (1) share many qualitative features of
the standard quantum spin values. Moreover, while the exact
value of the c-valued spin variable depends on the choice of
reference basis, its qualitative features do not. This suggests
that the c-valued spin variables can be seen as a natural exten-
sion of the standard quantum spin values to the situation when
there is no measurement. Additionally, as shown below, re-
gardless of the choice of the reference basis, the local average
and bipartite correlation of the c-valued spin variables prior to
measurement are equal respectively to the local average and
bipartite correlation of the associated standard quantum spin
values obtained in measurement.

For illustration and later reference, let us first consider
the case when the prepared quantum state of the pair of the
particles is given by the singlet, i.e.,

∣∣ψS
12

〉 .= 1√
2

(|01〉 − |10〉), (6)

where {|0〉 , |1〉} are the eigenstates of σ̂z. Let us choose
the following complete set of vectors as the reference
basis: {|y+〉 |x+〉 , |y+〉 |x−〉 , |y−〉 |x+〉 , |y−〉 |x−〉}, where
|x±〉 = 1√

2
(|0〉 ± |1〉) and |y±〉 = 1√

2
(|0〉 ± i |1〉). Moreover,

without losing generality, assume that the spin operator of the
first particle lies on the xz plane with a polar angle θ1 with
respect to the positive z axis. Computing the c-valued spin
s̃�nθ1

defined in Eq. (1), one obtains

s̃�nθ1

(
y+, x+, ξ |ψS

12

) = − sin θ1 − ξ

h̄
cos θ1;

s̃�nθ1

(
y+, x−, ξ |ψS

12

) = sin θ1 + ξ

h̄
cos θ1;

s̃�nθ1

(
y−, x+, ξ |ψS

12

) = − sin θ1 + ξ

h̄
cos θ1;

s̃�nθ1

(
y−, x−, ξ |ψS

12

) = sin θ1 − ξ

h̄
cos θ1. (7)

Hence, it varies continuously with the direction of the spin
observable parameterized by θ1, as classical angular momen-
tum. Let us proceed to consider the case when �n1 = �n = �n2,
i.e., the spin observables of the two particles are pointing

along the same direction. Then, noting that (σ̂�n1 ⊗ Î2) |ψS
12〉 =

−(Î1 ⊗ σ̂�n2 ) |ψS
12〉, and inserting into Eq. (1), we have

s̃�n1

(
η12, ξ

∣∣ψS
12

) = −s̃�n2

(
η12, ξ

∣∣ψS
12

)
; (8)

i.e., they are always perfectly anticorrelated like the associated
standard quantum spin values. Hence, the conservation of spin
angular momentum for singlet holds even in the absence of
measurement, as expected in classical mechanics.

Now, consider the case when �n1 and �n2 are coplanar lying
on the xz plane tilted from the positive z axis with polar angles
respectively given by θ1 and θ2. Computing the correlation
between the c-valued spins s̃�nθ1

and s̃�nθ2
associated with the

singlet state, one recovers, using Eqs. (7) and noting (8),
the correlation between the associated standard quantum spin
values for the singlet state:〈

s̃�nθ1

(
η12, ξ

∣∣ψS
12

)
s̃�nθ2

(
η12, ξ

∣∣ψS
12

)〉
.=

∑
η12

∑
ξ

s̃�n1

(
η12, ξ

∣∣ψS
12

)
s̃�n2

(
η12, ξ

∣∣ψS
12

)

× χ (ξ )Pr(η12|ψ12)

= − sin θ1 sin θ2 − cos θ1 cos θ2 = − cos(θ2 − θ1)

= 〈
ψS

12

∣∣(σ̂�nθ1
⊗ σ̂�nθ2

)∣∣ψS
12

〉
, (9)

where we have used Eq. (3), and note that Pr(±y,±x|ψS
12) =

| 〈±y,±x|ψS
12〉 |2 = 1/4.

Indeed, the above result applies to general cases as stated
by the following theorem.

Theorem 1. The statistical correlation between two contin-
uum c-valued spins s̃�n1 and s̃�n2 along any pair of directions
(�n1, �n2) within any reference basis {|η12〉} for arbitrary pre-
pared quantum state |ψ12〉 is equal to the correlation between
the binary standard quantum spin values obtained from the
measurement of the quantum spin observables (σ̂�n1 ⊗ σ̂�n2 )
over |ψ12〉, i.e.,

〈s̃�n1 (η12, ξ |ψ12)s̃�n2 (η12, ξ |ψ12)〉 = 〈ψ12|σ̂�n1 ⊗ σ̂�n2 |ψ12〉 .(10)

This theorem is a special case of a theorem pre-
sented in the previous work [28]. Moreover, taking
σ̂ν = Îν and noting that Ĩν (η12, ξ |ψ12) = 1, we have
〈s̃�nμ

(η12, ξ |ψ12)〉 = 〈ψ12|σ̂�nμ
⊗ Îν |ψ12〉 = Trμ{σ̂�nμ

	̂μ}, where
	̂μ = Trν{|ψ12〉 〈ψ12|}, ν �= μ, i.e., the local ensemble average
of the c-valued spin variable for any |ψ12〉 is also equal to the
local quantum expectation value.

We note that, crucially, to arrive at the equality of Eq. (10)
for entangled prepared quantum state, ξ must be indeed
global nonseparable. Such a global-nonseparable variable ξ

presumes a preferred spacetime reference frame violating the
Lorentz invariance underlying the theory of relativity. Next,
at first sight, due to the nonseparability of ξ which connects
instantaneously the two c-valued spins, the model apparently
will not be able to reconstruct the quantum correlation when
the two particles are independently prepared so that the as-
sociated quantum state is factorizable, i.e., |ψ12〉 = |ψ1〉 |ψ2〉.
Remarkably, however, this is not the case since Theorem 1
applies for general quantum states, factorizable or not. Finally,
note that Eq. (10) still applies if we replace the c-valued
spin variables on the left-hand side with the associated weak
value of spin [41,42]. However, such weak values may take
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non-real values when |ψ12〉 is entangled (one can show that
when |ψ12〉 is factorizable, the real part of the weak values are
sufficient to reconstruct the quantum correlation). In contrast
to this, the c-valued spin variables defined in Eq. (1), which
are always real, allow for the reconstruction of the quantum
spins correlation for arbitrary quantum states at the cost of
introducing the global-nonseparable variable ξ .

Now, according to the standard quantum mechanics, the
measurement of σ̂�nμ

inevitably projects the prepared quan-

tum state |ψ12〉 randomly onto one of the eigenstates |φ�nμ

12 〉
of σ̂�nμ

, i.e., |ψ12〉 	→ |φ�nμ

12 〉, with the measurement outcomes
given by the associated eigenvalues o�nμ

= ±1. Moreover,
recall that evaluating the associated c-valued spin vari-
able defined in Eq. (1) for these postmeasurement quantum
states |φ�nμ

12 〉, we regain the standard quantum spin values,

i.e., s̃�nμ
(η12, ξ |φ�nμ

12 ) = o�nμ
= ±1. This observation suggests a

model for the quantum spin measurement wherein it maps the
c-valued spin variables from the continuous range of possible
real values prior to measurement, onto the binary values ±1,
i.e.,

R � s̃�nμ
(η12, ξ |ψ12) 	→ s̃�nμ

(
η12, ξ

∣∣φ�nμ

12

) ∈ {−1, 1}, (11)

while preserving the bipartite correlation as per Theorem 1.
Hence, we have upgraded the conservation of bipartite cor-
relation as a principle which governs the measurement. In
such a model, the restriction imposed by the violation of Bell
inequalities to the statistics of the measurement outcomes ±1
for entangled state, thus arises from, and is compelled by, the
requirement of conservation of correlation in measurement.

A few remarks are in order. First, let us emphasize that it
is the statistical correlation that is preserved by the measure-
ment, not the value assignment of the c-valued spin variables.
We have thus relaxed the requirement for measurement in
classical mechanics; i.e., rather than revealing the values of
the variables prior to measurement, it is only required to reveal
the bipartite correlation (and also the local average) prior to
measurement. Hence, the measurement-induced disturbance
must comply with the principle of conservation of bipartite
correlation. Next, when the prepared state is entangled, one
finds that there is a nonlocal dependence of the value as-
signment of the c-valued spin variable of one particle on the
spin measurement of the other (possibly arbitrarily remote)
particle. For example, when the prepared state is a singlet, a
spin measurement along the direction �n2 = �n of particle 2 with
the outcome +1(−1), will need to be accompanied by the
mapping of s̃�n1 (η12, ξ |ψS

12) assigned to the particle 1, where
�n1 = �n, from its value prior to measurement given e.g. by
Eq. (7), onto binary standard quantum spin values −1(+1).
However, since the statistics of the standard quantum spin val-
ues follows the Born’s rule, such a nonlocal value assignment
cannot be used for signaling.

Hence, we have assumed that quantum bipartite correla-
tion exists prior to measurement in terms of the correlation
between the real c-valued spin variables. Remarkably, the
c-valued spin variables can be constructed operationally via
weak measurement with postselection and a classical post-
processing involving ξ . This correlation between the real
c-valued spin variables already cannot be explained locally in

terms of the correlation between classical variables in space-
time due to the dependence of the c-valued spin variables on
the fluctuations of the global variable ξ . Joint spin measure-
ment of the two particles preserves the correlation. Moreover,
after the measurement, the dependence of the c-valued spin
variables (now equal to the standard quantum spin values)
on the global variable ξ disappears. But, the nonclassicality
reappears in the form of a nonlocal dependence of c-valued
spin variable of one particle on the measurement of the other
remote particle.

III. A GAME OF JOINT MAPPING UNDER
CONSERVATION OF CORRELATION

Bell theorem is most eloquently described in terms of
spacelike coordination games which smartly exploit the clas-
sically counterintuitive features of quantum entanglement. For
example, in the well-known CHSH (Clauser-Horne-Shimony-
Holt) game [2,43], Alice and Bob, spatially separated from
each other, are required to independently come out with a
pair of outputs based on a pair of inputs given randomly by a
referee, Charlie, so that the outputs and inputs satisfy a simple
arithmetic relation:

xy = a + b (mod 2). (12)

Here, a is Alice’s output given input x, and b is Bob’s output
given input y, where (x, y, a, b) = {0, 1}. Namely, to win the
game, Alice and Bob must pop out different outputs, i.e.,
a �= b, when their inputs are x = y = 1, and pop out the same
output, i.e., a = b, when at least one of their inputs is 0.
One can show that if they only use classical (i.e., local and
deterministic) joint strategy, their winning probability is lower
than or equal to 3/4 (assuming that all the four combinations
of the inputs are equally sampled), a form of Bell inequalities.
Surprisingly, if Alice and Bob share an ensemble of entangled
qubits and have access to local spin measurement devices,
they can win the game with a larger probability, as large as
(2 + √

2)/4 [44].
While the above game and other similar games [45] strik-

ingly show that entanglement is a nonclassical resource in
certain protocols of information processing involving space-
like separated parties, the apparently mathematically simple
winning condition of Eq. (12) is difficult to fathom in physical
terms. What does the condition of Eq. (12) tell us about nature
so that it distinguishes quantum strategy from the classical
strategy? Can we develop a different game with a winning
condition that forces the violation of the Bell inequalities,
which is more transparent and physically plausible, so that it
can be upgraded as an axiom? Moreover, in the CHSH game,
quantum measurement is treated as a total black box [46,47],
so that the physical constraint which compels the measure-
ment to violate the Bell inequalities is not clear. Note that,
within this point of view, nonlocality and/or indeterminism
are not the constraints which force the measurement to violate
the Bell inequalities; rather, they are the tricks that are possi-
bly used by the measurement to satisfy the constraint. They
should not therefore be upgraded as axioms; rather they are
the implications of a deeper physical constraint. But, what is
this deep physical constraint?
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Here, with Theorem 1 in mind, we construct a different
two-party coordination game which to an extent captures the
model of measurement speculated in the last paragraphs of
the previous section, as follows. First, a referee, Charlie, and
two players, Alice and Bob, situated sufficiently far away
from each other, agree on a choice of a complex valued
vector |ψ12〉 in the computational basis. At each round of the
game, Charlie samples a pair of random variables (η12, ξ )
from the joint probability distribution Pr(η12, ξ |χ,ψ12) =
| 〈η12|ψ12〉 |2χ (ξ ). Charlie then randomly chooses a pair of
unit vectors, denoted respectively by �n1 and �n2, and uses
them to compute s̃�n1 (η12, ξ |ψ12) and s̃�n2 (η12, ξ |ψ12) using the
prescription in Eq. (1). In this way, these sets of numbers are
effectively sampled from the joint probability distribution

Pr
(
s̃�n1 , s̃�n2 , η12, ξ

∣∣�n1, �n2, ψ12
)

= δ

(
s̃�n1 ; Re

{ 〈η12|σ̂�n1 |ψ12〉
〈η12|ψ12〉

}
+ ξ

h̄
Im

{ 〈η12|σ̂�n1 |ψ12〉
〈η12|ψ12〉

})

× δ

(
s̃�n2 ; Re

{ 〈η12|σ̂�n2 |ψ12〉
〈η12|ψ12〉

}
+ ξ

h̄
Im

{ 〈η12|σ̂�n2 |ψ12〉
〈η12|ψ12〉

})

× χ (ξ )
∣∣ 〈η12|ψ12〉

∣∣2
. (13)

Here δ(k; l ) is the Kroneker delta; i.e., δ(k; l ) = 1 if k = l ,
and δ(k; l ) = 0 if k �= l .

Next, Charlie sends the triple of random variables
{η12, ξ , s̃�n1} to Alice and {η12, ξ , s̃�n2} to Bob. Given all the
above information, Alice and Bob’s joint task is to pick up
a pair of binary numbers, either 1 or −1, independently of
each other. Hence, denoting Alice’s output as a binary ran-
dom variable o�n1 and Bob’s as o�n2 , their task is essentially to
independently map the pair of real numbers (s̃�n1 , s̃�n2 ) onto a
pair of binary numbers (o�n1 , o�n2 ), i.e.,

F12[ψ12, η12, ξ ] :
(
s̃�n1 , s̃�n2

) 	→ (o�n1 , o�n2 ), (14)

where s̃�nμ
∈ R and o�nμ

∈ {+1,−1}, μ = 1, 2, and F12 de-
scribes their joint strategy. They can devise any classical
algorithm or strategy to accomplish the task and program it
to their computational devices together before they are mov-
ing separately to their laboratories. Since Alice and Bob do
the mappings independently of each other, the conditional
probability that Alice pops out o�n1 is statistically indepen-
dent of o�n2 and s̃�n2 , i.e., Pr(o�n1 |o�n2 , s̃�n1 , s̃�n2 , η12, ξ , ψ12) =
Pr(o�n1 |s̃�n1 , η12, ξ , ψ12), and likewise the conditional proba-
bility that Bob pops out o�n2 is independent of o�n1 and s̃�n1 ,
i.e., Pr(o�n2 |o�n1 , s̃�n1 , s̃�n2 , η12, ξ , ψ12) = Pr(o�n2 |s̃�n2 , η12, ξ , ψ12),
so that we have the factorizability condition:

Pr
(
o�n1 , o�n2

∣∣s̃�n1 , s̃�n2 , η12, ξ , ψ12
)

= Pr
(
o�n1

∣∣s̃�n1 , η12, ξ , ψ12
)
Pr

(
o�n2

∣∣s̃�n2 , η12, ξ , ψ12
)
. (15)

We then say they win the game if the statistical correlation
between o�n1 and o�n2 , obtained by repeating the above protocol
(in principle infinitely) many times, is equal to the initial
correlation between s̃�n1 and s̃�n2 , i.e.,∑
(η12,ξ )

∑
(s̃�n1 ,s̃�n2 )

∑
(o�n1 ,o�n2 )

o�n1 o�n2

× Pr
(
o�n1 , o�n2 |s̃�n1 , s̃�n2 , η12, ξ , ψ12

)
Pr

(
s̃�n1 ,s̃�n2 ,η12,ξ |�n1,�n2,ψ12

)
= 〈

s̃�n1 (η12, ξ |ψ12)s̃�n2 (η12, ξ |ψ12)
〉
. (16)

To summarize, what Alice and Bob have to do is to indepen-
dently map the pair of random variables (s̃�n1, s̃�n2 ), which may
take any continuous real numbers depending on the choice of
(�n1, �n2), onto binary random variables (o�n1 , o�n2 ), based on a
joint strategy, so that the resulting correlation between o�n1 and
o�n2 preserves the initial correlation between s̃�n1 and s̃�n2 .

We argue below that there is a class of games wherein no
classical joint strategy can ever win, as stated by the following
theorem.

Theorem 2. For a class of games with initial value of
correlation 〈s̃�n1 (η12, ξ |ψ12)s̃�n2 (η12, ξ |ψ12)〉 associated with a
nonfactorizable complex vector |ψ12〉, no classical (i.e., local
and deterministic) joint strategy of Alice and Bob will win the
spacelike game of joint mapping; i.e., their mappings must
violate the conservation of correlation of Eq. (16).

Proof. First, combining Eq. (16) with Eq. (10) of the The-
orem 1 and noting Eq. (15), to win the game, Alice and Bob’s
joint strategy must yield outcomes which satisfy the following
relation:
∑

(η12,ξ )

∑
(s̃�n1 ,s̃�n2 )

∑
(o�n1 ,o�n2 )

o�n1 o�n2

× Pr
(
o�n1 |s̃�n1 , η12, ξ , ψ12

)
Pr

(
o�n2 |s̃�n2 , η12, ξ , ψ12

)
× Pr

(
s̃�n1 , s̃�n2 , η12, ξ

∣∣�n1, �n2, ψ12
) = 〈ψ12|σ̂�n1 ⊗ σ̂�n2 |ψ12〉 .

(17)

Next, inserting Eq. (13) into Eq. (17), we get, after summing
over s̃�nμ

, μ = 1, 2,

∑
(η12,ξ )

∑
(o�n1 ,o�n2 )

o�n1 o�n2

× Pr
(
o�n1

∣∣�n1, η12, ξ , ψ12
)
Pr

(
o�n2 |�n2, η12, ξ , ψ12

)
× Pr

(
η12, ξ |χ,ψ12

) = 〈
ψ12

∣∣σ̂�n1 ⊗ σ̂�n2

∣∣ψ12
〉
, (18)

where we have defined the conditional probabilities as

Pr
(
o�nμ

∣∣�nμ, η12, ξ , ψ12
) .=

∑
s̃�nμ

Pr
(
o�nμ

|s̃�nμ
, η12, ξ , ψ12

)

× δ

(
s̃�nμ

; Re

{ 〈η12|σ̂�nμ
|ψ12〉

〈η12|ψ12〉
}

+ξ

h̄
Im

{ 〈η12|σ̂�nμ
|ψ12〉

〈η12|ψ12〉
})

,

(19)

μ = 1, 2. The condition for winning the game of Eq. (18)
therefore requires the two players to reconstruct the quantum
spin correlation on the right-hand side, using a local hidden
variable or local causal model given on the left-hand side.
Noting this, when |ψ12〉 is nonfactorizable, according to the
Bell’s theorem [1,2], no joint classical strategy of Alice and
Bob is able to satisfy Eq. (18). Namely, for the class of games
wherein the initial correlation between s̃�n1 and s̃�n2 is equal
to the quantum spins correlation over an entangled quantum
state |ψ12〉 (per Theorem 1), Alice and Bob’s outputs will
always violate the constraint of conservation of correlation of
Eq. (16). We note that it needs an infinite number of rounds
to be able to compute the correlation. One can, however,
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develop a winning criteria for a finite number of rounds,
by looking at the convergence rate of the finite-ensemble
correlation.

As a concrete example, we can follow the CHSH setup [2]
to run the game. Namely, at each round of the game, Charlie
chooses one pair out of four alternative pairs of unit vectors,
i.e., (�n1, �n2), (�n1, �n′

2), (�n′
1, �n2) (�n′

1, �n′
2), randomly, and uses

them to compute a pair of c-valued spin variables. Let us
denote the correlation between the outputs, e.g., o�n1 and o�n2 ,
i.e., Alice’s output when she is given s̃�n1 and Bob’s output
when he is given s̃�n2 , as C�n1�n2 . Then, assuming that the four
pairs of unit vectors are sampled equally likely, if Alice and
Bob’s joint strategy is classical, the correlation of their out-
puts must satisfy the Bell-CHSH inequality, i.e., CCHSH

12
.=

C�n1�n2 + C�n1�n′
2
+ C�n′

1�n2 − C�n′
1�n′

2
� 2. On the other hand, since

the original correlation between real-valued variables s̃�n1 and
s̃�n2 is equal to the quantum spin correlation (as per Theorem
1), when |ψ12〉 is entangled, computing the CHSH correlation
CCHSH

12 for the associated c-valued spin variables will yield
a value larger than 2 with a maximum value 2

√
2. Hence,

when the original correlation between the pair of real-valued
variables correspond to a nonfactorizable vector |ψ12〉, the
fact that these correlations violate Bell inequalities says that
no classical strategy of the joint mappings will ever win the
game.

If Alice and Bob have quantum circuits, and �n1, �n′
1, �n2, �n′

2
are coplanar so that their directions are parameterized only
by polar angles, then they can always win the game by
running the following strategy. First, they need to phys-
ically encode the complex vector |ψ12〉 which generates
the joint probability distribution of real-valued numbers of
Eq. (13), as an ensemble of entangled pairs of spin- 1

2 particles
(or entangled pair of any physical qubits) in the quantum
state |ψ12〉. Alice then stores one of the particles in the
entangled pairs to her circuit, and Bob stores the other
particles in the pairs, and they bring them to their sep-
arated laboratories. Next, Alice, upon receiving the triple
{η12, ξ , s̃�n1} from Charlie, infers �n1 using the relation of
Eq. (1). For example, in the case when |ψ12〉 is given by
the singlet of Eq. (6) with the reference basis {|η12〉} =
{|y+〉 |x+〉 , |y+〉 |x−〉 , |y−〉 |x+〉 , |y−〉 |x−〉}, the polar an-
gle θ1 of �n1 can be easily inferred from {η12, ξ , s̃�n1} using
Eq. (7). Likewise, Bob, upon receiving the triple {η12, ξ , s̃�n2}
from Charlie, infers �n2 using the relation of Eq. (1). They
then use the inferred unit vectors as the directions along
which they make local spin measurements to their respec-
tive particles. Namely, Alice makes measurement of σ̂�n1 to
her particle, and similarly Bob makes measurement of σ̂�n2 to
his particle, yielding outcomes ±1 randomly. Alice assigns
her outcomes to o�n1 , and Bob to o�n2 . In this sense, they map
(s̃�n1 , s̃�n2 ) onto (o�n1 , o�n2 ), using the entangled particles and lo-
cal spin measurement device. By construction, the correlation
between o�n1 and o�n2 is given by the quantum spin correlation
of 〈ψ12|σ̂�n1 ⊗ σ̂�n2 |ψ12〉. Theorem 1 then guarantees that this
correlation between the binary standard quantum spin values
is equal to the original correlation between the continuum
c-valued spins 〈s̃�n1 (η12, ξ |ψ12)s̃�n2 (η12, ξ |ψ12)〉. Hence, it sat-
isfies the requirement to win the game, i.e., the constraint of
conservation of correlation of Eq. (16).

It is thus clear that quantum entangled states are the
nonclassical resource to win the above statistical game of
spacelike joint mappings under correlation conservation.
What is special about the mapping generated by the local
quantum spin measurement over the entangled quantum states
so that it can be used to win the game while any classi-
cal strategy must fail? The basic assumption underlying the
classical strategy is that the joint independent mapping of
Eq. (14) can be represented by the conditional probabilities
Pr(o�nμ

|s̃�nμ
, η12, ξ , ψ12), μ = 1, 2 implying the factorizability

condition of Eq. (15). Hence, the mapping generated by the
local quantum spin measurements over the entangled states
somehow violates this plausible assumption, either by allow-
ing nonlocal influence so that the conditional probability of
o�nμ

may depend on o�nν
or s̃�nν

, ν �= μ, or the mapping is acausal
so that the above conditional probabilities simply cannot be
defined. It is intriguing to pounder how the above game of
joint mapping under conservation of correlation is related
to what is really happening in the spin measurements in a
Bell-type experiment.

Finally, we emphasize that it is the requirement of conser-
vation of correlation which forces any strategy to comply with
the Bell theorem so that it must violate the Bell inequalities
when |ψ12〉 is nonfactorizable. We further note that while the
protocol of the game of joint mapping is not as simple as
the protocol of the CHSH game discussed at the beginning of
this section, the requirement of conservation of correlation is
much easier to grasp in physical terms than the winning con-
dition of CHSH game of Eq. (12). Conservation of correlation
appeals directly to intuition, and moreover, conservation laws
have played prominent roles in the past in the construction of
physical theories.

IV. CONCLUSION

The empirical violation of Bell inequalities [48–50] im-
plies that we must give up, as measurement is concerned, at
least one of the following: realism, locality, and free choice.
This suggests that there must be a deep principle which mea-
surement cannot resist obeying so that it is willing to sacrifice
such intuitive and plausible concepts. To study this prob-
lem, we have assumed that a spin- 1

2 particle (or any generic
physical qubit) can always be assigned a definite c-valued
spin variable regardless of measurement. The c-valued spin
variable may take any continuum real number in the absence
of measurement and reduces to the binary values ±1 after
the measurement reproducing the standard value of quantum
spin. Moreover, the bipartite correlation of the c-valued spin
variables prior to measurement is always equal to the quantum
correlation obtained in quantum spin measurement. This mo-
tivates a speculation that quantum spin measurement maps the
c-valued spin variables from continuous range of possible real
number onto the binary ±1, while respecting the principle of
conservation of bipartite correlation. In such a model, it is the
plausible requirement of conservation of bipartite correlation
which compels the measurement to violate the Bell inequali-
ties when the prepared state is entangled.

We then constructed a statistical game of joint mappings
which, to an extent, captures the above model of measure-
ment. Alice and Bob, sufficiently separated from each other,
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are asked to map, independently, a pair of real numbers
sampled from a specific distribution, onto a pair of binary
numbers ±1, with the condition that the statistical correlation
is preserved. The winning condition of correlation conser-
vation forces the game to comply with the Bell theorem
which implies that, for a certain class of the games asso-
ciated with a nonfactorizable vector in Hilbert space, Alice
and Bob can never win the game using any classical (i.e.,
local and deterministic) joint strategy. They can instead easily
win the game with a quantum strategy using an ensemble of
entangled spin- 1

2 particles (qubits) and quantum circuits
for local spin measurement. The game suggests that quan-
tum protocols utilizing entanglement may exhibit quantum
advantage—by way of violating Bell inequalities—in infor-

mation processing tasks requiring conservation of bipartite
correlation.
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