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We apply the Leggett-Garg inequalities (LGIs) to the cases of classical and quantum unstable systems.
For classical systems the two assumptions of macroscopic realism and noninvasive measurements imply that
the three-measurement string K3 is identically equal to 1. Also, for quantum-mechanical systems, for which
the two assumptions are, in general, not valid, we find that K3 = 1 for purely exponential decays (K3 � 1 is the
general LGI). On the other hand, the necessary deviations from the exponential decay law at short and long times
predicted by quantum mechanics lead to values of K3 �= 1. Moreover, a strict violation K3 > 1 typically occurs at
short times. Thus, we conclude that experiments in which such deviations from the exponential decay law have
been observed should also have in their data violations of the LGIs.
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I. INTRODUCTION

Correlations between spatially separated entangled states
are at the core of quantum mechanics (QM) and are a neces-
sary consequence of the linear superposition principle. Such
quantum-mechanical correlations have no analogs in classical
physics and lead to violations of Bell’s inequalities [1,2]. In
1985, Leggett and Garg (LG) [3] derived similar inequalities
(LGIs) for the correlations of the outcomes of measure-
ments of the same observable of a system at different times.
Interestingly, those violations have been seen in different ex-
perimental setups; see the review in [4], which also includes
the case of neutrino oscillations [5].

The LGIs are based on two assumptions which definitely
hold true in classical systems: (i) macroscopic realism (MR),
according to which macroscopic properties are uniquely de-
fined, (see also [6–9]), and (ii) noninvasive measurement
(NIM), implying that a measurement does not affect in any
way the system under investigation.

A natural question that we shall address in this work con-
cerns the violation of the LGIs for unstable quantum systems.
For such systems, the so-called survival probability p(t ) is
defined as the probability that the state has not yet decayed
at time t > 0, assuming that it was prepared at t = 0 [thus,
p(0) = 1]. We recall that an actual decay implies that p(∞) =
0; that is, the Poincaré time is genuinely infinite.

Quite interestingly, the survival probability can also be
defined for strictly classical systems, such as the probability
that a mouse trap is undecayed; see Fig. 1 for a schematic
presentation. In this case, the function p(t ) depends on the
particular system under study and can have [besides the con-
straints p′(t ) < 0 and p(∞) = 0] any form. For a classic
decay both MR and NIM are clearly fulfilled, and as expected,
no violation of the LGI takes place, regardless of the particular
classic decay function p(t ). In particular, we shall concentrate

on the LG correlator K3, which in general fulfills the LGI
−3 � K3 � 1. In the case of classic decays, as we will show,
it turns out that K3 = 1; thus, the LGI reduces to a LG equality
in this special case.

Concerning quantum decays, the survival probability p(t )
is usually very well approximated by an exponential func-
tion [10,11], but it is well established that the exponential
behavior is never exact [12]. In particular, the deviations are
enhanced at short and long times (see also the experimental
confirmations in Refs. [13–16]).

At short times, the decay law can usually be described
by a quadratic function, p(t ) � 1 − t2/τ 2

Z , where τZ is the
Zeno time. As a consequence, the so-called quantum Zeno
effect (QZE), which is the freezing of the decay by subsequent
repeated measurements at sufficiently small time intervals, is
possible [17,18]. Note that the QZE was originally verified
as a slowing down of certain transitions in systems involving
Rabi oscillations between energy levels [19–21], but it was
later verified for an actual quantum decay in Ref. [14]. A
related phenomenon is the inverse Zeno effect (IZE): this is an
increase in the decay rate that may take place in certain sys-
tems when an appropriate time interval between subsequent
measurements is chosen. As argued in Refs. [22,23] the IZE
might be as relevant as the QZE (see also the theoretical works
in Refs. [24–27], as well as the experimental verification
in [14]).

In this paper we show, via the correlator K3 mentioned
above, that the LGIs are violated for quantum decays. In
particular, such violations are enhanced when short times are
involved, thus when the QZE and/or the IZE are also possible.
Only in the (unphysical) limit in which the decay is exactly

exponential at all times are the LGIs not violated, and they
reduce to the LG equality K3 = 1, which holds for classical
decays.
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FIG. 1. A classical decay via a mouse trap. Top: a trap is placed
at the initial time t = 0, and the mouse notices it; the trap is un-
decayed (U). Middle: at a certain time 0 < t0 < ∞ the mouse very
rapidly snaps the cheese; the traps decays at this time. Bottom: the
trap is decayed (D) for any time t > t0.

Once it has been verified that the LGIs are violated for
quantum systems, the natural question is the origin of such
deviations. Namely, in QM the collapse of the wave function
necessarily implies a strong violation of the NIM. Moreover,
the MR is also violated since any quantum decay implies
a superposition of decayed and undecayed components, the
“quantum version” of the mouse trap mentioned above, due
to the linearity of QM, just as Schrödinger’s cat enters in a
corresponding superposition of sprung and not sprung. Yet as
we shall discuss later, the breaking of the NIM (and not of
MR) is at the core of the violation of the LGI inequalities for
quantum decays.

This paper is organized as follows: in Sec. II we present
the derivation of the LGIs for classical and quantum unstable
systems; in Sec. III we present some numerical examples
that make use of a toy model as well modeling of quantum
tunneling as realized in experiments. Finally, in Sec. IV, we
present our conclusions.

II. LEGGETT-GARG INEQUALITIES FOR
UNSTABLE SYSTEMS

The starting point of the LGIs is the n-measurement
LG string Kn, which is built from the two-time correlation

functions Ci j , which read

Ci j =
∑
Qi,Qj

QiQjPi j (Qi, Qj ), (1)

where Qi (Qj ) represents the outcome of a measurement at
time ti (t j ) with t j > ti, which we set to 1 if the system is
found to be still undecayed (or “alive”) and −1 if it is found
to be decayed (or “dead”). The quantity P(Qi, Qj ) is the joint
probability associated with the four possible events Qi = ±1
and Qj = ±1. For instance, Pi j (1, 1) is the joint probability
that after the first and second measurements the system has
been found to be undecayed (with similar notation for the
other three joint probabilities). Thus, in the study of (both
classic and quantum) decays the correlation quantity Ci j takes
the explicit form

Ci j = Pi j (1, 1) + Pi j (−1,−1) − Pi j (1,−1) − Pi j (−1, 1).

In the following, we shall concentrate our discussion on the
LG string K3, given by [4]

K3 = C12 + C23 − C13, (2)

which is constrained to fulfill the LGIs:

−3 � K3 � 1. (3)

A. Classical case

Let us discuss now how to compute the correlation function
for a “classical unstable system,” namely, a system and a mea-
surement of it that obey the MR and the NIM assumptions.
Within this context, it is easy to realize that Pi j (−1, 1) = 0
since, if the system is decayed at ti, it cannot be alive at t j .
This holds true in all cases (classical or quantum) in which
the measurements are sequential since the second choice of
the measurement does not influence the first outcome.

Then, we can set Pi j (−1,−1) equal to Pi(−1), which is the
probability that the system has decayed at time ti. Namely, if
the system decayed at ti, then it is surely still decayed at t j >

ti, and thus, the joint probability corresponds to the single-
measurement probability.

Alternatively, one can write

Pi j (−1, 1) + Pi j (−1,−1) = Pi(−1), (4)

which corresponds to summing over the two possible states at
t = t j , and since Pi j (−1, 1) = 0, one obtains

Pi j (−1,−1) = Pi(−1). (5)

Notice that this is strictly true under the MR hypothesis since
the state of the particle is decayed or undecayed regardless of
the measurement. Similarly,

Pi, j (1, 1) = Pj (1), (6)

which is a direct consequence of the NIM hypothesis. In fact,
it corresponds to the assumption that the mouse is not affected
by the measurement that has occurred at ti < t j . We will see
that in the quantum case this joint probability is different since
the NIM is not fulfilled.

The joint probability Pi j (1,−1) can be obtained with
the normalization

∑
Qi,Qj

Pi j (Qi, Qj ) = 1; thus, Pi j (1,−1) =
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TABLE I. Probabilities of two measurements at ti and t j (U =
undecayed, D = decayed).

Sequence Classic (MR+NIM) QM (collapse)

Pi j (1, 1) ≡ UU p(t j ) p(ti )p(t j − ti )
Pi j (1, −1) ≡ UD p(ti ) − p(t j ) p(ti )[1 − p(t j − ti )]
Pi j (−1, 1) ≡ DU 0 0
Pi j (−1, −1) ≡ DD 1 − p(ti ) 1 − p(ti )
Sum 1 1

1 − Pj (1) − Pi(−1). Finally, from Pi(1) + Pi(−1) = 1 it fol-
lows that

Ci j = 1 + 2Pj (1) − 2Pi(1). (7)

It is also useful to reexpress Eq. (7) by introducing the clas-
sic survival probability p(t ) that the system has not decayed
at time t . One has

Pj (1) = p(t j ), Pj (−1) = 1 − p(t j ), (8)

out of which the quantity Ci j takes the form

Ci j = 1 + 2p(t j ) − 2p(ti ). (9)

The summary of all classic probabilities is displayed in Ta-
ble I, where a comparison with the QM case (which will be
discussed later) can be found.

Out of Eq. (2) we obtain, via a straightforward calculation,

K3 = 1, (10)

which holds for each classical unstable system. This is a quite
remarkable result since it does not even depend on the specific
functional form of the classical decay law p(t ), which could
very well be different from an exponential.

The classical decay can be explained with a simple exam-
ple. Following a certain established tradition for QM-related
topics, we pick an animal, a mouse. In a given room adja-
cent to the mouse’s lair, an old-fashioned mouse trap with
cheese is placed at t = 0. The mouse is associated with a
certain probability p(t ) that it has not yet come in contact
with the trap. Of course, p(t ) is a given function related to
the complicated and stochastic algorithm of the mouse’s brain
and is not known a priori. We simply assume that p(t ) tends
to zero for large times; hence, at a certain (unknown) time
the mouse will steal the cheese; see Fig. 1 for a pictorial
representation of the mouse-trap sequence. Note that in the
spirit of the time and according to the animal-friendly attitude
of the authors, we assume that our mouse—even if it is only
imaginary—is not injured in the process: it takes the cheese
and runs away, content. Yet through the mouse’s actions the
trap is sprung. The observer (within this saga an unpleasant
old-fashioned farmer dealing with old mouse traps) opens the
room at times ti > 0 and t j > ti to see whether the mouse was
there: the farmer checks whether the trap is still undecayed
(U) or decayed (D) at both times and studies the correlation
Ci j . Clearly, if the trap has sprung at ti, it is also sprung at
t j : this is sequence DD. In contrast, if it is not sprung at t j , it
was not sprung also at ti (sequence UU). Since DU is zero,
the last sequence is UD: the trap is intact at ti but sprung
at t j . The probability of UD is calculated as the probability

that the system decays between ti and t j . By denoting with
h(t ) = −p′(t ) the probability density of decaying at time t ,
UD is given by ∫ t j

ti

h(t )dt = p(ti ) − p(t j ). (11)

Summarizing (see also Table I),

Ci j = UU + DD − UD

= p(t j ) + [1 − p(ti )] − [p(ti ) − p(t j )], (12)

in agreement with Eq. (7), out of which K3 is easily evaluated
to be 1, independent of the mouse function p(t ).

B. Quantum systems

Let us now discuss the case of an unstable quantum sys-
tem. Both MR and NIM are violated; thus, the system is, if
not observed, in a superposition of undecayed and decayed
configurations (no MR); moreover, the act of observing or
measuring the system perturbs its decay law by resetting the
clock (no NIM).

However, even if MR cannot be assumed to hold, each
measurement generates a collapse of the system into either
decayed or not decayed. In this respect, the collapse is equiv-
alent to MR since it is not possible, within the present setup,
to distinguish MR from the collapse. Note that the collapse is
intended here as an effective phenomenon whose deep under-
standing has still not been achieved (it is not clear whether it is
a physical collapse or not, e.g., Ref. [28]). However, as matter
of fact, for each observer the outcome of the measurement
is univocal, either decayed or not, and this is enough for the
following discussion. In other words, in the study of decays
we need to work with the decayed-undecayed basis, and we
cannot rotate to another basis to test the QM superposition.

Next, we turn to the evaluation of the three joint probabil-
ities [Pi j (−1, 1) = 0 as before, since if the system decayed
at t = ti, it cannot be alive at t = t j > ti]. It is useful to
introduce the conditional probability P( jQ j |iQi), which is the
probability of obtaining Qj provided that at ti the system had
a value Qi. Through the conditional probability one can write
Pi j (1, 1) = P( j1|i1)Pi(1). Now, if the system was alive at ti,
the probability that it is still alive at t j is p(t j − ti ) since the
system collapses onto the undecayed state after the first mea-
surement. This is the crucial difference between the classical
and quantum cases: the measurement “resets” the clock to the
initial time; this process is a clear violation of NIM [29]. The
same features of QM are at the origin of the QZE and IZE. We
can thus write

Pi j (1, 1) = p(ti )p(t j − ti ). (13)

Let us compare this expression with the same joint proba-
bility in the classical case, which was previously derived as
Pi j (1, 1) = Pj (1) = p(t j ). That result can be reobtained by
considering that in the classical case (MR and NIM hold true)
the conditional probability P( j1|i1) = Pj (1)/Pi(1) since the
condition that the system is undecayed at ti is necessary for it
to be undecayed at t j (namely, the set of cases in which the
system is undecayed at t j is a subset of the set of cases in
which the system is undecayed at ti). Note that the quantum-
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mechanical P( j1|i1) = p(t j − ti ) reduces to the classical one
in the case of a purely exponential decay law.

Next, similar to the classical case, Pi j (−1,−1) =
Pi(−1) = 1 − p(ti ). As before Pi j (1,−1) can be determined
by the normalization condition, and finally, the quantum two-
time correlation function reads

Cq
i j = 1 + 2p(ti )p(t j − ti ) − 2p(ti ), (14)

which should be compared with Eqs. (7) and (9). If the decay
law of a quantum-mechanical unstable system were purely
exponential, p(t ) = e−γ t , then one would obtain a result in
agreement with Eq. (9). We summarize the quantum results
and compare them to the classical outcomes in Table I.

In QM, the quantity K3 takes the form

K3 ≡ K3(t1, t2, t3) = 1 + 2p(t1)[p(t2 − t1) − p(t3 − t1)]

+ 2p(t2)p(t3 − t2) − 2p(t2). (15)

A specific choice, which will be useful later, is obtained by
setting t1 = 0:

K3(0, t2, t3) = 1 + 2[p(t2) − p(t3)]

+ 2p(t2)p(t3 − t2) − 2p(t2). (16)

For p(t ) = e−γ t one gets K3(t1, t2, t3) = 1. This is consistent
with the fact that the exponential decay carries no memory.
Yet, as discussed in the Introduction, the actual QM decay
law is never exactly exponential, even if the exponential law
can be a very good approximation. For a general discussion,
let us consider the following simplified schematic form for
p(t ) [16,30]:

p(t ) �

⎧⎪⎨
⎪⎩

1 − t2

τ 2
Z

for small t,

Ze−γ t for intermediate t,

kt−α for large t,

(17)

where τZ (Zeno time), Z , and k are appropriate factors whose
numerical values depend on the specific system under study.

The short-time deviations, which were already discussed
in the Introduction, allow for QZE. At intermediate times,
the behavior is exponential, but a constant Z different from
1 enters into the expression. It can be either larger or smaller
than 1, depending on the particular quantum decay. Indeed,
Z > 1 implies QZE, and Z < 1 is a manifestation of IZE. (In
fact, within the exponential regime, a single measurement at T
gives the survival probability Ze−γ T , while two measurements
at T/2 and T correspond to Z2e−γ T ; thus, one has QZE for
Z > 1 and IZE for Z < 1.) At long times, as shown already
in the seminal paper in Ref. [31], the function p(t ) shows a
power-law behavior, the reason for which is the necessary ex-
istence of a ground state: the decay law at large t is determined
by the behavior of the spectral function at energies close to the
ground-state energy. Typically, the power-law behavior occurs
after many lifetimes, on the order of 10 (see Ref. [15], where
such a challenging measurement was performed).

If we choose all three times, t1, t2, t3, within the intermedi-
ate “exponential” region, we find

K3 ≡ K3(t1, t2, t3) � 1 + 2Z (Z − 1)e−γ t2 �= 1, (18)

which depends only on the intermediate times t2. It implies
that K3 > 1 when Z > 1 and vice versa. Anyway, in both cases

one obtains a result different from the classic LG result K3 =
1. The classic result is obtained only for large enough t2 (but
still within the exponential interval).

If, instead, we choose t1 = 0 and t2 and t3 within the expo-
nential domain, we get a quite analogous result:

K3 ≡ K3(0, t2, t3) � 1 + 2Z (Z − 1)e−γ t3 , (19)

where, in this case, the final time t3 enters into the expression.
Before showing in the next section some numerical results

for some specific models, we briefly discuss the origin of the
LGI violations: while a quantum decay violates both the MR
and the NIM, only the latter is relevant for the LGI violation.
This feature is already clear from our discussion above about
the for all practical purposes equivalence between the classic
MR and the collapse in QM. In addition, it can also be under-
stood through the following arguments:

(i) In the purely exponential limit, the quantum decay does
not break the LGIs. In this particular case, there is no dif-
ference between an invasive measurement and a noninvasive
measurement (see Table I): the NIM de facto applies (even
if a collapse takes place when a measurement is performed
but the reset of the clock is invisible in the exponential limit).
However, the quantum state (also known as the quantum
version of the mouse trap) is in a superposition of decayed
and undecayed and thus breaks MR. The nonviolation of the
LGIs in this case implies that the violation of MR alone is not
sufficient.

(ii) Conversely, let us consider the classical example of the
mouse trap in which, however, the mouse is affected by the
observer checking the status of the trap at a given time. For
instance, the mouse may reset its own internal clock when
someone opens the room by looking at the trap. Then, it is
clear that the NIM is broken in this classical example, but
MR is not since the trap is always in one unique state, either
decayed or not. The resulting equations are the same as in
the quantum case described above, and the LGIs are violated.
Thus, this example shows that the violation of MR is also not
necessary for violating LGIs.

Both arguments (i) and (ii) show that the NIM alone is
responsible for the breaking of the LGIs in the case under
study. The important aspect is that in QM the NIM is never
fulfilled (apart from the limiting case of an exponential), while
in a classical system this can be, in principle, always realized
(in a classical world, we can always find a way to check
whether the trap is sprung or not without the mouse noticing
it).

III. NUMERICAL EXAMPLES ON NONEXPONENTIAL
DECAY LAWS

In this section we describe some specific numerical exam-
ples. Let us first introduce a toy decay law which features both
the short- and long-time deviations from the exponential:

p(t ) = 1

2

(
e−γ t2

t+1 + 1

1 + tα

)
. (20)

The corresponding temporal behavior is shown in Fig. 2 (red
solid line) for γ = 1 and α = 2. To compare it with the expo-
nential decay law, we have fitted p(t ) with an exponential and
found an effective lifetime τ (that we use as the unit of time).
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FIG. 2. The three different nonexponential functions used for
p(t ). The red solid line corresponds to Eq. (20), the blue dotted line
corresponds to Eq. (21) (the one reported in Ref. [13]), and the green
line in the inset corresponds to Eq. (22) (see Ref. [15]). The dashed
line is the exponential function.

Next, let us consider a more realistic, and hence interesting,
decay law which has been found in the experimental setup of
cold atoms devised in Refs. [13,14]. In particular, we make
use of the analytical approximation of the tunneling process
used in those works:

ln[p(t )] = −
∫ t

0
dτ (t − τ )W (τ ),

W (τ ) = a2

2V0

∫ ∞

−∞
ds

1

1 + (s − aτ/V0)2

1

1 + s2

× cos

(
V 2

0

a

∫ s

s−aτ/V0

√
1 + z2dz

)
. (21)

This p(t ) depends on two parameters, the acceleration of the
trap a and the potential well depth V0. To show a numerical
example we fix V0 = 100 kHz/h and a = 4200 m s−2, and
the time dependence of the survival probability is shown in

FIG. 3. K3 as a function of t2 with t3 = 2t2 for the three different
p(t ). The solid red lines refer to t1 = 0 (thick) and t1 = τ (thin) for
p(t ) from Eq. (20). The dotted blue lines refer to t1 = 0 (thick) and
t1 = τ (thin) for p(t ) From Eq. (21). The green lines in the inset
show the difference K3 − 1 (magnified by a factor of 106) for the
long-time-deviation case of Eq. (22) for t1 = 0 (solid line) and t1 = τ

(dashed line).

Fig. 2 (blue dotted line). The clearly visible deviations from
the exponential at short times are in agreement with the exper-
imental findings of Refs. [13,14].

For completeness, we also consider example long-time de-
viations from the exponential. We use the results of Ref. [15]
for the decays of molecules of polyfluorene (τ = 0.35 ns,
power-law index α = −2.26, and turnover time τ turnover =
11.1τ ), whose survival probability can be modeled as

p(t ) =
{

e−t/τ for t � τ turnover,

ktα for t > τ turnover,
(22)

where k is a normalization constant. (Note that in comparison
with Eq. (17) we neglect the initial quadratic time and set

0

90%M

90%m

50%m

50%M

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 4. Top: Contours of K3 − 1 for t1 = 0.1τ for p(t ) from
Eq. (9). The dots correspond to the maximum (M = 0.28 for this
example, black) and the minimum [m = −0.08 for this example, red
(gray)]. The green line delimits the region of the plane for which
t3 > t2. The LGI is violated, and oscillations around zero are visible.
Bottom: 3D plot of K3 − 1 [blue (dark gray) surface] corresponding
to the top panel. In green (light gray), the plane K3 − 1 = 0.
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Z = 1.) The deviations from the classical result are displayed
in the inset of Fig. 2 (green line).

It is interesting to observe that, in principle, the QZE or IZE
is also possible for measurements performed at very long time
intervals that range into the power-law behavior. However,
one would need to detect the same unstable system at least
twice and find it undecayed in both cases. This is a quite
improbable event that would require a very large statistic that
is not reachable at present.

In Fig. 3 we show K3 as a function of t2 for t1 = 0, τ and
for t3 = 2t2. In all three cases deviations from the classical
limit K3 = 1 are found: the deviations are only from above
for the first example of p(t ), from above and below in the
case of the p(t ) of Ref. [13], and only from below for the
case of long-time deviations. Strictly speaking, the general
LGI K3 � 1 is violated by the first and second p(t ), but all
of them violate the LG equality K3 = 1 that holds for classic
decays. The magnitudes of the departures from K3 = 1 are
quite different: they amount to 10% or more for [13], while
they are very small, on the order of 10−5, for the case of the
long-time deviations of Ref. [15]. Moreover, we observe that
the violations are of the order of a few percent even in the case
in which t1 ∼ τ (see Fig. 3). This property may be interesting
for investigating nonexponential decays and QZE and IZE and
also when studying other unstable systems.

For instance, as computed in Ref. [32] for the electromag-
netic transition of the hydrogen atoms, τZ ∼ 10−15 s, while
τ ∼ 10−9 s; thus, a direct experimental detection of QZE and
IZE would be very challenging. On the other hand, our re-
sults suggest that the correlation functions built for testing the
LGIs could show sizable and potentially detectable deviations
from the classical or exponential case. A viable possibil-
ity would also be to investigate the functions K3(t1, t2, t3)
and K3(0, t2, t3), which are different from unity even when
the times belong to the exponential domain [see Eqs. (18)
and (19), respectively]. The study of the correlator K3 allows
us to investigate at the same time the deviations from the

exponential decay as well as QZE and IZE. Moreover, it does
so by using only two or three intermediate measurements,
which can be a simplification in actual future realizations.

As a final example, we also display the contour plots of
K3(0.1τ, t2, t3) − 1 for the survival probability function in
Eq. (21) with t1 = 0.1τ as well as the corresponding three-
dimensional (3D) plot (see Fig. 4). In this way the landscape
of departures from K3 = 1 is visible.

IV. CONCLUSIONS

In this work, we have studied the LGIs for classic and
quantum decays by focusing on the three-time correlator K3.
The latter equals unity for any classic decay. In the quantum
case, it is unity only in the (unphysical) limit in which the
decay law is purely exponential but is different as soon as
deviations are taken into account. Since the quantum decay
law is never purely exponential and displays deviations at
short and long times, K3 �= 1. Interestingly, such violations are
enhanced at short times and are connected to the QZE and IZE
but are also present at long times.

We have provided numerical examples of such violations
of the LGIs also by using data from decays already measured
in experiments aiming at testing the short- and long-time
behaviors of the quantum decay law. The study presented in
this work offers an additional tool to test the nonexponential
behavior of the quantum decay law by measuring correlation
functions. In particular, detecting such violations could be eas-
ier than detecting the QZE and IZE within the initial quadratic
regime since the departures from K3 = 1 may last longer.

In the future, the study of LGIs can be applied to various
systems, such as the one described in Ref. [16]. Moreover,
due to the ability to model potentials, it can be applied to
novel tunneling experiments. Another interesting extension
concerns the case of multiple decays [33–35], in which more
than a single decay channel is considered.
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