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Modern experiments using nanoscale devices come ever closer to bridging the divide between the quantum
and classical realms, bringing experimental tests of objective collapse theories that propose alterations to
Schrödinger’s equation within reach. Such objective collapse theories aim to explain the emergence of classical
dynamics in the thermodynamic limit and hence resolve the inconsistency that exists within the axioms of
quantum mechanics when assuming measurement can be described by quantum mechanics as well. Here, we
show that requiring the emergence of Born’s rule for relative frequencies of measurement outcomes without
imposing them as part of any axiom implies that such objective collapse theories cannot be linear. Previous
suggestions for proof of the emergence of Born’s rule in classes of problems that include linear objective collapse
theories are analyzed and shown to include hidden assumptions.
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I. INTRODUCTION

While quantum mechanics is the best-tested theory within
physics to date [1], there is a well-known inconsistency in
its axioms [2–5], known as the “measurement problem,” that
arises when one tries to describe measurement machines in
terms of quantum mechanics as well. From the moment the
framework of quantum mechanics was first formulated, this
problem has fuelled a search for the connection between
the experimentally verified probabilistic outcomes of mea-
surement and the fundamentally deterministic time evolution
prescribed by the Schrödinger equation [6–11]. This quest
for understanding how nondeterministic measurement arises
from deterministic quantum dynamics continues unabated as
an active field of research today [12–15]. Approaches to ad-
dressing the measurement problem can be divided into two
categories, either attempting to give alternative interpretations
of the mathematical structures featured in the quantum theory
or attempting to supplement or alter the laws of quantum
physics to include the emergence of measurement at macro-
scopic scales [12]. The latter are known as objective collapse
theories.

Several experimental techniques have recently been devel-
oped to explore the region between the microscopic realm
(consisting roughly of objects with fewer than 106 atoms),
where quantum dynamics has been verified to proceed accord-
ing to the Schrödinger equation to extremely high accuracy,
and the macroscopic realm (more than 1018 atoms), where
measurement devices yield probabilistic outcomes for quan-
tum measurements [12,16–24].

It is in this unexplored mesoscopic region, intermedi-
ate between microscopic and macroscopic superpositions,
that objective collapse theories predict the quantum-classical
crossover to take place [9,11,13] and yield observable
differences in their physical predictions from interpretation-
based approaches. The direct observation of the mesoscopic
realm thus necessitates a theoretical exploration of both the

dynamics predicted by different classes of objective collapse
theories and the postulates underlying their predictions in this
regime. Like the bounds imposed by experimental observa-
tion, consistency requirements on the theoretical postulates
and dynamics may then be used to classify and constrain
objective collapse theories.

In this article, we classify objective collapse theories ac-
cording to the requirement that relative frequencies associated
with measurement outcomes, known as Born’s rule, emerge
without imposing them as part of any axiom [25–27]. We
show that imposing this physical constraint rules out theories
for quantum measurement based on either linear or unitary
generators of time evolution. This argument is separate from
known necessity for nonlinearity in obtaining stable, fully
collapsed states as measurement outcomes [12], which can
be relaxed by allowing so-called “fuzzy collapse” [28]. It
is also different from the nonlinearity that may result from
time-dependent normalization of the wave function, which
can be removed from any objective collapse theory by simply
redefining the definition of the expectation value. The non-
linearity we do address in the current manuscript is shown
to be indispensable even when allowing for fuzzy collapse
and cannot be removed. In particular, we study the dynamics
of mesoscopic two-state systems imposed by a generic time
evolution operator and determine its late-time behavior. De-
manding that individual solutions should be stable and that
collectively they obey Born’s rule leads to a set of constraints
that cannot be satisfied in any linear or unitary theories. We
also formulate a minimal nonlinear objective collapse model
for the two-state system that does reproduce Born’s rule with-
out assuming it at any point.

II. COLLAPSE REQUIREMENTS

Regardless of interpretation, the measurement of a quan-
tum state is commonly accepted to be separable into two
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stages [3,29,30]. In the first instance, a microscopic object
is entangled with a measurement machine. For a two-state
superposition, this can be written as

(α|0〉+ β|1〉) ⊗ |Minit〉 → α|0〉 ⊗ |M0〉+ β|1〉 ⊗ |M1〉. (1)

Here, the states |0〉 and |1〉 are two distinct quantum states
of the microscopic object, while |Minit〉 is the initial state of
the measurement machine and |M0〉 and |M1〉 are states of
the measurement machine that have a macroscopic object (the
“pointer”) indicating measurement outcomes 0 and 1, respec-
tively. That is, the states |M0〉 and |M1〉 form the “pointer
basis.” This initial stage of the measurement process can be
realized using unitary quantum dynamics according to the
Schrödinger equation and may for the sake of simplicity be
assumed to be infinitely fast [31]. Notice that, contrary to
standard nomenclature for example in the quantum informa-
tion literature, we refer to the combination of the microscopic
object and measurement machine as “the system,” such that
“the system size” is determined primarily by that of the mea-
surement device.

All interpretations and objective collapse theories agree
up to this point in the measurement process [3]. What they
disagree on is how, given the state in Eq. (1), an observer
registers one, and only one, outcome on the measurement
machine.

So-called interpretations of quantum mechanics posit that
the entangled state of Eq. (1) lives on forever and that the rea-
son why observers only see one outcome lies in the physical
interpretation of what the entangled wave function represents.
These include the splitting of realities [6], the separation of
the wave function into a physical state and pilot waves [7],
and others [12].

Objective collapse theories, on the other hand, intro-
duce a dynamical process that reduces the entangled state
of Eq. (1) to just one randomly selected pointer state in
each measurement, indicating only one of the possible mea-
surement outcomes. These theories necessarily involve an
addition to or modification of the Schrödinger equation. This
modification has to be nonlinear for stable reduction to ex-
actly a pointer state [12]. Allowing for “fuzzy” end states,
however, this particular requirement for nonlinear dynam-
ics disappears [14,28]. This is the approach we consider
here, and the nonlinearity discussed below is required even
for fuzzy collapse. Well-known examples of objective col-
lapse theories include continuous spontaneous localization
(CSL) theories [9,32], the Ghirardi-Rimini-Weber (GRW)
model [10], and mechanisms related to the influence of gravity
on quantum dynamics [11,13,33]. In all of these objective
collapse theories, the dynamics involved in the second stage
of measurement takes a finite, nonzero time to complete, and
this collapse time depends on the size, the mass, or some other
property of the measurement machine. This way, microscopic
objects are guaranteed to be impervious to the modifications
imposed on the Schrödinger equations for any measurable
time, while the dynamics of macroscopic pointers will be so
dominated by its effect that collapse occurs almost instanta-
neously [12].

Mesoscopic experiments currently being devel-
oped [17,19,21–24] may probe the dynamics of objects
that are heavy or large enough to feel modifications to

the Schrödinger equation, but light or small enough for
the ensuing dynamics to take a measurably long time
to complete. They include, for example, a mirror in an
optical interferometer [16], a low temperature mechanical
resonator [20], or massive objects in space [34].

All these experiments directly target the transition between
quantum and classical physics by investigating whether the
dynamics starting from the state in Eq. (1) deviates from that
predicted by the Schrödinger equation. Since alternative inter-
pretations of quantum mechanics adhere to the Schrödinger
equation at all scales, they predict these types of experiments
to yield no result. In the remainder of this article, we will
therefore focus exclusively on objective collapse theories and
the measurable dynamical processes predicted by them.

In the limit of the measurement machine being very heavy
or large, all objective collapse theories must reproduce our
everyday experience of quantum measurement. This implies
that these theories possess at least the following three charac-
teristics.

(1) Preferred basis: an initial superposition such as that
of Eq. (1) is dynamically reduced to a single state within a
pointer basis.

(2) Stability: a macroscopic measurement machine in a
single pointer state should not spontaneously evolve out of
that state at any observable timescale.

(3) Born’s rule: the relative frequency with which a particu-
lar measurement outcome results from the process of quantum
measurement should equal the squared weight of the corre-
sponding pointer state in the initial superposition.

The first characteristic formalizes the observation that
macroscopic measurement machines indicate only a single
measurement outcome after each experiment, while the sec-
ond prevents the registered outcome of a measurement from
changing after the measurement process has been completed.
The final characteristic is commonly known as Born’s rule
and has been experimentally verified for macroscopic mea-
surement machines to great accuracy [35,36]. Notice that its
formulation here assumes the initial superposition to be nor-
malized.

Since the aim of objective collapse theories is to provide
a complete description of the measurement process, all three
characteristics should emerge from the state evolution during
measurement. That is, one should be able to derive them from
the predicted collapse dynamics itself even if one does not
know about their existence beforehand [37]. In some theories
for quantum measurement, the characteristic that they give
rise to Born’s rule is built into the theory as an axiomatic
assumption governing either additions to the Schrödinger
equation [9,10] or the initial state of the universe [7]. Other
theories, however, have been suggested to give rise to Born’s
rule without assuming it in any way [14,37,38].

In particular, a rigorous way of constructing objective col-
lapse theories that are guaranteed not to assume or depend
on Born’s rule would be to only consider alterations to the
Schrödinger equation that add linear operators to its time evo-
lution generator (however, as we will show below, this turns
out to be impossible). The elements of linear operators in any
matrix representation are independent of the wave function
that the operator acts on and can therefore not contain any
information related to Born’s rule. Moreover, they typically
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fall into a class of theories which have been suggested to
necessarily give rise to the emergence of Born’s rule [37,39].
The arguments underlying this suggestion depend only on
the structure of entanglement between a quantum state and
its environment and are independent of the precise dynamics
during measurement. They were introduced in the context
of decoherence [37] and have been applied in several well-
known approaches to the quantum measurement problem that
relies on decoherence for establishing a pointer basis and
Born’s rule [38,40–43].

III. DYNAMICS ON THE BLOCH SPHERE

It has been shown that quantum dynamics is unstable
against non-Hermitian perturbations [14], in the sense that
even infinitely weak non-Hermitian additions to Schrödinger’s
equation will always have an instantaneous and qualitative
effect on the dynamics of macroscopic collections of quantum
particles. This is directly analogous to the usual description of
equilibrium spontaneous symmetry breaking, in which even
an infinitesimal (Hermitian) perturbation to the Hamiltonian
qualitatively affects the collective properties of macroscopic
quantum systems. The macroscopic properties are described
by the order parameter of the system and, just as in equi-
librium symmetry breaking, also dynamical instabilities of
Schrödinger’s equation emerge whenever a (non-Hermitian)
symmetry breaking field couples to an order parameter [14].
In this work, we therefore only consider superpositions over
states that differ in their value of the order parameter and
keep all other, internal degrees of freedom implicit. We stress
that, for any objective collapse theory to be viable, it has
to at least be able to describe the measurement dynamics of
a superposition over two states with different values of the
order parameter. The superposition of Eq. (1), with the states
|M1,2〉 interpreted as pointer states differing only in the order
parameter (such as their center of mass positions), is thus
a minimal example for an initial state whose reduction to a
single pointer state any successful objective collapse theory
must be able to describe.

Focusing on that simplest possible situation, we will
consider the time evolution of a general two-state system
parametrized on the Bloch sphere:

|ψ0〉 = n eiχ
[
ei φ

2 cos (θ/2)|0〉 + e−i φ

2 sin (θ/2)|1〉]. (2)

Here, the states |0〉 and |1〉 represent the products of micro-
scopic and pointer states in Eq. (1). Since the dynamics during
measurement is dominated by the dynamics of the measure-
ment machine, one can equivalently think of the states |0〉 and
|1〉 as just the pointer states of the measurement device itself.
The amplitudes of the coefficients are determined by the angle
θ ∈ [0, π ], while their relative phase is given by φ ∈ [0, 2π ].
The norm n and overall phase χ are shown in Appendix A
to not influence the time dependence of the amplitudes and
relative phase, even for general (not necessarily unitary) time
evolution operators. The relative weights and phases of the
two states in the superposition can thus be represented by a
point on the Bloch sphere.

The evolution of the wave function can be visualized on
the Bloch sphere by flow lines. Under unitary time evolution,
generated by the usual quantum mechanical time evolution

FIG. 1. Unitary evolution on the Bloch sphere. Each point on the
Bloch sphere represents a different state with angles θ and φ. The
flow lines indicate Rabi oscillations generated by a Hamiltonian pro-
portional to the Pauli matrix σ̂y. Different lines represent oscillations
with different initial values for θ and φ.

operator e−iĤdt/h̄ with Ĥ the Hamiltonian, the flow on the
Bloch sphere is conservative and consists of closed cycles
known as Rabi oscillations, as shown in Fig. 1. More gen-
erally, we can describe time evolution in any linear theory for
two-state systems as being generated by the operator e−iĜdt ,
with Ĝ a general 2 × 2 matrix. As long as the generator of
time evolution is unitary (but not necessarily linear), the flow
on the Bloch sphere is conservative and the flow lines are all
closed loops. That is, each initial state will undergo indefinite
periodic time evolution.

An objective collapse theory, on the other hand, should
cause an initial state of the form of Eq. (2) to eventually
end up in either one of the pointer states (characteristic 1).
Moreover, upon reaching a pointer state, the system should
cease to evolve (characteristic 2). On the Bloch sphere, this
means that the state needs to end up at either the north or
south pole and that the pole towards which it evolves needs
to be a stable end point of the evolution. Stable end points of
flow lines are either attractive fixed points or limit cycles, but,
as limit cycles are inherently nonlinear, we consider only fixed
points here [44].

Different measurements starting from the same initial state
should evolve to state |0〉 with probability cos2(θ/2) and to
state |1〉 with probability sin2(θ/2) (characteristic 3). The flow
lines on the Bloch sphere can therefore not be fixed entirely
by just the initial state. Rather, for any given initial state, there
must be a set of possible evolutions, one of which is randomly
selected for each measurement. We take an agnostic approach
to the physics or degrees of freedom that control the random
selection and introduce a single (nonlocal) random variable
λ that determines the particular set of flow lines selected in
any individual measurement. Born’s rule then emerges if the
relative frequency with which flow lines terminating at a par-
ticular pointer state are selected equals its squared weight in
the initial superposition. Notice that the distribution of values
that λ can take must be independent of the (initial) state of
the system being measured, to avoid introducing Born’s rule
in the definition of the time evolution generator.
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IV. STABLE COLLAPSE TO A POINTER STATE

The general time evolution generated by e−iĜdt , with Ĝ a
linear operator, can be represented in terms of a 2 × 2 matrix
with eight real parameters:

Ĝ = (|0〉 |1〉)

(
αr + iαi βr + iβi

γr + iγi δr + iδi

)(〈0|
〈1|

)
. (3)

The generator Ĝ can be written as the sum of a Hermitian
and an anti-Hermitian contribution. We assume the anti-
Hermitian part to couple to an order parameter [14], which
is always an extensive quantity. The coupling strength for
the anti-Hermitian part can thus be written as εN , with N
proportional to the system size and ε a coupling constant.
Depending on the value of the energy scale εN governing
the strength of the anti-Hermitian part, the time evolution of
microscopic systems (with N small) will be practically unaf-
fected by it on any observable time scale, while the dynamics
of macroscopic systems (N large) are instantly dominated by
the anti-Hermitian contribution [10,11,14,32,33].

For Ĝ to give rise to measurement dynamics, resulting
in a stable final state at either the north or south pole of
the Bloch sphere, the flow lines it generates must have an
attractive fixed point on at least one of the poles. These flow
lines can be found explicitly by constructing the time deriva-
tives of the parameters in the state of Eq. (2), as shown in
Appendix A. To find possible fixed points of the flow, how-
ever, it is more instructive to directly consider the equation
∂t |ψ (t )〉 = −iĜ|ψ (t )〉. Since Ĝ is a linear operator working
within the two-state Hilbert space spanned by |0〉 and |1〉, it
will have two eigenstates, and the general solution of the time
evolution equation can be written as [44]

|ψ (t )〉 = e−iλ1tC1|ψ1〉 + e−iλ2tC2|ψ2〉. (4)

Here, |ψ1,2〉 are the eigenstates of Ĝ and λ1,2 the corre-
sponding eigenvalues. The coefficients are given by Cj =
〈ψ j |ψ (0)〉. For the moment, we assumed that the generator
Ĝ does not depend on time.

From Eq. (4) it is immediately clear that, if both eigenval-
ues are real, the dynamics does not have any fixed points. This
corresponds to the case of a purely Hermitian Ĝ and unitary
time evolution. If either one or both of the eigenvalues have
an imaginary component, however, the relative weight of one
of the eigenstates will grow exponentially with time. Notice
that, in this process, the total norm of the wave function is
not conserved. This is consistent with the fact that we do
not a priori interpret the squared norm as a probability for
finding particular measurement outcomes. Rather, if at late
times the state of the measurement machine is guaranteed
to always consist of only a single pointer state (either |ψ1〉
or |ψ2〉), that state can be taken to be the outcome of the
measurement process, regardless of its norm. In that case,
Born’s rule is equivalent to writing the expectation value for a
physical quantity O as

Ō = 〈ψ |Ô|ψ〉
〈ψ |ψ〉 . (5)

Here, Ō is the expectation value of the observable represented
by the (Hermitian) operator Ô. This redefinition of the axiom

FIG. 2. Schematic representation of the flow generated by a
purely diagonal non-Hermitian generator of time evolution. The state
|0〉 is an attractive fixed point of the flow, while |1〉 is a repulsive fixed
point.

relating physically observed expectation values to a mathe-
matical property of operators and states does not affect any of
the predictions of standard, unitary quantum mechanics, but
removes the necessity of introducing nonlinear normalization
in the dynamics of any objective collapse theory.

Because Ĝ acts within a two-state Hilbert space, Eq. (4) in
general has two fixed points. The absence of limit cycles for
linear flow then guarantees that one will be a source of flow
lines and the other a sink [44], as shown in Fig. 2. The only
two exceptions possible are purely unitary quantum dynamics,
in which the fixed points become centers of rotation, and the
exceptional situation in which the two fixed points coalesce
into a single half-attractive, half-repulsive point. Even this
latter case, however, still has all flow lines terminating in the
single fixed point.

The first characteristic of measurement dynamics, that an
initial superposition of pointer states should evolve to just a
single pointer state, is satisfied if the attractive fixed point
created by Ĝ is a pointer state. In fact, there is a separation of
time scales between the dynamics induced by the Hermitian
and anti-Hermitian parts of Ĝ when acting on macroscopic
objects [9–11,13,14]. Therefore, only the attractive fixed point
of the anti-Hermitian part by itself needs to be a pointer state.

The off-diagonal Hermitian terms neglected here may shift
the fixed points of the evolution away from the poles of the
Bloch sphere. Since the poles represent pointer states of a
symmetry breaking system, however, there will not be any
off-diagonal terms scaling with system size and the shift of
the pole is negligible in the thermodynamic limit. The diag-
onal Hermitian terms, in the meantime, only add a spiralling
motion around the Bloch sphere (akin to Rabi oscillations) to
the collapse dynamics and do not influence the fixed points.
Neither type of Hermitian term thus changes the qualitative
behavior of the collapse process.

For our present model, this implies that the two pointer
states |0〉 and |1〉 should be the two orthogonal eigenstates
of the anti-Hermitian part of Ĝ. That is, the anti-Hermitian
part is diagonal, so that βr = γr and βi = −γi. The state |0〉 is
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then an attractive fixed point of the nonunitary flow if αi > δi

and |1〉 is attractive for αi < δi. The second characteristic, that
the final states in the evolution are stable, is automatically
satisfied as long as Ĝ is time independent, since no flow lines
escape from the attractive fixed point (see Fig. 2).

V. BORN’S RULE

For objective collapse to satisfy the third characteristic
of measurement dynamics, that it yields Born’s rule, it must
necessarily contain a stochastic component. This can be intro-
duced into the description in terms of a general generator Ĝ
by having its components depend on one or more parameters
that are randomly drawn from a given probability distribu-
tion. These parameters could have a physical interpretation
in, for example, the existence of some fundamental field
beyond quantum mechanics that fluctuates in time and influ-
ences the dynamics of measurement machines [14]. Within
the evolution generated by Ĝ, the random parameters will
then determine which of the pointer states correspond to an
attractive fixed point of the dynamics.

For macroscopic measurement machines, Ĝ is expected to
generate collapse dynamics that is almost instantaneous. The
randomly fluctuating field will then be effectively static within
the time it takes for the collapse to complete and only a single
value for each random parameter needs to be considered for
any individual measurement process. Depending on how the
random parameters influence the sign of αi − δi, either the
state |0〉 or the state |1〉 is then selected to be the sole attractive
fixed point of the flow on the Bloch sphere. That pointer
state thus becomes the measurement outcome regardless of
any property of the initial state. In particular, this means the
measurement outcomes cannot adhere to Born’s rule, which
prescribes a distribution of outcomes that depends on the state
being measured.

The selection of which pointer state is the attractive fixed
point cannot depend on the initial state, since a linear operator
Ĝ is by definition independent of the state it acts on. This
implies in particular that also the distribution of random vari-
ables appearing in a linear generator does not depend on the
state it acts on.

Relaxing the constraint on the random variables and con-
sidering objective collapse dynamics for which Ĝ is nonlinear
only through the distribution of its stochastic components is
possible [9,10]. However, Born’s rule then typically does not
emerge from the dynamics, but is rather hard wired into the
dependence of random variables on the state to be measured.
The axiom of expectation values adhering to Born’s rule is
then replaced by the axiom of random variables adhering
to a distribution that results in Born’s rule. Here, we avoid
such axioms altogether and instead focus on linear stochastic
processes only. As noted before, however, the linearity of Ĝ
and its independence of the initial state imply that it cannot
generate nearly instantaneous collapse dynamics consistent
with the emergence of Born’s rule.

That leaves the possibility of the random parameters fluc-
tuating faster than the typical time it takes for measurement
to complete. This is especially relevant for practical measure-
ment machines, which may be large compared to the quantum
particles whose properties they measure, but which are never-

theless finite in size and mass. The short but finite time scale
associated with that large size may well be longer than the
typical time it takes for a randomly fluctuating parameter to
significantly change its value.

In terms of the two-state evolution induced by Ĝ, evolving
values for the random parameters should cause the sign of
αi − δi to randomly change in time. This could in principle
yield probabilities for measurement outcomes that depend on
the initial state, since not all points on the Bloch sphere travel
equally far to the attractive fixed point within the time that
the random variable has an approximately fixed value. The
fluctuating dynamics, however, pose a different problem, as
fluctuations of the fixed points from being attractive to repul-
sive and back again causes the evolution to lose its stable end
points.

That a fixed point cannot be reached even in the infinite
time limit is clear from the fact that, for every value αi − δi =
a, there is the value −a with precisely reversed flow lines.
Both values must occur with equal likelihood owing to the
fact that the random parameters cannot have any preference
for either of the two possible outcomes. For any initial state,
the likelihood of a random variable occurring that causes a
flow towards one pole of the Bloch sphere is therefore equal
to the likelihood of flowing towards the other.

A. Fuzzy collapse

A possible way around the lack of precise stable end states
could be the concept of fuzzy collapse [28]. That is, the speed
of flow across the Bloch sphere might in principle be such
that, once a state is within some cutoff δθ of the poles, it
takes a time longer than any realistic time scale (e.g., longer
than the current age of the universe) for the state to leave that
region. We can then effectively consider the evolution as being
stopped when the fuzzy region surrounding any pole has been
reached, making it possible to assign a definite measurement
outcome to all states within the fuzzy region surrounding the
poles rather than just the poles themselves.

To calculate the probability of reaching θ = δθ before
reaching θ = π − δθ , we can map the evolution on the Bloch
sphere onto a one-dimensional random walk. Each evolution
line in the flow diagram can be mapped onto a straight one-
dimensional line. Depending on the sign of αi − δi the state
will move either up or down the line. The size of the step
taken along the line in a given time interval is determined
by the values of the parameters in Ĝ. The average step size
going up, however, must be equal to the average step size
going down from any given state, owing to the fact that the
distribution of random values may not imply a preference for
either of the pointer states. Assuming that many steps are
necessary to reach the fuzzy collapse region and thus taking
the limit of infinitesimal step size then yields the probability
of reaching one particular end point without having reached
the other before [45,46]:

P(θ0 → 0 + δθ ) = 1

2
+ 1

2

ln [cot(θ0/2)]

ln [cot(δθ/2)]
. (6)

Here, θ0 is the initial value of the parameter θ in the ini-
tial state of Eq. (2). The probability P(θ0 → δθ ) is called
the splitting probability [45]. In the limit δθ → 0, where
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FIG. 3. Velocity field (θ̇ , φ̇) of the flow on the Bloch sphere gen-
erated by Ĝ using the (arbitrarily chosen) parameter values αi − δi =
1, βi = 0, γi = 0.5, βr = 0.1, and γr = 0. The orientations of the
arrows represent the direction of the local velocity, while their colors
indicate the local speed of the flow, ranging from blue (lowest) to red
(highest). The speed decreases to zero at the fixed point.

the fuzzy collapse region contains just the pointer states,
the splitting probability becomes flat and independent of the
initial state. For nonzero values of δθ , the splitting proba-
bilities do depend on θ0, but they never reproduce Born’s
rule.

B. Numerical simulation of collapse dynamics

For nonzero step size, the evolution induced by the gener-
ator Ĝ of Eq. (3) can be numerically simulated. As shown in
Appendix A, a Taylor expansion of the equation ∂t |ψ (t )〉 =
−iĜ|ψ (t )〉 directly yields the time dependence of the Bloch
sphere coordinates θ (t ) and φ(t ). For time-independent pa-
rameters, the velocity (θ̇ , φ̇) can be plotted directly on the
Bloch sphere to visualize the flow lines and fixed points of
the dynamics, as shown in Fig. 3. For dynamically fluctuat-
ing parameters, the velocities can be numerically integrated
to yield the dynamics starting from any point on the Bloch
sphere.

Taking as an example the flow defined by having αi ran-
domly fluctuating in time and all other parameters in G being
zero, Fig. 4 shows the evolution of |α(t )|2 = cos2[θ (t )/2]
as a function of time. The random switches between |α| =
0 and |α| = 1 are visible for all initial states and cannot
be avoided for any choice of parameter values. In Fig. 4,
it is straightforward to read off the typical time required
to go from any initial value θ0 to any other value θ1 and
see that it is equal to the typical time to return from θ1

to θ0.
Stopping the time evolution as soon as the value of θ (t )

comes within δθ of either zero or π , the frequency of differ-
ent fuzzy collapse outcomes can be simulated. The resulting
statistics are shown in Fig. 5. They approach the splitting
probabilities in the continuum limit of zero step size. In the

FIG. 4. Instability of the collapse dynamics in the presence of a
time-dependent random parameter. Each time step dt = 0.005, the
value of αi is drawn from a Gaussian distribution with standard devi-
ation 20, while all other parameters in G are zero. Initial states with
different initial weights |α0|2 = | cos(θ0/2)|2 are indicated by differ-
ently colored lines. The absolute weight |α(t )|2 = | cos[θ (t )/2]|2 is
plotted against time t and shows that the state may get arbitrarily
close to a fixed point, but cannot stay there indefinitely.

limit of δθ going to zero, the observed frequencies become
constant and independent of the initial state again.

It should be noted that the results illustrated here for
specific values of the parameters appearing in Ĝ are in fact
generic. For any set of parameters with fixed points at the
poles of the Bloch sphere, including any contribution from
random variables with an even distribution around αi − δi =
0, the dynamics does not have stable fixed points, and the
statistics of even fuzzy measurement outcomes do not adhere
to Born’s rule.

FIG. 5. Fuzzy collapse statistics. The relative frequency of evo-
lutions coming within δθ of the state |0〉 before coming within δθ of
|1〉, plotted as a function of the initial weight |α0|2 = cos2(θ0/2). The
dashed black line represents Born’s rule, while the circles depict the
splitting probability of Eq. (6) for δθ = 0.20. For each value of α0,
105 instances of the dynamics are calculated for a maximum of 104

time steps with dt = 0.05. For each time step, the value of αi − δi

is randomly chosen from a flat distribution in the interval [−1, 1],
while all other parameters in G are zero.
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VI. BORN’S RULE FROM ENVARIANCE

The fact that linear models for objective collapse cannot
give rise to Born’s rule is surprising, given that they fall into a
class of models in which the emergence of Born’s rule has
previously been suggested to be unavoidable [37,39]. This
suggestion was first made in the context of decoherence and
used the possibility of quantum states entangling with an
external environment [37]. The assumptions that enter the
suggested proof of Born’s rule emerging, however, do not
depend on the actual presence, influence, or dynamics of any
environmental states. Essentially the same suggested proof
has therefore also been applied in several other well-known
approaches to the quantum measurement problem, including
the pilot wave and many-worlds theories [38–43].

The same assumptions also apply in the current framework
of linear dynamics on a two-state superposition, and the fail-
ure of the current framework to give rise to Born’s rule thus
indicates the presence of additional hidden assumptions in
the suggested proof. To be specific, the analysis of Ref. [37]
starts from the initial state of Eq. (2), and assumes that there
is some process that will eventually reduce this initial state
to one of two possible pointer states. This could be a trace
over environmental degrees of freedom, as in the theory of de-
coherence, or nonunitary time evolution, as considered here.
It is also assumed that the process leading to a final pointer
state depends only on the weights occurring in the initial state
superposition, and not on the states being superposed. In other
words, the physical implementation of pointer states does not
matter for the collapse process: whether |0, 1〉 represent states
of different magnetization, position, or flux, the resulting col-
lapse dynamics in Hilbert space should not change. In the
nonunitary evolution, this is guaranteed by Ĝ being linear.

The first step in the suggested proof that the probability for
ending up in a given pointer state adheres to Born’s rule is
then to notice that, in the special case of Eq. (2) having equal
weights for the two pointer states, it can be made “envari-
ant” [37]. That is, we could imagine entangling the two-state
system with a second, external degree of freedom, so that the
combined state becomes

|ψ〉 = α(|0〉|a〉 + |1〉|b〉). (7)

Here, |0, 1〉 denote the pointer states of the system, while
|a, b〉 are environmental states. This combined state is en-
variant in the sense that the effect of a swap operation
interchanging the system states can be undone by a swap
operation on the environment [37]. Assuming that the envi-
ronmental degree of freedom is causally disconnected from
the system degree of freedom, an action on the environment
should not influence the statistics of any measurement out-
comes on the system. This implies that a swap operation on
the system should not influence the measurement outcomes,
since it can be undone by a causally disconnected swap on the
environment. The probability for the system to end up in state
|0〉 must therefore be equal to the probability for the system to
end up in state |1〉 (see Appendix B for details).

Notice that this conclusion does not require the environ-
mental state to actually exist or be present. It suffices that it
could in principle exist and that any local measurements on
the system should not be able to allow for conclusions about

the existence of the environmental state to be made, because it
is causally disconnected. That requirement is enough to force
the probabilities for finding either pointer state to be equal.
This is independent even of the physical process leading to
the observation of only a single pointer state and therefore
applies equally to objective collapse models and alternative
interpretations of quantum mechanics.

The suggested proof for the emergence of Born’s rule
eventually extends the above reasoning to a state with un-
equal weight superpositions, which again may be entangled
with a causally disconnected external degree of freedom (see
Appendix B):

|ψ〉 = α|0〉|a〉 + β|1〉|b〉. (8)

The coefficients in this state may be assumed to be real
without loss of generality and, likewise, we may assume an
external degree of freedom within an arbitrarily large Hilbert
space. This allows us to choose a basis in which to expand |a〉
and |b〉 in such a way that the state |ψ〉 can be written as

|ψ〉 =
√

1

N

[
n∑

i=1

|0〉|i〉 +
n+m∑

j=n+1

|1〉| j〉
]
. (9)

Because of the arbitrary size of the external Hilbert space, we
can choose the rational numbers n/N and m/N such that they
approximate |α|2 and |β|2 with arbitrary precision.

The equal weights with which all states appear in Eq. (9)
again allow for an argument based envariance to be made.
That is, we can imagine there may exist a second environ-
mental state, causally disconnected from both the system and
the original environment, but entangled with both:

|ψ〉 =
√

1

N

[
n∑

i=1

|0〉|i〉|ei〉 +
n+m∑

j=n+1

|1〉| j〉|e j〉
]
. (10)

This state is invariant in the sense that a swap operation
between two states of the original environment can be undone
by a swap operation between two states of the causally dis-
connected second environment. Using the same arguments as
before (see also Appendix B), this implies that the probabili-
ties for ending up in any one of the states |0〉|i〉|ei〉 or |1〉| j〉|e j〉
must all be equal.

The final step in the suggested proof is then to argue that,
because all states |0〉|i〉|ei〉 contain the system state |0〉 and are
orthogonal, the probability of ending up with the system in the
state |0〉 is equal to n times the probability for ending in one
of the states |0〉|i〉|ei〉. That is, the probability for ending up in
|0〉 is suggested in Ref. [37] to equal n/N , in accordance with
Born’s rule.

As we showed, however, this final conclusion cannot be
realized in any linear collapse model for two-state systems.
The apparent paradox is resolved by a hidden assumption
in the final step in the analysis based on envariance. The
combined probability for ending up in any one of the states
|0〉|i〉|ei〉 is not the same as the probability for finding the
single state

∑
i |0〉|i〉|ei〉. The former implies that the result of

the measurement is one of the states |0〉|i〉|ei〉 (or a diagonal
density matrix), whereas the latter corresponds to a pure state
superposition of all of these states. The observation that all
components in Eq. (10) have equal probability of being the
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FIG. 6. Flow lines for the minimal objective collapse model de-
fined by Eq. (11). The dashed blue line shows the separatrix dividing
areas of the Bloch sphere that flow towards distinct pointer states.

final state in a combined measurement (or decoherence pro-
cess) of the system and the first environmental state does not
imply anything about the probabilities involved in a measure-
ment (or decoherence process) registering the state of just
the system. The envariance of Eq. (10) therefore does not
guarantee the emergence of Born’s rule.

VII. MINIMAL EXAMPLE FOR OBJECTIVE COLLAPSE

The underlying reason that no linear model for objective
collapse can yield Born’s rule is that the linearity forbids the
initial state from having any influence on the dynamics. A
nonlinear model for objective collapse dynamics can also be
written with a time evolution operator of the form e−iĜdt , but
in that case the matrix elements of Ĝ explicitly depend on the
state it acts on. In terms of the flow it generates on the Bloch
sphere, elements beyond simple sources and sinks of flow
lines become allowed in the presence of a nonlinear generator.
With those, a pattern of flow lines for the two-state system that
meets all three characteristics of quantum measurement can be
constructed. A minimal example is defined by

θ̇ = sin(θ )[λ − cos(θ )], φ̇ = 0. (11)

Here, λ is a time-independent random variable with a flat dis-
tribution in the interval [−1, 1]. The flow lines generated by
these equations are shown in Fig. 6. They have two attractive
fixed points, at the poles of the Bloch sphere. Their basins
of attraction are bounded by the separatrix θ = arccos(λ),
indicated by a dashed blue line in Fig. 6. Thus, if the initial
state lies above the dashed blue line [θ0 > arccos(λ)], it will
flow towards |0〉, while if the initial state lies below the blue
line [θ0 < arccos(λ)] it will flow towards |1〉.

Since the values of θ0 and λ fully determine the late time
behavior of the system, the probability of flowing to |0〉, given
a distribution of random variables f (λ), is given by

P(|0〉) =
∫ 1

−1
f (λ)�[cos(θ0) − λ]dλ. (12)

Here, � is the Heaviside step function and f (λ) the proba-
bility distribution function of λ. For a flat distribution of λ in
the interval [−1, 1] the probability becomes 1/2

∫ cos θ0

−1 dλ =
1/2 cos(θ0) + 1 = cos2(θ0/2). In other words, the probability
precisely matches Born’s rule.

Because the poles of the Bloch sphere represent pointer
states and are stable points of attraction for any given value of
λ, the dynamics defined by Eq. (11) satisfies all three require-
ments for a model of objective collapse. It thus serves as a
minimal example of possible collapse dynamics starting from
a two-state superposition. The difference with other nonlinear
objective collapse models [9,10,12,47] is that the stochastic
term itself is linear and does not depend on the state of the
system it acts on. Consequently, Born’s rule emerges from
the stochastic evolution without the stochastic field knowing
about or being influenced by the state of the system. This
subtle difference is crucial to the physical interpretation of
the noise field: in the minimal model it is a random process
that works the same way on every possible system state and
can thus be interpreted as an external field independent of
the system being measured. Although similar stochastic terms
have been analyzed in the context of some specific objective
collapse models before [33], it is not obvious from Eq. (11)
what the physical origin of this stochastic field could be or
how it is most naturally extended to configurations involving
more than two states.

VIII. DISCUSSION

We have shown that linear time evolution operators cannot
model objective collapse. That is, linear evolution can satisfy
only two out of the three minimal requirements for an objec-
tive collapse theory. It can lead to the reduction of any initial
state to a single pointer state and these pointer states can also
be stable under the linear evolution. Linear time evolution
cannot, however, lead to the emergence of Born’s rule for the
probability with which any particular pointer state is selected.

Although we only explicitly considered the possible linear
flows of a two-state superposition, the result that objective
collapse theories cannot be linear is general. After all, any
theory for objective collapse should also be able to describe
measurements involving an initial configuration superposed
over two states.

That linear models cannot yield Born’s rule seemingly
contradicts a well-known suggested derivation of Born’s rule
using the concept of envariance. The resolution of this para-
dox lies in a hidden assumption of the suggested derivation,
which relates the probabilities for ending up in a set of envi-
ronmental (ancilla) states to the probability for ending up in a
given system state. That this hidden assumption is not satisfied
in the linear models considered here has ramifications also for
various other interpretations of quantum mechanics, in which
Born’s rule had been suggested to emerge in essentially the
same way as that suggested in the context of envariance.

The present work thus suggests that the question of how
Born’s rule can emerge in interpretations or modifications of
quantum dynamics without axiomatically including it remains
an open problem. It also shows that a nonlinear and nonunitary
component is an essential ingredient for all objective collapse
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theories. A proof-of-principle nonlinear dynamical law giving
rise to Born’s rule and satisfying all characteristics of quantum
measurement is easily constructed for a two-state superpo-
sition. This may serve as a starting point for constructing
physically realistic objective collapse models that describe
both the collapse dynamics and the way in which Born’s rule
emerges.

APPENDIX A: TIME EVOLUTION ON
THE BLOCH SPHERE

To define the evolution of a general two-state superposition
induced by a general time evolution generator, we consider the
Bloch sphere parametrization of the initial state:

|ψ (0)〉 = n eiχ
[
ei φ

2 cos (θ/2)|0〉 + e−i φ

2 sin (θ/2)|1〉].
The most general form of the time evolution propagating the
state forward over an infinitesimal time step δt can be written
in the form

|ψ (δt )〉 = e−iĜδt |ψ (0)〉 = [1 − iĜδt + O(δt2)]|ψ (0)〉.
Here, Ĝ is a general 2 × 2 matrix in the basis of the system
states, which can be written in terms of eight real parameters:

Ĝ = (|0〉 |1〉)

(
αr + iαi βr + iβi

γr + iγi δr + iδi

)(〈0|
〈1|

)
.

The final state |ψ (δt )〉 can again be parametrized on the Bloch
sphere:

|ψ (δt )〉 = N eiX
[
ei �

2 cos (�/2)|0〉
+ e−i �

2 sin (�/2)|1〉] + O(δt2).

From this, the time derivative of, for example, the parame-
ter θ can be found exactly as θ̇ = limδt→0(� − θ )/(δt ), and
similarly for the other parameters. This yields the time deriva-
tives [33,48]:

θ̇ = (δi − αi ) sin(θ ) + [(βi + γi ) cos(φ)

− (βr − γr ) sin(φ)] cos(θ )

− [(βi − γi ) cos(φ) − (βr + γr ) sin(φ)], (A1)

φ̇ = (δr − αr ) −
(

(βr − γr )
cos(φ)

sin(θ )
+ (βi + γi )

sin(φ)

sin(θ )

)

+
(

(βr + γr )
cos(φ)

tan(θ )
+ (βi − γi )

sin(φ)

tan(θ )

)
, (A2)

χ̇ = (δr + αr ) −
(

(βr + γr )
cos(φ)

sin(θ )
+ (βi − γi )

sin(φ)

sin(θ )

)

+
(

(βr − γr )
cos(φ)

tan(θ )
+ (βi + γi)

sin(φ)

tan(θ )

)
, (A3)

ṅ

n
= 1

2
(αi + δi ) − 1

2
[(βr − γr ) sin(φ)

− (βi + γi ) cos(φ)] sin(θ )

+ 1

2
(αi − δi ) cos(θ ). (A4)

From these equations it is clear that the change in the parame-
ters φ and θ only depends on the instantaneous values of φ and

θ themselves, and not on the overall phase χ or normalization
n. These are therefore gauge degrees of freedom and can be
arbitrarily normalized to n = 1 and χ = 0 at any moment in
time without affecting any observable degrees of freedom.

APPENDIX B: BORN’S RULE FROM ENVARIANCE

For completeness, we will reproduce the central steps in
the suggested derivation of Born’s rule in Ref. [37], in terms
of the current formalism and notation.

The principle idea of envariance is that the statistics of
local measurement outcomes on a quantum state cannot be
influenced by any operation on a different, causally discon-
nected system. If this condition were violated, instantaneous
communication between the two systems would be possible,
violating the assumption of them being causally disconnected.
The implications of this observation become clear when con-
sidering an entangled state of the form

|ψ〉 = α|0〉|a〉 + β|1〉|b〉. (B1)

Here, the states |0〉 and |1〉 denote the local system states,
while |a〉 and |b〉 are states of the causally disconnected en-
vironment. Because the phases of α and β can be altered by
local unitary operations on the environmental states, they can-
not influence the probabilities for finding |0〉 and |1〉 in a local
measurement on the system. Assuming that the measurements
are unbiased, in the sense that they do not a priori favor one
of the system states, the probabilities can then depend only on
the magnitudes of the weights in the state to be measured [37].

Next, consider the equal-weight entangled state:

|ψ〉 = α(|0〉|a〉 + |1〉|b〉). (B2)

The local, unitary swap operation on the system is defined
as Ûs = |0〉〈1| + |1〉〈0|, and similarly we can define a uni-
tary swap operation that acts locally on the environment as
Ûe = |a〉〈b| + |b〉〈a|. The state of Eq. (B2) has the invariant
property that a local swap on the system can be undone by
a local swap on the environment, so that ÛeÛs|ψ〉 = |ψ〉. In
other words, the effect of a local operation on the environment
is equivalent to the effect of a local operation on the system:
Ûs|ψ〉 = Û −1

e |ψ〉 = Ûe|ψ〉. The swap operation on a causally
disconnected environment cannot influence the statistics of
local measurement outcomes on the system. But again, assum-
ing that the measurement is unbiased, the outcome statistics
when measuring the state Ûe|ψ〉 cannot be different from the
statistics when measuring Ûs|ψ〉. Swapping |0〉 and |1〉 thus
has no effect on the respective probabilities for registering
these states, and hence their probabilities must be equal.

Notice that these arguments do not require the environ-
mental states to actually exist or be present. In fact, since
local actions on the environment cannot influence the statis-
tics of local measurement outcomes on the system, we could
consider an extreme case in which the environmental degree
of freedom is destroyed (without measuring it) before the
system is measured. Since the destruction of the environment
cannot influence the statistics observed of the system, the
probabilities for registering any particular outcome must be
independent of whether or not the environment actually exists.

Extending the argument that equal weights yield equal
probabilities, we can consider an entangled state involving
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arbitrarily many system and environmental states:

|ψ〉 =
N∑

k=1

αk|k〉|ek〉. (B3)

Here, |k〉 signify system states, while |ek〉 denote states of
the environment. If the weights αk are equal for any pair
of labels k′ and k′′, then the state |ψ〉 is left invariant by
the consecutive swaps Ûe = |ek′ 〉〈ek′′ | + |ek′′ 〉〈ek′ | and Ûs =
|k′〉〈k′′| + |k′′〉〈k′|. Using the same argument as before, we
then conclude that any subset of states with equal weights
within a larger superposition must all have equal probabilities
of being registered in a local measurement on the system.

The final step in the proposed derivation of Born’s rule then
concerns a superposition with unequal weights:

|ψ〉 = α|0〉|a〉 + β|1〉|b〉. (B4)

Because the arguments based on envariance are based on the
possible existence of environmental states, and do not require
the environment to really exist or be present, we may assume
the environmental Hilbert space to be arbitrarily large. It is
then always possible to identify a basis for the environmental
states in which the full state can be expressed as an equal
weight superposition:

|ψ〉 =
√

1

N

[
n∑

i=1

|0〉|i〉 +
n+m∑

j=n+1

|1〉| j〉
]
. (B5)

Here, the rational fractions n/N and m/N can be made to
approximate the real numbers α2 and β2 with arbitrary preci-
sion [37]. Because the weights of all components in this state
are equal, we would expect equal probabilities for registering
any of them. The precise meaning of this, however, becomes
clear only when we explicitly consider the swap operations
whose product leaves the state invariant. In particular, the
swap of system states, Ûs = |0〉〈1| + |1〉〈0|, cannot be undone
by a swap operation on the environment. The only exception
is the special case m = n, which would imply we had an
equal-weight superposition with α = β to begin with. To find
a combination of operations that does leave the state invariant,
we need to consider the possible existence of a second envi-
ronment, which we may assume to be causally disconnected
from both the system and the first environment:

|ψ〉 =
√

1

N

[
n∑

i=1

|0〉|i〉|ei〉 +
n+m∑

j=n+1

|1〉| j〉|e j〉
]
. (B6)

In this state, a combined swap on the system and the first
environment, Ûs = |0〉|i〉〈 j|〈1| + |1〉| j〉〈i|〈0|, can be undone
by a local swap on the second environment, Ûe = |ei〉〈e j | +
|e j〉〈ei|. Because the local swap on the second environ-
ment cannot influence the outcome statistics of any “local”
measurements of the system and the first environment, the
probabilities of registering any of the states |0〉|i〉 or |1〉| j〉
must all be equal, and equal to 1/N .

Notice that, in this case, the first environment must actually
be present. Combined swap operations on both the system and
the first environment can be undone by swaps on the second
environment, but swap operations on the system alone cannot.
Because of this subtlety, it is not generally true that the prob-
ability for a local measurement on the system to register |0〉 is
equal to the sum of probabilities for any of the n states |0〉|i〉 to
be registered. That is, the probability to register |0〉 cannot be
concluded to be n/N . There is an essential difference between,
on the one hand, a local measurement on the system alone reg-
istering |0〉 and, on the other hand, a combined measurement
of the system and the first environment registering any of the
states |0〉|i〉. In the first case, the measurement process does
not involve the first environment and the density matrix for
the system and first environment after the measurement will
be

ρ = 1

N

(
n∑

i,i′=1

|0〉|i〉〈i′|〈0| +
n+m∑
j, j′=n

|1〉| j〉〈 j′|〈1|
)

.

In the second case, the measurement process must register one
of the states |0〉|i〉 (on which the swap Ûs operates) and the
density matrix thus becomes

ρ = 1

N

(
n∑

i=1

|0〉|i〉〈i|〈0| +
n+m∑
j=n

|1〉| j〉〈 j|〈1|
)

. (B7)

Even though these two matrices become the same if aver-
aged over the environmental states, they are fundamentally
different and equal probabilities in one do not imply equal
probabilities in the other. This explains how linear objective
collapse models can yield statistics that are inconsistent with
Born’s rule, even though all steps of the envariance based
argumentation do apply.
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