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We discuss the local equilibration of closed systems using the relative purity, a paradigmatic information-
theoretic distinguishability measure that finds applications ranging from quantum metrology to quantum speed
limits. First we obtain an upper bound on the average size of the fluctuations on the relative purity: it depends
on the effective dimension resembling the bound obtained with the trace distance. Second, we investigate the
dynamics of relative purity and its rate of change as a probe of the speed of fluctuations around the equilibrium.
In turn, such speed captures the notion of how fast some nonequilibrium state approaches the steady state
under the local nonunitary dynamics, somehow giving the information of the quantum speed limit towards the
equilibration. We show that the size of fluctuations depends on the quantum coherences of the initial state with
respect to the eigenbasis of the Hamiltonian, also addressing the role played by the correlations between system
and reservoir into the averaged speed. Finally, we have derived a family of lower bounds on the time of evolution
between these states, thus obtaining an estimate for the equilibration time at the local level. These results could
be of interest to the subjects of equilibration, quantum speed limits, and also quantum metrology.
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I. INTRODUCTION

Both the subjects of equilibration and thermalization
fall into the very basic foundational questions of statistical
mechanics: how to derive the macroscopic laws of thermo-
dynamics from the microscopic many-particle laws. To do
so, one can consider a quantum system initialized in a well-
defined pure state and, under some minimal assumptions,
still conclude the system behaves as if it were described by
an equilibrium ensemble [1]. This argument has been made
technically rigorous, and also numerically confirmed by sim-
ulating several interacting quantum many-body systems [2,3].
Indeed, the problem of equilibration has attracted much in-
terest in the last decades from both the theoretical [4] and
experimental communities [5–10].

Overall, probing the mechanism of local equilibration of a
closed quantum system requires answering whether and how
some of its nonequilibrium states equilibrate, even if such
states do not belong to a Gibbs-like statistical ensemble. The
isolated system is initialized in a pure state and undergoes a
unitary evolution governed by the time-independent Hamilto-
nian H . At the local level, the notion of equilibration involves
monitoring the nonunitary dynamics of some reduced state of
a small subregion of the isolated system, and quantifying how
far apart it is from an equilibrium state [11]. In turn, the task
of distinguishing such states can be accomplished by means of
a suitable distance measure on the Hilbert space, for example
the Schatten one-norm [12,13]. So far, while there are plenty
of rigorous results showing that equilibration should occur
under very general conditions for small subsystems, there are
a few results about the time scales involved in such physical
process [14].

Here we will study the relative purity as a figure of merit
for equilibration and show under which conditions the sub-
system equilibrates. The relative purity stands as a versatile
information-theoretic quantifier for distinguishing two quan-
tum states, also being an experimental friendly measure since
it relies on the overlap of density matrices [15]. We also
consider the rate of change of relative purity as signaling
the speed of the fluctuations, thus deriving upper bounds on
such velocity in a similar fashion to the well-known dis-
cussion of quantum speed limits (QSLs). Noteworthy, from
these inequalities we obtain lower bounds on the equilibration
time of the subsystem, thus connecting both the subjects of
equilibration and quantum speed limits.

The paper is organized as follows. In Sec. II we review
basic concepts on the subject of equilibration, also introducing
the relative purity as a figure of merit to signal equilibration.
In Sec. III we discuss the fluctuations around the equilibrium
of a bipartite closed quantum system (S + B), thus analyzing
the dynamics of relative purity between a marginal state of
subsystem S and some steady state. We proved a set of lower
bounds on the equilibration time that are fully characterized
by the initial state and the Hamiltonian of the closed system
(see Secs. III A–III E). In Sec. IV we illustrate our findings by
means of two paradigmatic spin models, namely, the trans-
verse field Ising model and the nonintegrable XXZ model.
Finally, in Sec. V we summarize our conclusions.

II. RELATIVE PURITY AND EQUILIBRATION

Let us consider a quantum system described by a finite-
dimensional Hilbert space H = HS ⊗ HB, with d = dim H,
thus being split into a subsystem S of dimension dS = dim HS ,
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and its complement B of dimension dB = dim HB. The whole
system S + B evolves unitarily under the time-independent
Hamiltonian

H = HS ⊗ IB + IS ⊗ HB + HSB. (1)

The Hamiltonian is chosen to be nondegenerate and dis-
plays the spectral decomposition H = ∑

nEn|En〉〈En|, where
{|En〉}n=1,...,dE spans an orthonormal eigenbasis related to dE

distinct energy levels. In addition, we assume the energy gaps
of the system are nondegenerated, i.e., Ei − Ej �= Ek − El for
i �= k and j �= l . It is worth mentioning that such assumptions
may be relaxed towards degenerate systems [16]. The initial
state of the system is pure, ρ(0) = |�(0)〉〈�(0)|, and thus
the instantaneous state ρ(t ) = U (t )ρ(0)U (t )† will remain as
a pure state for all times, with U (t ) = e−itH . For simplicity,
from now on we set h̄ = 1. Therefore to have some kind of
equilibration we have to consider a subsystem S; the rest, B,
play the role of a bath. The marginal states of the quantum
system are given by ρS(B)(t ) = TrB(S)[ρ(t )], also written as

ρS(B)(t ) =
∑

j,l

〈Ej |ρ(0)|El〉 e−it (Ej−El ) TrB(S)(|Ej〉〈El |). (2)

For finite dimensional systems, it follows that ρS (t ) never
equilibrates since it never stops to evolve; there will be recur-
rences. However, it may be very close to some steady state
ωS for most of the time. Let D(x, y) be a suitable information-
theoretic distinguishability measure of quantum states. We say
subsystem equilibration has taken place at time τ when, for
some ε > 0, it follows 〈D[ρS (t ), ωS]〉T � ε, for all T > τ ,
with 〈h(t )〉T := 1

T

∫ T
0 dt h(t ) being the time average [13]. Note

that, if the time average is small, then D[ρS (t ), ωS] should be
small most of the time, and in this sense we say the system
does equilibrate. We stress that recurrences will occur but they
should be rare, and its time scale should increase with the
system size.

If the equilibration process really occurs, the equilibrium
state of the closed system S + B is given by the infinite time-
averaged state ω := 〈ρ(t )〉∞ = limT →∞〈ρ(t )〉T , and would
be identical to the dephased state.1

ω = �[ρ(0)], (3)

where �(•) = ∑
j 〈Ej | • |Ej〉|Ej〉〈Ej | stands for the fully

dephasing operator with respect to the eigenbasis of the
Hamiltonian. In this setting, the steady state of subsystem
S(B) is given by the marginal state ωS(B) = TrB(S)(ω). Re-
markably, if one uses the Schatten one-norm D(x, y) :=
1
2‖x − y‖1 as a bona fide distance measure over the space of
quantum states, it has been proved that

lim
T →∞

〈D[ρS (t ), ωS]〉T � 1

2

√
d2

S

deff(ω)
, (4)

where deff(ω) := 1/Tr(ω2) is the so-called effective di-
mension [12,17]. More precisely, the larger the effective

1Here we are not interested if the equilibrium state is a thermal or
Gibbs state, which is necessary to claim that the system thermalizes.
To have thermalization one needs further conditions, the eigenstate
thermalization hypothesis being the most used one.

dimension deff(ω) compared to the subsystem dimension dS ,
the closer the system to some steady state. Note that the
effective dimension measures the number of energy eigen-
states that contribute to the superposition of the initial state.
It can be argued that for many-particle systems with local
interactions this is typically the case, since the distance be-
tween the energy levels becomes exponentially small and it
is very hard to prepare an initial state with only a few levels
[17]. The aforementioned criterion for equilibration is based
on the closeness of states ρS (t ) and ωS measured by the
Schatten one-norm, i.e., a geometric distance that signals the
distinguishability between two quantum states. However, we
emphasize that there are several ways to characterize such
a distance [18]. Indeed, the convex space of quantum states
is equipped with a plethora of bona fide distances [19–22],
and this nonuniqueness has been of relevance for several
investigations in quantum information processing, quantum
thermodynamics [23,24], quantum speed limits [25,26], and
quantum metrology [27,28], to name a few.

Here we will consider the relative purity f (ρ, �) :=
Tr(ρ�) as a natural distinguishability measure of two quan-
tum states [29]. Importantly, such an information-theoretic
quantifier has been useful in the study of quantum speed lim-
its [30–33], information scrambling, and Loschmidt echoes
[34,35], and also for probing quantum coherence from pho-
tonic metrological setups [36]. While not being a distance in
the stringent sense, the relative purity is symmetric, f (ρ, �) =
f (�, ρ), non-negative, f (ρ, �) � 0, for all states ρ and �,
and vanishes for the case in which the states are maxi-
mally distinguishable. Moreover, for ρ = � it recovers the
quantum purity: f (ρ, ρ) = Tr(ρ2) � 1. Noteworthy, for pure
states ρ = |ψ〉〈ψ | and � = |φ〉〈φ|, relative purity reduces to
the pairwise fidelity, f (ρ, �) := |〈ψ |φ〉|2, which in turn was
already investigated for understanding the equilibration of
isolated thermodynamic systems [37].

Overall, while one can have equilibration at the local level,
the whole system never equilibrates since it evolves unitarily.
In fact, in Appendix A we verify that the relative purity of
states ρ(t ) and ω remains as a constant of motion of the
dynamics, in turn being equal to the quantum fidelity of these
states.2 Hence, as for the Schatten one-norm, we consider
the relative purity f (t ) := TrS[ωS ρS (t )] of subsystem S (see
Fig. 1). From Eqs. (2) and (3) it is straightforward to show that

f (t ) =
∑

j,l

〈Ej |ρ(0)|El〉 e−it (Ej−El ) 〈El |(ωS ⊗ IB)|Ej〉. (5)

For an initial nonequilibrium state, i.e., when states ρS (t )
and ωS have nonoverlapping supports, one should expect the
relative purity to take small values at the earlier times of
the dynamics, while it approaches the infinite time-averaged
value 〈 f (t )〉∞ = TrS (ω2

S ) as the system evolves in time and
equilibrates. In turn, the latter is nothing but the quantum

2Instead of looking at the state of the system, which can only
equilibrate locally, we can look at some observables and also show
they equilibrate under some general conditions. Note that even global
observables, as the total magnetization, can equilibrate and in this
sense one can have global equilibration.
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FIG. 1. Depiction of the physical setting. The initial state ρS (0)
undergoes a local nonunitary evolution governed by the Hamiltonian
H [see Eq. (2)]. The evolved state ρS (t ) follows a path (blue dashed
curve) over the manifold of marginal states M (gray surface). In
practice, this state never equilibrates since it keeps evolving nonuni-
tarily, and for instance can reach states ρS (τ ), ρS (τ ′), or ρS (τ ′′) that
are arbitrarily close to the equilibrium state ωS . The relative purity
f (τ ) (black dotted curve) captures the distinguishability between
ρS (τ ) and the equilibrium state ωS of the subsystem, while f (0) (red
solid curve) signals how distinguishable the initial state ρS (0) is com-
pared to such equilibrium state. Note that, while not being a distance
measure in the formal sense, the relative purity f (t ) provides in-
sightful information about how far apart is the subsystem S from ωS .

purity of the steady state ωS of subsystem S. In this way, we
now introduce the following figure of merit for equilibration:

g(t ) := | f (t ) − 〈 f (t )〉∞|2. (6)

Hence, the closer the system is to a given steady state, the
smaller the figure of merit in Eq. (6), i.e., g(t ) ≈ 0 for t > τ ,
with τ being the equilibration time. Similarly to what happens
to the trace distance, it is possible to upper bound the time
average of g(t ). In Appendix B, we proved that the time
average of the figure of merit in Eq. (6) is upper bounded as

〈g(t )〉∞ � ‖ωS‖2
∞

deff(ω)
. (7)

Equation (7) is one of the main results of the paper. It
shows that the effective dimension plays a fundamental
role on the equilibration process when it is monitored by
the relative purity. Importantly, this result somehow agrees
with the aforementioned case in which the trace distance is
the distinguishability measure. The subsystem S approaches
the equilibrium whenever the effective dimension deff(ω)
of the global steady state is much larger than the opera-
tor norm of the dephased marginal state ωS . In fact, given
that ‖ωS‖∞ = λmax(ωS ) � 1, where λmax(•) sets the maxi-
mum eigenvalue of the density matrix, it is reasonable to
expect that ‖ωS‖2

∞/deff(ω) � 1 since the effective dimension
of the equilibrium state ω typically takes large values. In
addition, note that ‖ωS‖2

∞ � ‖ωS‖2
2, with ‖ωS‖2

2 = TrS (ω2
S ) =

1/deff(ωS ), and thus the bound can be recast as 〈g(t )〉∞ �
1/[deff(ωS ) deff(ω)]. It is worth mentioning that, regardless of
its simplicity, the latter inequality might be less tight than the
bound in Eq. (7).

III. DYNAMICS OF RELATIVE PURITY

How fast does a given quantum system fluctuate around
the equilibrium? So far, this problem has been addressed in
a few works showing that such speed would be extremely
small for almost all times in typical thermodynamic cases.
Indeed, it can be proved that the infinity time-averaged speed
of state ρS (t ) quantified by the Schatten one-norm reads as

〈‖dρS (t )/dt‖1〉∞ � 2 ‖HS ⊗ IB + HSB‖∞
√

d3
S /deff(ω) [38],

thus depending on the effective dimension and the size of the
interacting term HSB [see Eq. (1)]. Furthermore, it has been
shown that the speed of fluctuations around the equilibrium
can be signaled by means of quantum purity, also unveiling
the role of correlations between system and environment in
the equilibration process [39].

Despite these remarkable theoretical achievements, much
less is known about the time scales involved in the equili-
bration process [14,40,41]. In this section we will investigate
the dynamical behavior of relative purity [see Eq. (5)], thus
bounding its rate of change in terms of fundamental quantities
such as the initial state and the Hamiltonian of the system.
Furthermore, we provide bounds on the equilibration time τ

in a similar fashion to the framework of quantum speed limits,
i.e., the very basic question of how fast a quantum system
evolves between two states.

Here we focus on the time derivative of relative purity as
probing the speed of fluctuations around the equilibrium. We
shall begin noticing that, since the dynamics of the subsystem
S is fully encoded in the differential equation dρS (t )/dt =
iTrB[ρ(t ), H], with the Hamiltonian H defined in Eq. (1),
the absolute value of the time derivative of relative purity
becomes ∣∣∣∣ d

dt
f (t )

∣∣∣∣ = |i TrSB{(ωS ⊗ IB)[ρ(t ), H]}|. (8)

Importantly, from Eq. (8) we are able to derive bounds on the
rate of change of purity, which signals the fluctuations of ρS (t )
around the fixed point ωS of the dynamics. From this we also
derive bounds for the time in which the system approaches the
equilibrium. In the following we will discuss in detail such
issues.

A. Relative purity and the Schatten two-norm

Here we will show that the speed in Eq. (8) satisfies an
upper bound that is related to the Schatten two-norm and the
variance of the Hamiltonian H . Let |Tr(A1A2)| � ‖A1‖2‖A2‖2

be the Cauchy-Schwarz inequality for operators {Aj} j=1,2. In
this case, Eq. (8) gives rise to the following inequality:∣∣∣∣ d

dt
f (t )

∣∣∣∣ � dB ‖ωS‖2 ‖[ρ(t ), H]‖2, (9)

where we have also used that ‖ωS ⊗ IB‖2 = dB‖ωS‖2. Since
the time-independent Hamiltonian H commutes with the evo-
lution operator U (t ) = e−itH , it is straightforward to conclude
that [ρ(t ), H] = U (t )[ρ(0), H]U (t )†. Hence, due to the uni-
tary invariance of the Schatten two-norm, it follows that
‖[ρ(t ), H]‖2 = ‖[ρ(0), H]‖2, and the time average of Eq. (9)
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over the interval t ∈ [0, τ ] thus becomes〈∣∣∣∣ d

dt
f (t )

∣∣∣∣〉
τ

� 2 dB ‖ωS‖2

√
IL[ρ(0), H], (10)

where

IL[ρ(0), H] := − 1
4 Tr{[ρ(0), H]2} = 1

4 ‖[ρ(0), H]‖2
2. (11)

We point out that the right-hand side of Eq. (10) is time
independent and depends on the Hamiltonian, the initial state
of system S + B, the steady state ωS , and the dimension of
subsystem B that plays the role of a bath. Importantly, the
quantifier IL has been already introduced in the context of
quantum coherence characterization, in turn defining a lower
bound on the so-called Wigner-Yanase skew information [42].
In this sense, the more commuting both the Hamiltonian and
the initial state ρ(0), the smaller the fluctuations on the speed
〈|df (t )/dt |〉τ .

In particular, for the pure state ρ(0) = |�(0)〉〈�(0)| of
the global system S + B, the quantity IL reduces further to
half of the variance of H , i.e., IL[ρ(0), H] = (1/2)(�H )2 :=
(1/2)(〈�(0)|H2|�(0)〉 − 〈�(0)|H |�(0)〉2). Next, applying
the inequality

∫
dx|g(x)| � | ∫ dxg(x)| into Eq. (10), one ob-

tains the lower bound τ � τ (1), with

τ (1) := |TrS[ωS ρS (τ )] − TrS[ωS ρS (0)]|√
2 dB‖ωS‖2 �H

. (12)

Noteworthy, the bound in Eq. (12) fits into the Mandelstam-
Tamm class of quantum speed limit times for closed systems,
i.e., the minimum evolution time is inversely proportional to
the variance of the generator H [26,43,44]. If the system equi-
librates at time τeq such as the relative purity collapses into the
purity of the dephased state, i.e., TrS[ωS ρS (τeq)] ≈ TrS (ω2

S ),
the lower bound in Eq. (12) yields the estimation for the
equilibration time as τeq � τ (1)

eq , where

τ (1)
eq := ‖ωS‖2√

2 dB �H

∣∣∣∣1 − TrS[ωS ρS (0)]

TrS (ω2
S )

∣∣∣∣. (13)

In particular, when ρS (0) and ωS are maximally distinguish-
able states, the orthogonality condition TrS[ωS ρS (0)] = 0
implies the equilibration time will reduce to the case τ (1)

eq ≈
‖ωS‖2/(

√
2 dB �H ), which will be smaller the higher the di-

mension of the subsystem B.

B. Relative purity and the �1 norm of coherence

Now we will present a bound on the speed in Eq. (8) that
is related to the Schatten one-norm. Let ω be the steady state
of system S + B that is written in terms of the eigenbasis of
the Hamiltonian [see Eq. (3)]. In this case, since ω and H
are commuting operators, i.e., [ω, H] = 0, we thus have that
[ρ(t ), H] = U (t )[ρ(0) − ω, H]U (t )†, where we have used
the fact that U (t )†HU (t ) = H , and also that U (t )†ωU (t ) = ω

is a fixed point of the unitary dynamics. Hence, inserting this
result into Eq. (8) and taking its time average over the interval
t ∈ [0, τ ], one gets〈∣∣∣∣ d

dt
f (t )

∣∣∣∣〉
τ

� 2 ‖ωS‖∞‖H‖∞‖ρ(0) − ω‖1, (14)

where we have invoked the inequality |Tr(A1[A2, A3])| �
‖A1‖∞‖[A2, A3]‖1 � 2 ‖A1‖∞‖A2‖1‖A3‖∞ [45,46], and em-
ployed the unitary invariance of the Schatten one-norm,
‖[ρ(t ) − ω, H]‖1 = ‖[ρ(0) − ω, H]‖1, also using the identity
‖ωS ⊗ IB‖∞ = ‖ωS‖∞.

Equation (14) means that the speed of fluctuations around
the equilibrium is upper bounded by the product of maximum
eigenvalues of both the Hamiltonian H and the steady state
ωS . Importantly, the bound depends on the coherences of the
initial state of the system. In fact, since the dephased state ω

is a fully diagonal matrix that comprises the populations of
ρ(0) in the energy eigenbasis of H , the Schatten one-norm
‖ρ(0) − ω‖1 plays the role of the �1 norm of coherence of
ρ(0) respective to such eigenbasis, thus quantifying how far
apart it is from the incoherent state ω [47]. Overall, the more
incoherent the initial state with respect to the steady state, the
smaller the speed of the fluctuations.

Next, applying the inequality
∫

dx|g(x)| � | ∫ dxg(x)| into
Eq. (14), one gets the lower bound τ � τ (2), with

τ (2) := |TrS[ωS ρS (τ )] − TrS[ωS ρS (0)]|
2 ‖ωS‖∞‖H‖∞‖ρ(0) − ω‖1

. (15)

Suppose the system equilibrates at time τeq, with the rela-
tive purity TrS[ωS ρS (τeq)] ≈ TrS (ω2

S ) = ‖ωS‖2 recovering the
purity of the steady state. In this case, given that ‖ωS‖2 �
‖ωS‖∞, the lower bound in Eq. (15) implies that τeq � τ (2)

eq ,
with

τ (2)
eq := 1

2 ‖H‖∞‖ρ(0) − ω‖1

∣∣∣∣1 − TrS[ωS ρS (0)]

TrS (ω2
S )

∣∣∣∣. (16)

We stress that, for the case of two states overlapping
to zero as TrS[ωS ρS (0)] = 0, Eq. (16) reduces to τ (2)

eq ≈
1/[2 ‖H‖∞‖ρ(0) − ω‖1]. In words, the more coherent the
state ρ(0) in the eigenbasis of H , the smaller would be τ (2)

eq ,
thus showing that quantum coherence of the probe state plays
a role on the equilibration time.

C. Relative purity and quantum Fisher information

We shall point out that one may arrive at a slightly dif-
ferent upper bound on the speed of fluctuations by exploiting
another set of inequalities. To proceed, by invoking both the
inequality |Tr(A1A2)| � ‖A1‖∞‖A2‖1 and the unitary invari-
ance ‖[ρ(t ), H]‖1 = ‖[ρ(0), H]‖1 of the Schatten one-norm,
Eq. (8) is written as∣∣∣∣ d

dt
f (t )

∣∣∣∣ � ‖ωS‖∞‖[ρ(0), H]‖1. (17)

Interestingly, the right-hand side of Eq. (17) can be upper
bounded via the inequality ‖[�, H]‖2

1 � 4FQ(�, H ) [48,49],
where FQ(�, H ) is the so-called quantum Fisher information
(QFI) and reads as

FQ(�, H ) = 1

2

∑
k,l

(λk − λl )2

λk + λl
|〈k|H |l〉|2, (18)

where {λl , |l〉}l are the eigenvalues and eigenvectors of some
mixed state �. Hence, by inserting such bound into Eq. (17),
and also taking the time average over the interval t ∈ [0, τ ], it
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yields 〈∣∣∣∣ d

dt
f (t )

∣∣∣∣〉
τ

� 2 ‖ωS‖∞
√
FQ[ρ(0), H]. (19)

Equation (19) means that the speed of fluctuations around
the equilibrium is upper bounded by the QFI, a paradigmatic
quantity in quantum metrology that is widely applied for
enhance phase estimation [28,50,51]. In particular, for the
pure state ρ(0) = |�(0)〉〈�(0)|, QFI reduces further to the
variance of the generator H , i.e., FQ[ρ(0), H] = (�H )2 :=
〈�(0)|H2|�(0)〉 − 〈�(0)|H |�(0)〉2 [52]. It can be proved that
Eq. (19) implies the lower bound τ � τ (3), where

τ (3) := |TrS[ωS ρS (τ )] − TrS[ωS ρS (0)]|
2 ‖ωS‖∞

√
FQ[ρ(0), H]

, (20)

where we used that
∫

dx|g(x)| � | ∫ dxg(x)|. At the equi-
librium, using that TrS[ωS ρS (τeq)] ≈ TrS (ω2

S ) = ‖ωS‖2, and
‖ωS‖2 � ‖ωS‖∞, the lower bound in Eq. (20) gives rise to the
following time scale for equilibration as τeq � τ (3)

eq , where we
define

τ (3)
eq := 1

2�H

∣∣∣∣1 − TrS[ωS ρS (0)]

TrS (ω2
S )

∣∣∣∣, (21)

which in turn will reduce to the simplest case τ (3)
eq ≈ 1/�H

for two maximally distinguishable states ρ(0) and ωS .

D. Relative purity and mutual information

Lastly, we obtain an upper bound that depends on the cor-
relations between S and B. In order to do so, we will introduce
the traceless operator

ρ̃(t ) := ρ(t ) − ωS ⊗ ωB, (22)

which in turn leads to an infinity time-averaged op-
erator 〈̃ρ(t )〉∞ = ω − ωS ⊗ ωB that is a fully correlated
state. The operator in Eq. (22) also implies the traceless
marginal states ρ̃S (t ) = TrB [̃ρ(t )] = ρS (t ) − ωS and ρ̃B(t ) =
TrS [̃ρ(t )] = ρB(t ) − ωB, which are also zero-valued operators
under the infinity time average, i.e., 〈̃ρS (t )〉∞ = 〈̃ρB(t )〉∞ =
0. Next, by exploiting the cyclic property of the trace,
Tr(A1[A2, A3]) = Tr([A1, A2]A3), it is straightforward to show
that TrSB{(ωS ⊗ IB)[ωS ⊗ ωB, H]} = 0, which immediately
implies the identity

TrSB{(ωS ⊗ IB)[ρ(t ), H]} = TrSB{(ωS ⊗ IB)[̃ρ(t ), H]} .

(23)
Inserting Eq. (23) into Eq. (8), also noting that TrSB{(ωS ⊗
IB)[̃ρ(t ), IS ⊗ HB]} = 0, one obtains∣∣∣∣ d

dt
f (t )

∣∣∣∣ = |i TrSB{(ωS ⊗ IB)[̃ρ(t ), HS ⊗ IB + HSB]}|

� 2 ‖ωS‖∞‖ρ̃(t )‖1‖HS ⊗ IB + HSB‖∞, (24)

where we have used the inequalities |Tr(A1[A2, A3])| �
‖A1‖∞‖[A2, A3]‖1, ‖[A2, A3]‖1 � 2 ‖A2‖1‖A3‖∞ [45,46], and
the fact that ‖ωS ⊗ IB‖∞ = ‖ωS‖∞. We point out that, from
Pinsker’s inequality, the trace norm of the traceless operator
ρ̃(t ) in Eq. (22) is upper bounded as [53]

‖ρ̃(t )‖1 �
√

2 S[ρ(t )‖ωS ⊗ ωB], (25)

with the relative entropy defined as S(x‖y) = −S(x) −
TrSB(x ln y), and S(x) = −TrSB(x ln x) being the von Neu-
mann entropy. In particular, it can be proved that the
relative entropy is written as S[ρ(t )‖ωS ⊗ ωB] = ISB[ρ(t )] +
S[ρS (t )‖ωS] + S[ρB(t )‖ωB], and thus it depends on the cor-
relations of the system measured by the mutual information,
ISB[ρ(t )] := S[ρS (t )] + S[ρB(t )] − S[ρ(t )]. This also means
the relative entropy depends on the distance S[ρS,B(t )‖ωS,B]
between the marginal states ρS,B(t ) and ωS,B, thus assigning
a geometric perspective to the bound in Eq. (25). Inserting
Eq. (25) into Eq. (24) and taking the time average over the
interval t ∈ [0, τ ] yields〈∣∣∣∣ d

dt
f (t )

∣∣∣∣〉
τ

� 2
√

2 ‖ωS‖∞‖HS ⊗ IB + HSB‖∞

× √〈S[ρ(t )‖ωS ⊗ ωB]〉τ , (26)

where we have exploited the concavity of the square-root
function.

Importantly, Eq. (26) means that the speed of fluctuations is
upper bounded by the relative entropy which distinguishes the
instantaneous state of the whole system from its uncorrelated
steady state, also being a function of the maximum eigenvalue
of the marginal dephased state ωS and the operator norm of
HS ⊗ IB + HSB. In this regard, it is worth noting that if the
interacting Hamiltonian HSB couples the system to only a few
degrees of freedom of the bath, which is typically the case of
spin models with nearest-neighbor couplings, thus the upper
bound in Eq. (26) will be mostly independent of the size of
subsystem B. In Appendix C we discussed a similar bound to
the speed of fluctuations for the quantum purity for subsystem
S.

In the limit τ → ∞, the infinity time average of the rel-
ative entropy is written as 〈S[ρ(t )‖ωS ⊗ ωB]〉∞ = S(ωS ) +
S(ωB) = 2S(ωS ). In detail, this comes from the fact that
the von Neumann entropy S[ρ(t )] = S[ρ(0)] = 0 remains
unchanged for a pure state ρ(t ) = U (t )ρ(0)U †(t ) evolving
unitarily, and also that the two dephased marginal states ωS,B

of the bipartite system store the same amount of information,
i.e., S(ωS ) = S(ωB). In this case, one readily gets〈∣∣∣∣ d

dt
f (t )

∣∣∣∣〉
∞

� 4 ‖ωS‖∞‖HS ⊗ IB + HSB‖∞
√

ln dS, (27)

where we have used that 0 � S(ωS ) � ln dS .
Next, we can make use of Eq. (26) to bound the time

evolution τ of the closed quantum system. Indeed, we obtain
the bound τ � τ (4), where

τ (4) := (1/2
√

2) |TrS[ωS ρS (τ )] − TrS[ωS ρS (0)]|
‖ωS‖∞‖HS ⊗ IB + HSB‖∞

√〈S[ρ(t )‖ωS ⊗ ωB]〉τ
,

(28)

where we have applied the inequality | ∫ dxg(x)| �∫
dx|g(x)|. If the system approaches the equilibrium at

time τeq, with TrS[ωS ρS (τeq)] ≈ TrS (ω2
S ) = ‖ωS‖2, it follows

that τeq � τ (4)
eq , with

τ (4)
eq :=

1
2
√

2

∣∣1 − TrS[ωS ρS (0)]
TrS (ω2

S )

∣∣
‖HS ⊗ IB + HSB‖∞

√
ln[1/λmin(ωS ⊗ ωB)]

, (29)
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where we used that ‖ωS‖2 � ‖ωS‖∞, and also invoked the
inequality S[ρ(t )‖ωS ⊗ ωB] � ln[1/λmin(ωS ⊗ ωB)] [54,55],
with λmin(•) setting the minimum eigenvalue of the density
matrix.

E. Discussion

In the previous sections, we presented a set of lower bounds
on the speed of evolution and the equilibration time for the
subsystem S. The relative purity signals the distinguishability
between the reduced state ρS (t ) and the steady state ωS , thus
indicating how far apart they are in the sense of witnessing
whether both the states have zero or nonzero overlapping
supports. From Eqs. (10) and (14), we see that the average
speed of the fluctuations depends on the coherences of the
pure initial state ρ(0) of the bipartite system.

On the one hand, the more commuting ρ(0) and H , the
smaller the fluctuations on the speed [see Eq. (10)]. However,
this bound seems to be looser since it depends on the dimen-
sion dB of the subsystem B, which in turn can be large. On the
other hand, the bound in Eq. (14) shows that the fluctuations
on the speed are constrained to the quantum fluctuations of
H captured by its variance regarding ρ(0). Noteworthy, this
bound sounds more appealing since it grows with the maxi-
mum eigenvalue of the steady state, while being of interest for
metrological purposes due to its connection with the quantum
Fisher information. From Eq. (19), note that the fluctuations
on the speed will decrease as ρ(0) approaches the equilibrium
state ω, which in turn is a fully incoherent state into the
eigenbasis of H . Opposite to these results, Eq. (26) depends
on the correlations of the bipartite system via the existing link
between relative entropy and mutual information. It is worth
noting that its right-hand side is a function of time τ , while
the previous upper bounds are fully time independent.

The speed of the relative purity captures the notion of how
fast some nonequilibrium state of subsystem S approaches its
steady state under the local nonunitary dynamics, somehow
giving the information of the QSL towards the equilibration.
In turn, such set of speeds limits implies a family of lower
bounds on the time of evolution between these states. Indeed,
from Eqs. (12), (15), (20), and (28), the minimum time of
evolution displays the QSL time as

τQSL := max{τ (1), τ (2), τ (3), τ (4)}. (30)

The QSL time is a quantity that fully characterizes the dy-
namics of the set of eigenstates of the Hamiltonian governing
the dynamics. Note that τQSL ≡ τQSL(τ ) is a time-dependent
quantity, which is expected since we are comparing states
ρS (τ ) and ωS . We point out that most of the bounds on the time
evolution of different physical systems that have appeared in
the literature address time-dependent QSLs (see, for example,
Ref. [44] and references therein). This “caveat” in the QSLs
is not well discussed in the literature, and we are following
the aforementioned standard procedure. From the QSL time,
fixing ρS (τ ) ≈ ωS , we also obtain a time scale for equilibra-
tion at the local level (this one time independent). Hence, from
Eqs. (13), (16), (21), and (29), it is possible to concatenate the
previous results into a unified estimation for the equilibration

time yields:

τ̃eq := max
{
τ (1)

eq , τ (2)
eq , τ (3)

eq , τ (4)
eq

}
. (31)

We point out that the bounds in Eqs. (13) and (21) are
inversely proportional to the variance of the Hamiltonian
H , thus resembling the well-known class of QSLs a la
Mandelstam-Tamm [44].

IV. EXAMPLES

In the following we will illustrate our findings by focusing
on two prototypical quantum many-body systems. The first is
the transverse field Ising model with local fields:

HIsing = J
L−1∑
j=1

σ x
j σ

x
j+1 +

L∑
j=1

(
hxσ

x
j + hzσ

z
j

)
, (32)

with parameters J = 1, hx = 0.5, hz = −1.05 [40]. The
equilibration properties of this model have already been nu-
merically investigated, particularly identifying initial states
and sets of parameters for which equilibration occurs rapidly
[56], or even never takes place [57]. The second is the nonin-
tegrable XXZ model with next-nearest-neighbor hopping:

HXXZ = J
L−1∑
j=1

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

) + U
L∑

j=1

σ z
j σ

z
j+1

+ Jnnn

L−2∑
j=1

(
σ x

j σ
z
j+1σ

x
j+2 + σ

y
j σ

z
j+1σ

y
j+2

)
, (33)

where we set the input configuration J = 1, U = 2, and Jnnn =
0.2 [40]. The two spin models are initialized in a charge-
density-wave-like state, i.e., |�(0)〉 = |1, 0, 1, 0, . . . , 0, 1〉,
with |0〉 and |1〉 denoting the spin-up and -down state, respec-
tively. Here we will investigate the role played by the figure of
merit g(t ) [see Eq. (6)] for signaling the equilibration process
in both many-body quantum systems. We will also discuss the
tightness of the bound in Eq. (7) by introducing the relative
error:

δτ := ‖ωS‖2
∞

deff(ω)
− 〈g(t )〉τ . (34)

Overall, the smaller the relative error, the tighter the bound on
the fluctuations of the relative purity captured by the function
g(t ). In general, it is reasonable to expect that limτ→∞ δτ ≈ 0
as we increase the system size L of the system. From now on
we set the system sizes L = {4, 6, 8, 10}, where LS = 1, and
LB = {3, 5, 7, 9}.

In Fig. 2, we show plots of the figure of merit g(t ) [see
Eq. (6)] for the Ising model with open boundary conditions.
In Fig. 2(a), we plot the normalized time signal g(t )/g(0) as a
function of time. Noteworthy, the recurrences exhibited in the
signal are mostly suppressed as we increase the system size L.
In other words, we expect that the fluctuations tend to decrease
in the limit of larger system sizes. In Fig. 2(b), we plot the
finite time average of the figure of merit, 〈g(t )〉τ /g(0). Next,
in Fig. 3 we show our results for the XXZ model with open
boundary conditions. In Fig. 3(a), we show the plots of the
normalized time signal g(t )/g(0), while Fig. 3(b) shows the
plot of 〈g(t )〉τ /g(0). The results are quite similar to the case
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FIG. 2. Plot of the figure of merit for the Ising model, with
parameters J = 1, hx = 0.5, hz = −1.05 [see Eq. (32)]. Here, we set
the system sizes L = {4, 6, 8, 10}, with open boundary conditions,
while LS = 1, and LB = {3, 5, 7, 9}. The system is initialized at the
charge-density-wave-like state |�(0)〉 = |1, 0, 1, 0, . . . , 0, 1〉, with
|0〉 and |1〉 denoting the spin-up and -down state, respectively.

FIG. 3. Plot of the normalized figure of merit for the noninte-
grable XXZ model, with parameters J = 1, U = 2, Jnnn = 0.2 [see
Eq. (33)]. Here, we set the system sizes L = {4, 6, 8, 10}, with
open boundary conditions, while LS = 1, and LB = {3, 5, 7, 9}. The
system is initialized at the charge-density-wave-like state |�(0)〉 =
|1, 0, 1, 0, . . . , 0, 1〉, with |0〉 and |1〉 denoting the spin-up and -down
state, respectively.

FIG. 4. Plot of the QSL time τQSL [see Eq. (30)] for (a) the
Ising model, with parameters J = 1, hx = 0.5, hz = −1.05 [see
Eq. (32)], and (b) the nonintegrable XXZ model, with parameters
J = 1, U = 2, Jnnn = 0.2 [see Eq. (33)]. Here, we set the system sizes
L = {4, 6, 8}, with open boundary conditions, while LS = 1, and
LB = {3, 5, 7}. The system is initialized at the charge-density-wave-
like state |�(0)〉 = |1, 0, 1, 0, . . . , 0, 1〉, with |0〉 and |1〉 denoting
the spin-up and -down state, respectively.

of the Ising model. Overall, note the size of fluctuations in g(t )
decreases as we increase the system size L, thus signaling the
system equilibrates.

The insets in Figs. 2(b) and 3(b) show the plot of the
relative error δτ [see Eq. (34)] as a function of time τ . In agree-
ment with Eq. (7), the relative error satisfies the condition
δτ � 0 for all τ � 0. In addition, the amplitude of the relative
error decreases as the system size increases. We see that each
of the plots saturates at fixed values for all times. To see this in
detail, we first note that 〈g(t )〉τ is a time-dependent function,
while the quantity ‖ωS‖2

∞/deff(ω) is time independent and
stands as a constant for a given system size L. We point out
that the time-averaged quantity 〈g(t )〉τ is smaller than the ratio
‖ωS‖2

∞/deff(ω) by some orders of magnitude, for all τ � 0
and system size L. In other words, the time oscillations of
〈g(t )〉τ are negligible when compared to the constant value
of ‖ωS‖2

∞/deff(ω).
In Fig. 4, we plot the QSL time in Eq. (30) for both

the Ising model [see Fig. 4(a)] and XXZ model [see
Fig. 4(b)]. Note that the QSL time exhibits nonperiodic
oscillations the amplitudes of which are suppressed as we
increase the system size. From Figs. 4(a) and 4(b), we see
that the larger the system size L, the smaller the amplitude of
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the QSL time. We find that, regardless of the time-dependent
behavior of τ (1), τ (2), and τ (4), it follows that τ (3) domi-
nates the numerical maximization indicated in Eq. (30). We
refer to Appendix D for more details on the set of QSL
times. Note that τ (3) is inversely proportional to the variance
�H [see Eq. (20)]. Given the initial pure state |�(0)〉 =
|1, 0, 1, 0, . . . , 0, 1〉, the variance of the Ising Hamiltonian
in Eq. (32) reads as �HIsing = √

(L − 1)J2 + Lh2
x , while

one gets the variance �HXXZ = 2J
√

L − 1 for the XXZ
model in Eq. (33) with respect to such initial state. For
larger system size L, these variances become �H ∼ L1/2,
and in this case the QSL time will behave as τQSL = τ (3) ∼
(1/2)L−1/2 ‖ωS‖−1

∞ |TrS[ωS ρS (τ )] − TrS[ωS ρS (0)]|. We ex-
pect this result should hold in the limit of larger values
of L, but it can already be seen in Fig. 4 that the am-
plitude of the QSL time decreases as the system size L
grows.

Next, we comment on the equilibration time τ̃eq in Eq. (31).
For both the aforementioned spin systems, we find that τ̃eq =
τ (3)

eq = (1/2)(�H )−1|1 − TrS[ωS ρS (0)][TrS (ω2
S )]−1|. For the

transverse field Ising model we find the equilibration time
τ̃eq ≈ 9 × 10−3 (L = 4 and 6), and τ̃eq ≈ 10−3 (L = 8). For
the nonintegrable XXZ model, the equilibration time reads as
τ̃eq ≈ 3 × 10−3 (L = 4 and 6), and τ̃eq ≈ 4 × 10−4 (L = 8).
In both cases, τ̃eq has units of h̄/J . In the limit of large
system size L, since the variances behave as � ∼ L1/2, thus
Eqs. (21) and (31) imply that τ̃eq = τ (3)

eq ∼ (1/2)L−1/2 |1 −
TrS[ωS ρS (0)][TrS (ω2

S )]−1|. Hence, again we expect the lower
bound on the equilibration time to scale with 1/

√
L for large

L, but already see evidence of such decay for the small values
of L we used.

We close this section discussing the equilibration time and
the lower bound obtained on both spin systems. In Figs. 2
and 3, we see that the system starts to equilibrate at a time
τ such that the figure of merit g(τ ) approaches a zero value.
On the one hand, for the transverse field Ising model, Fig. 2(a)
shows that this time is of order τ ≈ 1 for most of the system
sizes, while one gets τ̃eq ≈ 10−3. On the other hand, for the
nonintegrable XXZ model, Fig. 2(b) shows that τ ≈ 0.5, but
we have found the earlier times 10−4 � τ̃eq � 10−3 for the
referred system sizes. In both cases, we see that the bound
is fulfilled (τ � τ̃eq), but is not tight for these two spin models
and the initial state we choose. While the bound may be tight
for other models for larger L, we offer some reasons for it not
being tight.

The QSL bound is obtained bounding from above the time
derivative of the relative purity f (t ); we are trying to obtain
the minimum time for a change in f (t ) assuming it always
varies at its maximum rate [see Sec. III]. In this sense, the
bound is expected to not be tight if f (t ) strongly oscillates.
In fact, the tightness of the QSL is related to the distinguisha-
bility measure between quantum states. Tighter QSL bounds
have been discussed for information-theoretic quantifiers such
as the quantum Fisher information [58,59], Wigner-Yanase
skew information [26], and also geometric measures based on
the Bures angle [60]. Furthermore, we have invoked several
inequalities to derive those lower bounds. In spite of simpli-
fying the calculations, applying such inequalities may have
compromised the tightness of the bounds.

Finally, although the bound does not provide quantitative
information about the equilibration time for the spin models
and initial state used as examples, they still provide insight
into the physical properties involved in the equilibration pro-
cess [see Sec. III E]. They are also of interest, since they
allow one to connect both the subjects of equilibration and
speed limits. Lastly, we also showed that the relative purity
is a useful witness for equilibration, and it has the advan-
tage of being more amenable to analytical calculation and
experimental measure than other figures of merit as the trace
distance, for example. We emphasize that the lower bounds
on the equilibration time could be tightened by invoking some
minimal amount of inequalities, and also verifying other dis-
tinguishability measures. Indeed, this is an issue that we hope
to address in further investigations.

V. CONCLUSIONS

In conclusion, we have discussed the local equilibration of
closed quantum systems and the speed of fluctuations around
the equilibrium. We provided a criterion for witnessing equili-
bration at the local level by introducing a figure of merit that is
rooted in relative purity [see Eq. (7)]. In turn, the latter stands
as a distinguishability measure of quantum states, particularly
quantifying the overlap between a nonequilibrium state of a
small subsystem and a given steady state. We show that the
relative purity is a useful witness for equilibration, and it has
the advantage of being more amenable to analytical calcu-
lation and experimental measure than other figures of merit
as the trace distance, for example. We have proved an upper
bound on such figure of merit that depends on the effective
dimension of the equilibrium state of the closed system. We
find that the larger the effective dimension, the smaller the
size of fluctuations around the system. Indeed, this somehow
agrees with previous results reported in the literature where
the authors have considered the Schatten one-norm as a bona
fide measure for equilibration.

We have analyzed the dynamics of relative purity and its
rate of change as a probe of the speed of fluctuations around
equilibrium. Indeed, we have proved a set of upper bounds on
such averaged speed that depends on the initial state and the
Hamiltonian of the isolated system [see Eqs. (10), (14), (19),
and (27)]. Overall, the bounds show that such fluctuations
depend on the coherences of the pure initial state regarding
the reference eigenbasis of the Hamiltonian. Furthermore, we
show the averaged speed also depends on the correlations
of the bipartite system that are quantified via the relative
entropy and mutual information. We find that if the interacting
Hamiltonian HSB couples the system to only a few degrees of
freedom of the bath, which is the case of spin models with
nearest-neighbor couplings, such upper bound does not scale
with the size of the subsystem B.

From these speeds we have derived a family of lower
bounds on the time of evolution between such states, thus
obtaining an estimate for the equilibration time at the local
level. Importantly, regarding the equilibration time, we follow
the same procedure as the one that is commonly applied
in the derivation of quantum speed limits [see Eqs. (13),
(16), (21), (29), and (31)]. We have verified the bounds on
the equilibration time are not tight for the spin models and
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initial state used as examples, but they still provide insight in
the physical properties involved in the equilibration process.
Indeed, some of the bounds fit into the Mandelstam-Tamm
class of QSLs due to its dependence on the inverse of the
variance of the Hamiltonian. Hence, our results somehow may
bridge both the subjects of QSLs and equilibration. Finally,
we believe that our results may find applications in the study
of equilibration of many-body quantum systems and quantum
speed limits, also being useful for discussing the enhancing of
phase estimation in quantum systems around equilibrium that
is of interest to quantum metrology.
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APPENDIX A: RELATIVE PURITY
AND UHLMANN FIDELITY

In this Appendix we will show that both the relative pu-
rity and Uhlmann fidelity stand as constants of motions with
respect to the global unitary evolution, also taking identical
values for states ρ(t ) and ωS . Let ρ(0) = |ψ (0)〉〈ψ (0)| be the
initial state of the system S + B that undergoes the unitary
evolution ρ(t ) = U (t )ρ(0)U †(t ), with U (t ) = e−itH being the
evolution operator, and H = ∑

j E j |Ej〉〈Ej | being the time-
independent Hamiltonian of the system. In turn, ω = 〈ρ(t )〉∞
is the infinite time-averaged state of the full system, also
written in the energy eigenbasis of H as

ω =
∑

j

〈Ej |ρ(0)|Ej〉|Ej〉〈Ej |. (A1)

From Eq. (A1), note that both the Hamiltonian H and the
dephased state ω are commuting operators, thus implying
that U †(t )ωU (t ) = ω. In this case, it is straightforward to
conclude the relative purity F [ρ(t ), ω] = Tr[ωρ(t )] of such
states is given by

F [ρ(t ), ω] = Tr[ωU (t )ρ(0)U †(t )]

= Tr[U †(t )ωU (t )ρ(0)]

= Tr[ωρ(0)]. (A2)

Clearly, Eq. (A2) shows that F [ρ(t ), ω] = F [ρ(0), ω] =
Tr[ωρ(0)] stands as a time-independent quantity that depends
on the initial state of the full system and also its steady state.

Next, the Uhlmann fidelity of states ρ(t ) and ω is written
as [22]

F̃ (ρ(t ), ω) = (Tr[
√√

ρ(t ) ω
√

ρ(t )])2. (A3)

We stress that Uhlmann fidelity is a positive quantity for
all quantum states, also being a symmetric function over its
entries, i.e., F̃ [ρ(t ), ω] = F̃ (ω, ρ(t )). Invoking the identity√

ρ(t ) = U (t )
√

ρ(0)U †(t ), which holds for any density ma-
trix undergoing a given unitary evolution [61,62], and since
U †(t ) ωU (t ) = ω, one gets√

ρ(t ) ω
√

ρ(t ) = U (t )
√

ρ(0) ω
√

ρ(0)U †(t )

= 〈ψ (0)|ω|ψ (0)〉 ρ(t ), (A4)

where we have also used the fact that
√

ρ(0) = ρ(0) =
|ψ (0)〉〈ψ (0)| since the initial state is pure. Hence, by plugging
Eq. (A4) into Eq. (A3), one readily gets

F̃ [ρ(t ), ω] = 〈ψ (0)|ω|ψ (0)〉. (A5)

Analogously to the case of relative purity, this means the
Uhlmann fidelity stands as a time-independent quantity, also
being a function of both the initial and equilibrated states.
Indeed, from Eq. (A2), we point out that F̃ [ρ(t ), ω] is nothing
but the relative purity F [ρ(0), ω], and it yields

F̃ [ρ(t ), ω] = Tr[ω |ψ (0)〉〈ψ (0)|]
= Tr[ωρ(0)]

= F [ρ(t ), ω]. (A6)

As a final remark, we emphasize the identities presented in
Eqs. (A2) and (A5) come from the fact that ω is a fixed point
of the unitary dynamics of the system, thus implying that
the relative purity and Uhlmann fidelity characterize such a
constant of motion.

APPENDIX B: BOUND ON THE FIGURE OF MERIT

In this Appendix we will present in detail the derivation of
the inequality presented in Eq. (7), which in turn stands as an
upper bound on the figure of merit for equilibration given by

g(t ) = |TrS{[ρS (t ) − ωS] ωS}|2. (B1)

From Eqs. (3) and (6), it is straightforward to conclude that

ρS (t ) − ωS =
∑
k �=l

ckc∗
l e−it (Ek−El ) TrB(|Ek〉〈El |), (B2)

where we have defined c j := 〈Ej |ψ (0)〉. From Eq. (B2), the
time average of the figure of merit in Eq. (B1) becomes

〈g(t )〉∞ =
∑
k �=l

∑
m �=n

ckc∗
l cmc∗

n 〈e−it (Ek−El +Em−En )〉∞

× TrSB[|Ek〉〈El |(ωS⊗IB)]TrSB[|Em〉〈En|(ωS ⊗ IB)].

(B3)

To evaluate the time average in the right-hand side of Eq. (B3),
we will use the fact that the Hamiltonian H has nondegenerate
energy gaps, and thus the double summation will only include
terms where k �= l and m �= n [12]. In this case, we find the
only nonzero terms are those matrix elements labeled as n = k
and m = l , thus implying that

〈g(t )〉∞ =
∑
k �=l

|ck|2|cl |2 TrSB[|Ek〉〈El |(ωS ⊗ IB)]

× TrSB[|El〉〈Ek|(ωS ⊗ IB)]

=
∑
k �=l

|ck|2|cl |2 〈El | ωS ⊗ IB|Ek〉〈Ek| ωS ⊗ IB|El〉,

(B4)

where from the first to the second line we have used the
cyclic property of trace. We point out that the sum in
Eq. (B4) can be recast as

∑
k �=l = ∑

k,l − ∑
k=l , and thus one
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gets

〈g(t )〉∞ =
∑
k,l

|ck|2|cl |2 〈El | ωS ⊗ IB|Ek〉〈Ek| ωS ⊗ IB|El〉

−
∑

k

|ck|4 〈Ek| ωS ⊗ IB|Ek〉2

= TrSB[ω(ωS ⊗ IB)ω(ωS ⊗ IB)]

−
∑

k

|ck|4 〈Ek| ωS ⊗ IB|Ek〉2

� TrSB[ω(ωS ⊗ IB)ω(ωS ⊗ IB)], (B5)

where we have recognized the equilibrium state
ω = ∑

j |c j |2|Ej〉〈Ej | [see Eq. (3)], and also used that∑
k |ck|4 〈Ek| ωS ⊗ IB|Ek〉2 � 0. Invoking the Cauchy-

Schwarz inequality for operators, i.e., |Tr(AB)| � ‖A‖2‖B‖2,
and choosing A = B = ω(ωS ⊗ IB), one may verify Eq. (B5)
implies that

〈g(t )〉∞ � TrSB[(ωS ⊗ IB) ω2(ωS ⊗ IB)]. (B6)

Next, given that Tr(PQ) � ‖P‖∞Tr(Q) for two positive oper-
ators P and Q, it follows that

〈g(t )〉∞ � ‖ωS ⊗ IB‖∞TrSB[ω2(ωS ⊗ IB)]

� ‖ωS ⊗ IB‖2
∞TrSB(ω2). (B7)

Note that Eq. (B7) can be recast by using that ‖ωS ⊗ IB‖∞ =
‖ωS‖∞, and also recognizing the effective dimension
deff(ω) = 1/TrSB(ω2). Hence, the time average of the figure
of merit is upper bounded as

〈g(t )〉∞ � ‖ωS‖2
∞

deff(ω)
. (B8)

APPENDIX C: FLUCTUATIONS OF THE PURITY
OF THE REDUCED STATE

In this Appendix we follow Ref. [39] and investigate
the role of quantum purity as a figure of merit for equili-
bration of subsystem S, for which we evaluate the purity
pS (t ) = TrS[ρS (t )2], where ρS (t ) = TrB[ρ(t )] is the reduced
density matrix, with ρ(t ) = |�(t )〉〈�(t )|. The dynamics of
the subsystem S is governed by the equation dρS (t )/dt =
i TrB{[ρ(t ), H]}, where H = HS ⊗ IB + IS ⊗ HB + HSB is the
Hamiltonian of the system. In particular, by exploiting the
cyclic property of the trace, Tr(A1[A2, A3]) = Tr([A1, A2]A3),
also using the identities TrSB([ρS (t ) ⊗ IB][ρ(t ), HS ⊗ IB]) =
0 and TrSB([ρS (t ) ⊗ IB][ρ(t ), IS ⊗ HB]) = 0, one may prove
the time derivative of the purity can be written as

d

dt
pS (t ) = 2i TrSB([ρS (t ) ⊗ IB][ρ(t ), HSB]). (C1)

Next, let ρcor(t ) = ρ(t ) − ρS (t ) ⊗ ρB(t ) be the traceless cor-
relation operator, i.e., TrS[ρcor(t )] = TrB[ρcor(t )] = 0. This
operator is identically zero when the global state ρ(t ) is
fully uncorrelated, also satisfying the identity TrSB{[ρS (t ) ⊗
IB][ρS (t ) ⊗ ρB(t ), HSB]} = 0, which implies that

d

dt
pS (t ) = 2i TrSB{[ρS (t ) ⊗ IB][ρcor(t ), HSB]}. (C2)

In the following, we will derive an upper bound to the rate
d pS (t )/dt exploiting the role of quantum correlations of the
bipartite system S + B. To do so, note the absolute value of
both sides of Eq. (C2) can be recast as∣∣∣∣ d

dt
pS (t )

∣∣∣∣ � 2 ‖[ρS (t ) ⊗ IB][ρcor(t ), HSB]‖1

� 2 ‖ρS (t ) ⊗ IB‖∞ ‖[ρcor(t ), HSB]‖1, (C3)

where we have used the inequalities |Tr(A1A2)| � ‖A1A2‖1 �
‖A1‖∞‖A2‖1, with ‖ρS (t ) ⊗ IB‖∞ = ‖ρS (t )‖∞. Moreover,
invoking the triangle inequality ‖A1 + A2‖1 � ‖A1‖1 + ‖A2‖1

and also applying the upper bound ‖A1A2‖1 � ‖A1‖∞‖A2‖1,
it follows that ‖[ρcor(t ), HSB]‖1 � 2 ‖ρcor(t )HSB‖1 �
2 ‖ρcor(t )‖1‖HSB‖∞. Inserting such results into Eq. (C3),
one gets∣∣∣∣ d

dt
pS (t )

∣∣∣∣ � 4 ‖ρS (t )‖∞ ‖ρcor(t )‖1‖HSB‖∞. (C4)

Interestingly, note the Schatten one-norm of the correlated
operator is upper bounded according to Pinsker’s inequality
as [53]

‖ρcor(t )‖1 �
√

2 ISB[ρ(t )], (C5)

where the mutual information is defined

ISB(ρ(t )) := S(ρS (t )) + S[ρB(t )] − S[ρ(t )], (C6)

with S(�) = −Tr(� ln �) being the von Neumann entropy.
Hence, by combining Eqs. (C4) and (C5), it yields∣∣∣∣ d

dt
pS (t )

∣∣∣∣ � 4
√

2ISB[ρ(t )] ‖ρS (t )‖∞ ‖HSB‖∞. (C7)

Importantly, Eq. (C7) relates the fluctuations of purity
of the subsystem S with the quantum correlations of the
whole bipartite system captured by the mutual information.
On the one hand, since ‖ρS (t )‖∞ � 1, Eq. (C7) implies the
upper bound |d pS (t )/dt | � 4

√
2ISB[ρ(t )] ‖ρS (t )‖∞ ‖HSB‖∞,

which was already presented in Ref. [63]. On the other
hand, since ‖ρS (t )‖∞ � ‖ρS (t )‖2 =

√
TrS[ρS (t )2] = √

pS (t ),
we thus obtain the tighter upper bound∣∣∣∣ d

dt
pS (t )

∣∣∣∣ � 4
√

2ISB[ρ(t )]
√

pS (t ) ‖HSB‖∞. (C8)

We point out that, since the bipartite system is initialized
in a pure state, i.e., Tr[ρ(0)2] = Tr[ρ(0)] = 1, its instanta-
neous state ρ(t ) = U (t )ρ(0)U †(t ) will be pure for all time
t , i.e., Tr[ρ(t )2] = Tr[ρ(t )] = 1. As a consequence, the mu-
tual information of the input state trivially collapses into the
sum of the von Neumann entropy of the marginal states,
ISB[ρ(t )] = S[ρS (t )] + S[ρB(t )] = 2 S[ρS (t )] = 2 S[ρB(t )]. In
this case, Eq. (C8) can be recast as∣∣∣∣ d

dt
pS (t )

∣∣∣∣ � 8
√

S[ρS (t )]
√

pS (t ) ‖HSB‖∞, (C9)

with the von Neumann entropy satisfying the inequality 0 �
S[ρS (t )] � ln(dS ). Hence, by integrating Eq. (C9) over the
range 0 � t � τ , it follows that

τ � |√pS (τ ) − √
pS (0) |

4
√

ln(dS ) ‖HSB‖∞
, (C10)
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FIG. 5. Plot of the set of QSL times {τ (k)}k=1,...,4 in Eqs. (12), (15), (20), and (28). (a)–(c) QSL times for the transverse field Ising model
[see Eq. (32), with J = 1, hx = 0.5, hz = −1.05]. (d)–(f) QSL times for the nonintegrable XXZ model with next-nearest-neighbor hopping
[see Eq. (33), with J = 1, U = 2, Jnnn = 0.2]. The system is initialized at the Néel state |�(0)〉 = |1, 0, 1, 0, . . . , 0, 1〉, with open boundary
conditions, for the system sizes L = 4 (a), (d), L = 6 (b), (e), and L = 8 (c), (f).

where we have used that
∫

dx|g(x)| � | ∫ dxg(x)|. Here τ

stands for the time to reach the equilibrium purity, i.e.,
pS (τ ) ≡ peq

S . Particularly, if the initial state is fully uncorre-
lated, i.e., ρ(0) = ρS (0) ⊗ ρB(0), while ρS (0) is a pure state
with pS (0) = Tr[ρS (0)] = 1, we finally arrive at the bound

τ �

∣∣∣√peq
S − 1

∣∣∣
4

√
ln(dS ) ‖HSB‖∞

. (C11)

We point out Eq. (C11) is slightly different from the result
presented in Ref. [39], where here one finds the equilibration
time depends on the square root of the equilibrium purity.

APPENDIX D: DETAILS ON THE SET OF QSL TIMES

In this Appendix we provide details on the lower bounds
{τ (k)}k=1,...,4 for both the spin models discussed in Sec. IV.
In Fig. 5, we show the set of QSL times in Eqs. (12), (15),

(20), and (28) as a function of time τ , for the transverse field
Ising model [see Figs. 5(a)–5(c)], and the nonintegrable XXZ
model with next-nearest-neighbor hopping [see Figs. 5(d)–
5(f)]. In both cases, the spin system is initialized at the Néel
state |�(0)〉 = |1, 0, 1, 0, . . . , 0, 1〉, with open boundary con-
ditions. Here we set the system sizes L = 4 [Figs. 5(a) and
5(d)], L = 6 [Figs. 5(b) and 5(e)], and L = 8 [Figs. 5(c) and
5(f)]. We see that, for all τ � 0 and system size L, the curve
of τ (3) is always above the QSL times τ (1), τ (2), and τ (4), re-
gardless of the spin system. This clearly illustrates the fact that
τQSL = max{τ (1), τ (2), τ (3), τ (4)} = τ (3), i.e., the QSL time in
Eq. (30) is given by the lower bound τ (3), the latter being
inversely proportional to the variance of the Hamiltonian gov-
erning the dynamics [see Eq. (20)]. The quantity τ (1) stands
as a lower bound to the set of QSL times {τ (2), τ (3), τ (4)}, and
approaches small values as the size L grows. In addition, we
see the amplitude of {τ (k)}k=1,...,4 decreases as we increase the
system size L.
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[48] R. Augusiak, J. Kołodyński, A. Streltsov, M. N. Bera, A. Acín,
and M. Lewenstein, Asymptotic role of entanglement in quan-
tum metrology, Phys. Rev. A 94, 012339 (2016).

[49] M. Oszmaniec, R. Augusiak, C. Gogolin, J. Kołodyński, A.
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