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Effect of spontaneous emission on the shortcut to adiabaticity in three-state systems
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The shortcut to adiabaticity (STA) is a powerful technique to speed up population transfer via quantum
coherent control. This paper demonstrates that STA provides a fast, robust, and efficient population transfer
compared to the stimulated Raman adiabatic passage. In the ideal situation of a closed system, STA is insensitive
to the detunings and Rabi frequencies, and the undesired diabatic transitions could be eliminated by the auxiliary
pulses, so the complete population transfer from the initial state to the target state in the designed adiabatic
passage can be rapidly achieved against the inevitable amplitude noises of the interactions and systematic errors.
When we consider the situation including the environment noises, spontaneous emission from the intermediate
state |2〉 in STA can be sufficiently ignored in the cases of the dark-state evolution and quantum overdamping,
since the state |2〉 is thoroughly separated from the three-state system. Moreover, the diabatic transitions induced
by the spontaneous emission are also sufficiently suppressed in STA.
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I. INTRODUCTION

In the last ten years, a technique named the shortcut to adi-
abaticity (STA) has found widespread applications in atomic,
molecular, and solid-state physics for preparing and driving
internal and motional states with high fidelity [1]. In general,
there are two well-known approaches to achieve state prepa-
ration or population transfer. One is making use of resonant
pulses and the other is based on adiabatic approaches [2].
Resonant pulses with an area π for the Rabi frequency may be
fast for the population transfer, but sensitive and nonrobust to
the amplitude noises of the interactions and systematic errors.
On the other hand, adiabatic approaches are robust but slow
[3]. STA, portrayed artistically and informally as a turtle on
wheels [1], possesses both the advantages of resonant pulses
and adiabatic approaches. It reaches the same final conditions
of a slow adiabatic process in a shorter time and is robust
against the fluctuations of the controlling pulses [4,5].

Different strategies for STA have been developed and ap-
plied, such as counterdiabatic driving [6–9], invariant-based
inverse engineering [10,11], the streamlined fast-forward ap-
proach [12], variational methods [13–15], and so on [16–21].
Some of the basic STA techniques are related to each other,
and can be made potentially equivalent by properly adjusting
the reference Hamiltonian, e.g., counterdiabatic driving and
invariant-based inverse engineering [22]. For simplicity, we
consider the original method of counterdiabatic driving that
the expression STA is coined [6]. The key idea of STA is to
find a driving Hamiltonian Ĥ (t ) to exactly evolve the system
along a selected instantaneous eigenstate |λn〉 of the initial
Hamiltonian Ĥ0.
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As a powerful and universal technique, STA is available
for most physical platforms to accelerate state preparations
and fighting decoherence [23–26]. It has been theoretically
designed in many solid quantum systems (e.g., optical waveg-
uides [27,28], superconducting circuits [29], quantum dots
[30], and trapped ions [31,32]), for fast and robust population
transfer in quantum gate manipulation [33,34], entanglement
generation [35], single photon production [36], and so on.
Experimental achievements of this technique have also been
reported including acceleration of Bose-Einstein condensates
in optical lattices [37], rapid control of electron spins in the
nitrogen-vacancy center in diamond [38,39], fast quantum
state transfer in cold atoms [40], implementation of a shortcut
to the adiabatic transport of a trapped ion in phase space
[41], and the speedup of the adiabatic population transfer in
superconducting circuits [42,43].

Although theoretical and experimental researches demon-
strate that STA is an optimal approach for population
manipulation, the transfer efficiencies observed in experi-
ments leave a lot to be desired. There is no doubt that a
perfect 100% transfer efficiency could be achieved in a closed
quantum system. However, the population losses induced by
the noises are inevitable in practice, since quantum systems
are always exposed to various decoherent effects. Previous
work has demonstrated that STA is robust versus different
perturbations in two-state systems. The main error sources are
the deviations in the coupling terms, such as fluctuations in the
laser intensities or inaccurate realizations of the ideal func-
tions [2,6]. All these losses come from the amplitude noises
of the interactions and systematic errors. The quantum losses,
coming from the interaction between a quantum system and
its environment (such as dephasing and spontaneous emission
within and outside of a system), are rarely considered in STA.
Recently, the dephasing effects on STA have been studied
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in two- and three-state systems [44,45], but the effects of
spontaneous emission on STA have never been discussed.
Generally, spontaneous emission outside of a quantum system
is always treated easily by a non-Hermitian Hamiltonian in the
resonant pulses and adiabatic approaches [46–50]. One can
use the Schrödinger equation and model the losses by adding
an imaginary decay rate in the Hamiltonian corresponding to
the excited state. However, the spontaneous emission within
a system may be modeled in a more sophisticated fashion,
since a complicated density matrix for the Liouville equation
is required. In this paper, we concentrate on the effects of
spontaneous emission within a three-state system. The pop-
ulation transfer in a three-state system is basically achieved
by the stimulated Raman adiabatic passage (STIRAP) [51].
As an adiabatic approach, STIRAP is often sped up with STA
in different strategies. Our model specially focuses on the
spontaneous emission in the case of counterdiabatic STA, and
can be also applied to the other strategies.

This paper is organized as follows. In Sec. II, population
transfer via STA in a three-state system is constructed. Com-
pared with STIRAP, the characteristics of STA are presented
in the dark- and bright-state evolutions. In Sec. III, the effects
of spontaneous emission from the intermediate state |2〉 on
STA are discussed with the Liouville equation. Finally, a
summary is forwarded in Sec. IV.

II. THE MODEL IN THREE-STATE QUANTUM SYSTEMS

In three-state quantum systems, a popular and powerful
technique for population transfer is STIRAP. In this technique,
complete population transfer between the two end states |1〉
and |3〉 is realized adiabatically through an intermediate state
|2〉 by two pulses, pump and Stokes. In the most common �

linkage pattern, states |1〉 and |3〉 are ground or metastable
electronic levels, and the intermediate state |2〉 is a decaying
and excited electronic level. The initial state |1〉 and the final
state |3〉 have to be on two-photon resonance; the intermediate
state |2〉 can be off resonant by a certain detuning �. In this
situation, the evolution passage of the population transfer is
guaranteed to be in one of the eigenstates of the Hamilto-
nian Ĥ0 under the adiabaticity condition. As the pulses are
ordered counterintuitively, the Stokes before the pump, pop-
ulation transfer is adiabatically trapped in a dark adiabatic
passage. This passage is a time-dependent superposition of
states |1〉 and |3〉, and does not involve the intermediate state
|2〉. In the intuitive pulse order, the pump pulse comes first;
the population transfer goes along a bright adiabatic passage
which is related to the intermediate state |2〉. Here, we should
emphasize that both the dark- and bright-state evolutions are
slow progresses.

To speed up the population transfer, auxiliary pulses are
applied to STIRAP for achieving STA. Figure 1 shows the dif-
ferences of the pulse couplings between the two approaches.
The Hamiltonian of the three-state � system, in the rotating-
wave approximation, has the form (h̄ = 1)

Ĥ =
⎛
⎝

0 �p 0
�p � �s

0 �s 0

⎞
⎠ + i

⎛
⎝

0 �a �c

−�a 0 −�b

−�c �b 0

⎞
⎠. (1)

FIG. 1. Schematic of the three-state � system. The initial state
|1〉 and the final state |3〉 are on two-photon resonance. The inter-
mediate state |2〉 is off resonant by a detuning �(t ). The relative
spontaneous emission for each pair of states is depicted by the green
wavy line. The STIRAP coupling scheme is realized by the pump
�p(t ) and Stokes �s(t ) pulses, and the auxiliary pulses �a(t ), �b(t ),
and �c(t ) depicted by the dotted red lines are designed for STA.

Here the functions �p and �s represent Rabi frequencies of
pump and Stokes pulses, and � is the detuning. The evolution
passages for population transfer related to this Hamiltonian
are defined by the adiabatic states which are time-dependent
superpositions of the bare (unperturbed) states |1〉, |2〉, and
|3〉:

|λ+〉 = sin θ sin φ|1〉 + cos φ|2〉 + cos θ sin φ|3〉,
|λ0〉 = cos θ |1〉 − sin θ |3〉,
|λ−〉 = sin θ cos φ|1〉 − sin φ|2〉 + cos θ cos φ|3〉, (2)

with the relevant eigenvalues λ+ = � cot φ, λ0 = 0, and λ− =
−� tan φ. The time-dependent mixing angles θ and φ are

defined by tan θ = �p/�s, tan 2φ = 2�/�, � =
√

�2
p + �2

s .

The auxiliary pulses �a(t ), �b(t ), and �c(t ) for STA are
determined by the counterdiabatic driving Hamiltonian Ĥcd =∑

n=+,−,0 |∂tλn(t )〉〈λn(t )|, and have the form �a(t ) = φ̇ sin θ ,
�b(t ) = φ̇ cos θ , �c(t ) = θ̇ with

θ̇ = [�̇p�s − �̇s�p]

�2
,

φ̇ = {[�̇p(t )�p(t ) + �s(t )�̇s(t )]�(t )}
[�(�2(t ) + 4�2)]

. (3)

The overdot denotes a time derivative. The wave functions
of this three-state system are governed by the time-dependent
Schrödinger equation

i

⎛
⎝

ċ1

ċ2

ċ3

⎞
⎠ =

⎛
⎝

0 �p + i�a i�c

�p − i�a � �s − i�b

−i�c �s + i�b 0

⎞
⎠

⎛
⎝

c1

c2

c3

⎞
⎠. (4)

We assume that the system is initially in its ground state
|1〉, c1(−∞) = 1, c2(−∞) = 0, c3(−∞) = 0, and we are
interested in the populations ρnn = |cn(+∞)|2 (n = 1, 2, 3)
at time t −→ +∞. In the adiabatic representation |λ+〉, |λ0〉,
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FIG. 2. Population transfer in the counterintuitive pulse sequence
along the dark adiabatic passage |λ0〉 for the detuning � = 2π ×
0.1 MHz. (a) Pulse shapes for STIRAP. (b) Population evolution for
STIRAP. (c) Pulse shapes for STA. and (d) Population evolution for
STA. The Gaussian pulses are given with parameters �0 = 2/T , τs =
−0.5T , and τp = 0.5T .

and |λ−〉, Eq. (4) becomes

i

⎛
⎝

ȧ+
ȧ0

ȧ−

⎞
⎠ =

⎛
⎝

� cot φ 0 0
0 0 0
0 0 −� tan φ

⎞
⎠

⎛
⎝

a+
a0

a−

⎞
⎠, (5)

where a+, a0, and a− are the probability amplitudes of the adi-
abatic passages. Absolutely, the diabatic transitions among the
adiabatic passages are completely eliminated by the auxiliary
pulses. As the system is initially prepared in one of the adia-
batic passages, the population evolution will be continuously
held in the corresponding passage.

To numerically compare the two approaches, STA and
STIRAP, we consider the following Gaussian pulses,

�p(t ) = �0e− (t−τp )2

T 2 , �s(t ) = �0e− (t−τs )2

T 2 , (6)

as an example. Here, �0 is the peak Rabi frequency, T is
the characteristic width, and τp and τs are the pulse delay
times. With these pulses, the mixed angles θ and φ could be
confirmed and the adiabatic passage for the system evolution
could be selected. Our task is to sufficiently and effectively
drive the population from the ground state |1〉 to the target
state |3〉.

In the counterintuitive sequence, the angle θ is initially
to be zero, and then to be π/2 at the end of the popula-
tion transfer. The population is carried by the dark adiabatic
passage |λ0〉 in STIRAP. In the adiabaticity condition, the
couplings between the adiabatic passages are fairly weak such
that the diabatic transitions among the adiabatic passages can
be sufficiently neglected and the population could be always
held in the adiabatic passage |λ0〉. If the diabatic transitions
exist in the excitation, the transfer efficiency could be cut
down, and the population may even return to the initial state.
As the pulses presented in Fig. 2, the adiabaticity condition
is destroyed by the pulse intensities. In STIRAP, the final
population of the target state |3〉 is only 77.3% owing to the
diabatic transitions depicted in Fig. 2(b). As the auxiliary
pulse �c is applied to achieve the proposal of STA, the di-
abatic transitions are completely eliminated, and the transfer
efficiency is enhanced up to the expected value of 100% in

FIG. 3. Population transfer in the intuitive pulse sequence along
the bright adiabatic passage |λ−〉 for the detuning � = 2π ×
0.1 MHz. (a) Pulse shapes for STIRAP. (b) Population evolution
for STIRAP. (c) Pulse shapes for STA. (d) Population evolution for
STA. The Gaussian pulses are given with parameters �0 = 2/T ,
τs = 0.5T , and τp = −0.5T .

Fig. 2(d). It should be noted that the auxiliary pulses �a and
�b can be ignored, since the dark-state evolution does not
involve the intermediate state |2〉.

In the intuitive sequence, the population transfer goes along
the adiabatic passage |λ+〉 or |λ−〉, which is called the bright
STIRAP. In this sequence, the mixing angle θ is initially to be
π/2, and then to be zero at the end of the population transfer.
The angle φ selects the accurate adiabatic passage correspond-
ing to the population evolution. For simplicity, we consider
the case � �= 0 where the angle φ is zero throughout the
transition. In the adiabaticity condition, this implies that the
population transfer will reside in the adiabatic passage |λ−〉
without the undesired diabatic transitions, and the desired
state transition from the initial state |1〉 to the target state |3〉
can be achieved. As the adiabaticity condition is destroyed by
the pulse intensities, the population evolution in the designed
passage |λ−〉 may jump to the other passages |λ0〉 and |λ+〉,
which may induce a loss of the transfer efficiency. As the
pulses shown in Fig. 3(a) violate the adiabaticity condition,
the transfer efficiency is only 76.7% depicted in Fig. 3(b).
When the undesired diabatic transitions are eliminated in
STA by introducing the auxiliary pulses �a, �b, and �c, the
population transfer can be exactly limited in the adiabatic
passage |λ−〉. Therefore a complete population transfer could
be achieved as Fig. 3(d) depicts.

The above two cases of counterintuitive and intuitive se-
quences demonstrate that STA is more efficient than STIRAP
for population transfer in the same pulse shapes and inten-
sities. In STIRAP, the population transfer could be designed
under the adiabaticity condition to obtain a high transfer
efficiency, but the diabatic transitions among the adiabatic
passages actually exist throughout the evolution. Thus, the
unavoidable fluctuations of the pulse intensities may destroy
the adiabaticity condition, and cause a loss of the transfer
efficiency [52]. On the other hand, in STA, the diabatic transi-
tions are completely eliminated by the auxiliary pulses, and
the transfer efficiency is more insensitive to the detunings
and Rabi frequencies. These features of STIRAP and STA
are depicted in Fig. 4. Here, plots of the final population ρ33

are shown as a function of the peak Rabi frequency �0 for
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FIG. 4. Final population ρ33 as a function of the peak Rabi fre-
quency �0 for different detunings. (a) The dark-state evolution |λ0〉.
(b) The bright-state evolution |λ−〉. The solid red line is for STA, and
the others are for STIRAP. Dashed blue, dotted cyan, and dash-dotted
black lines correspond to the detunings 0.2π , 0.8π , and 1.2π MHz.

different detunings. In STIRAP, to obtain a complete popula-
tion transfer, the Rabi frequency should be sufficiently strong
both in the bright and dark adiabatic passages to match the
adiabaticity condition, and a large detuning needs a strong
Rabi frequency. However, in STA, the complete population
transfer can be sufficiently achieved beyond the adiabaticity
condition, and a fast progress could be induced by the strong
pulses. The final population in STA can be always kept at the
high efficiency of 100%, as the Rabi frequency and detuning
do not change the transfer efficiency. Therefore, we can obtain
the conclusion that STA is faster than STIRAP to control the
population transfer.

III. SPONTANEOUS EMISSION WITHIN
A THREE-STATE SYSTEM

Considering spontaneous emission from the excited state
|2〉, we use the master (Liouville) equation to describe the dy-
namics of the system. Generally, as the spontaneous emission
is phenomenologically described, the master equation takes
the following form [53,54]:

iρ̇ = [H (t ), ρ] + D, (7)

where the matrix D is relative to the spontaneous emission,

D = − i

2

⎛
⎝

−2�1ρ22 (�1 + �2)ρ12 0
(�1 + �2)ρ21 (�1 + �2)ρ22 (�1 + �2)ρ23

0 (�1 + �2)ρ32 −2�2ρ22

⎞
⎠,

(8)

with �1 and �3 being the decay rates of spontaneous emis-
sion from the exited state |2〉. The relative decay rate for
each pair of states is depicted by the green wavy line in
Fig. 1. We assume that the two decay rates are equal to
simplify the treatment and introduce a dimensionless decay
rate γ = �T . ρ is the density matrix in the bare state |m〉,
i.e., ρmn = 〈m|ρ|n〉 (m, n = 1, 2, 3). Equation (7) is solved
with the condition that the system is initially in the state |1〉,
ρ11(−∞) = 1, ρmn(−∞) = 0, (m, n �= 1).

A unique feature for population transfer in the counterintu-
itive sequence is that the intermediate state |2〉 is unpopulated
along the dark adiabatic passage |λ0〉. In STIRAP, the pump
and the stokes pulses are usually designed under the adiabatic-
ity condition to suppress the undesired diabatic transitions.
Even though the probabilities of the diabatic transitions are
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FIG. 5. Final population ρ33 as a function of the spontaneous
emission rate γ with the detuning � = 2π × 0.1 MHz. (a) The
dark-state evolution |λ0〉 with the peak Rabi frequency �0 = 6/T .
(b) The bright-state evolution |λ−〉 with the peak Rabi frequency
�0 = 3.2/T . The solid red and dashed blue lines depict the STA and
STIRAP, respectively.

sufficiently small, the intermediate state |2〉 could be popu-
lated during the excitation. Therefore, the population losses
may occur owing to diabatic transitions from the passage |λ0〉
to the passages |λ±〉. The other mechanism for population
losses in STIRAP is quantum overdamping. The population
remains predominantly in the initial state; the transfer to state
|3〉 is suppressed at large �. These mechanisms for population
losses via STIRAP are depicted by the dashed blue line in Fig.
5(a). When the spontaneous emission rate is sufficiently small
(γ � 1), the diabatic transitions are still perfectly suppressed,
the population evolution is approximately in the dark adiabatic
passage |λ0〉 and the effect of dissipation could be neglected
with a high transfer efficiency of 100%. As the spontaneous
emission becomes strong (γ ∼ 1), the adiabaticity condition
is destroyed by the spontaneous emission, the intermediate
state |2〉 is obviously populated according to the diabatic tran-
sitions, and the population loss is presented. For a large decay
rate (γ 	 1), the population is held in the initial state |1〉.
Different from STIRAP, STA has the property to completely
eliminate the diabatic transitions; the population evolution
exactly goes along the dark adiabatic passage |λ0〉 with no
visiting to the state |2〉. Therefore, the spontaneous emission
has no contribution to the population losses, and the final
population of the state |3〉 could be held in a high transfer
efficiency of 100% depicted by the solid red line in Fig. 5(a).

In the intuitive sequence, the intermediate state |2〉 is no-
tably involved in the population transfer along the bright
adiabatic passage |λ−〉. The population losses for the two
proposals are quite equal in the weak decay rate (γ � 1).
When the spontaneous emission becomes strong (γ ∼ 1), the
transfer efficiency of STIRAP seems higher than that of STA.
The reason for this phenomenon is that the diabatic transitions
in STIRAP induce a dark-state evolution. Population evolu-
tion initially in the adiabatic passage |λ−〉 is excited to the
dark adiabatic passage |λ0〉 where spontaneous emission has
no contribution to the population losses. When the sponta-
neous emission is large enough to decouple the intermediate
state |2〉 (γ 	 1), a very interesting phenomenon is presented
that the adiabatic passage |λ−〉 = sin θ cos φ|1〉 − sin φ|2〉 +
cos θ cos φ|3〉 is simplified as |λs

−〉 = sin θ |1〉 + cos θ |3〉. This
adiabatic passage is similar to the dark adiabatic passage |λ0〉,
thus the population can be completely transferred to the target
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state |3〉 in STA depicted in Fig. 5(b). In STIRAP, although
the three-state system can degenerate to be a two-state system
with the states |1〉 and |3〉, there are no auxiliary pulses to
drive the two states, and the population remains in the initial
state |1〉.

We should note that the pump and Stokes pulses in this
section are designed in the adiabaticity condition to drive the
population transfer. In the closed system with no spontaneous
emission, it is clear to see that the diabatic transitions among
the adiabatic states are both neglected in the two approaches,
STA and STIRAP. As the spontaneous emission is introduced
to the intermediate state |2〉, the system initially in an adiabatic
regime may undergo a transition to a regime where adiabatic-
ity breaks down and the diabatic transitions may occur during
the population evolution [55,56]. However, as the complete
population transfer in STA can be beyond the adiabaticity con-
dition, and the diabatic transitions are completely eliminated,
the population losses directly come from the intermediate
state |2〉. In the weak decay region (γ � 1), the spontaneous
emission is not strong enough to trigger the diabatic transi-
tions; the population evolutions of the two approaches are
quite similar with the same transfer efficiency depicted in
Fig. 5. As the decay rate becomes strong enough to trigger
the diabatic transitions (γ ∼ 1), the differences are presented
in STA and STIRAP. In STA, the spontaneous emission has no
effect on the population transfer in the dark adiabatic passage
|λ0〉. The population losses are only presented in the bright
adiabatic passage |λ−〉 where the intermediate state |2〉 is
involved. In STIRAP, owing to the diabatic transitions induced
by the spontaneous emission, the transfer efficiency decreases
in the dark adiabatic passage |λ0〉, but seems higher in the
bright adiabatic passage |λ−〉. When the decay rate becomes
very strong (γ 	 1), the transfer efficiency in STIRAP is
quite low; even the population remains in the initial state
|1〉. However, in STA, the transfer efficiency goes back to
be at a high level in the bright adiabatic passage |λ−〉, and the
spontaneous emission still has no effect on the dark adiabatic
passage |λ0〉.

IV. CONCLUSIONS

In summary, we have demonstrated that STA is superior
to STIRAP for population transfer. As the auxiliary pulses

are introduced in STIRAP to drive the population transfer,
the diabatic transitions among the adiabatic passages are com-
pletely eliminated. Therefore, population transfer in STA can
be strictly limited in the initial designed adiabatic passage
to achieve the desired target. We have shown that STA can
achieve a more effective population transfer than STIRAP in
the same situation both in the dark and bright adiabatic pas-
sages. The efficiency of the target state in STA is always kept
on a high level of 100% in different intensities of detunings
and Rabi frequencies.

Importantly, we have examined the effects of spontaneous
emission from the intermediate state |2〉 on the population
dynamics in a three-state system. Compared with STIRAP, the
diabatic transition in STA is still suppressed, and population
transfer is robust with a high efficiency against the sponta-
neous emission. In the counterintuitive pulse sequence, the
population dynamics goes along the dark adiabatic passage
|λ0〉 where the intermediate state |2〉 is not involved, thus
spontaneous emission has no contribution to the population
losses. On the other hand, in the intuitive pulse sequence, the
population dynamics goes along the bright adiabatic passage
|λ−〉; the population losses come from the direct dissipation
from the intermediate state |2〉. A remarkable and interesting
phenomenon is that the transfer efficiency may go back to
remain at a high level, when the system is overdamping (γ 	
1). We should note that quantum overdamping will completely
separate the intermediate state |2〉 from the other states in
STA, so the three-state system can be decoupled to be a two-
state model with states |1〉 and |3〉. With the auxiliary pulses
in STA, complete population transfer could be realized from
the initial state |1〉 to the target state |3〉, and the spontaneous
emission from the intermediate state |2〉 can be sufficiently
ignored.
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