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Coarse-graining master equation for periodically driven systems
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We analyze Lindblad-Gorini-Kossakowski-Sudarshan-type generators for selected periodically driven open
quantum systems. All these generators can be obtained by temporal coarse-graining procedures, and we compare
different coarse-graining schemes. Similarly to undriven systems, we find that a dynamically adapted coarse-
graining time, effectively yielding non-Markovian dynamics by interpolating through a series of different but
individually Markovian solutions, gives the best results among the different coarse-graining schemes, albeit at
the highest computational cost.
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I. INTRODUCTION

While the propagation of undriven closed quantum systems
via Schrödinger’s equation may be challenging for many de-
grees of freedom, it can be calculated with standard methods.
This changes when the Hamiltonian is subject to an external
driving, when time ordering becomes relevant. Even for the
simple case of periodic driving, where Floquet theory [1,2]
applies, the exact calculation of the unitary propagator may
be notoriously difficult [3–5]. In addition, it is then often hid-
den that the time-dependent variation of external parameters
requires that the system is coupled in some way to an outside
world, which to be complete would actually require one to
model the system as open. While open quantum systems in
the absence of driving are well studied and an interesting sub-
ject on their own [6–8], the joint discussion of the effects of
system-reservoir coupling and periodic driving is challenging.

However, with, in particular, periodic types of driv-
ing being experimentally quite feasible with current stan-
dards [9–13], the derivation of proper dissipators for period-
ically driven open systems is of great concern. In principle,
it is formally possible to perform the same approxima-
tions that lead to Lindblad-Gorini-Kossakowski-Sudarshan
(LGKS) master equations [14,15] for an undriven system as
for its driven version [3,16–19]. In the interaction picture,
the application of Born, Markov, and secular approxima-
tions generically leads to LGKS master equations that come
in handy due to their stability and—despite the lack of
thermalization [20,21]—their transparent thermodynamic in-
terpretation [22]. However, it has also frequently been noted
that, in particular, the involved secular approximation may
lead to strong artifacts [23,24]. An intuitive explanation for
this is that the level spacing in the extended (Floquet) space
may become very small, which conflicts with the secular
approximation [25]. Therefore traditional Floquet-LGKS ap-
proaches have been questioned in many works [23,26].

*g.schaller@hzdr.de

Already for undriven systems, it can be argued that the
(non-LGKS) Redfield equation applied in the proper regime
only leads to small violations of density matrix properties
in exchange for a closer description of physical reality [27].
As a practical benefit, improper density matrices can then be
used as an indicator for leaving the region of validity of such
perturbative schemes, whereas such a witness is missing for
LGKS-based approaches.

Another viewpoint is to preserve the formal LGKS form
of the generator while improving in some ways the involved
approximations [28]. There are various routes to achieve this,
e.g., by formally restoring the LGKS form by discarding its
subspace with negative eigenvalues [29,30], by performing
only a partial secular approximation [31,32], or by taking
the effects of the reservoir on the system pointer basis into
account [33–36]. While these approaches apply to undriven
systems, we would like to focus on an approach that can be
easily combined with periodic driving.

Such an approach that can also be well motivated using
a microscopic derivation is temporal coarse graining [27,37–
47]. Intuitively, it can be understood as an approximate
Markovian representation of the reduced exact solution over
a chosen coarse-graining time interval. The freedom in choos-
ing the coarse-graining interval is exemplified in Fig. 1 and
shall be the subject of this paper with a focus on periodically
driven systems. We begin with a brief introduction to the
method in Sec. II and then compare various dissipators for
three examples of driven open systems in Secs. III, IV, and V.

II. COARSE-GRAINING METHODS FOR PERIODICALLY
DRIVEN OPEN SYSTEMS

The starting point of our considerations is a representation
of the Hamiltonian of the full universe in the form

H (t ) = HS (t ) +
∑

α

Aα ⊗ Bα + HB, (1)

with periodically driven system Hamiltonian HS (t + T ) =
HS (t ), system and bath coupling operators Aα and Bα ,
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FIG. 1. Sketch illustrating the different coarse-graining
timescales to derive a master equation in the weak-coupling limit.
For period coarse graining (PCG) (orange) the coarse graining
extends over one period of the driving field τ = T . For dynamical
coarse graining (DCG) (purple) the coarse-graining time is chosen
dynamically as the physical time. For τ → ∞ all methods recover
the Born-Markov-secular (BMS) limit (red).

respectively, and reservoir Hamiltonian HB. We do not nec-
essarily require the coupling operators to be individually
Hermitian, but the total interaction Hamiltonian is Hermi-

tian: HI = ∑
α Aα ⊗ Bα = H†

I . Furthermore, we assume the
system coupling operators Aα to be normalized with re-
spect to some norm, such that the unit and strength of the
interaction are carried by the bath coupling operators Bα .
Since system and bath operators act on different Hilbert
spaces, we assume from the beginning that [HS, HB] = 0 and
also [Aα, Bβ ] = 0, [Aα, HB] = 0, [Bα, HS] = 0. In an inter-
action picture with respect to H0(t ) = HS (t ) + HB (marked
by bold symbols), we can approximate the time evolu-
tion operator U (t0 + τ, t0). The coarse-graining approach
originates from the attempt to match the reduced evolu-
tion of the open quantum system with a time-local master
equation

eLτ τ ρ0
S

!= TrB
{
U (t0 + τ, t0)ρ0

S ⊗ ρ0
BU†(t0 + τ, t0)

}
. (2)

Here, we have already put an index Lτ to the dissipation
superoperator to highlight the fact that with a constant su-
peroperator L it will in general not be possible to capture
the exact reduced dynamics for all times, which would re-
quire a Kraus representation [48]. For weak system-reservoir
interaction (or small propagation times τ ) we can use that
U (t0 + τ, t0) is close to the identity and Lτ is small. One
can then expand the expressions on both sides, and assum-
ing furthermore that Tr{Bαρ0

B} = 0, one arrives at a defining
equation for the coarse-graining generator; see Appendix A 1
for details. Choosing for simplicity t0 = 0, it reads

LτρS = −i

[
1

2iτ

∫ τ

0
dt1dt2

∑
αᾱ

Cαᾱ (t1, t2)sgn(t1 − t2)Aα (t1)Aᾱ (t2), ρS

]
+ 1

τ

∫ τ

0
dt1dt2

∑
αᾱ

Cαᾱ (t1, t2)

×
[

Aᾱ (t2)ρSAα (t1) − 1

2
{Aα (t1)Aᾱ (t2), ρS}

]
, (3)

with bath correlation functions Cαᾱ (t1, t2) = TrB{Bα(t1)Bᾱ(t2)ρ0
B} = Tr{Bα(t1 − t2)Bβρ0

B}, where the last equality holds when
[HB, ρ0

B] = 0. Here, the interaction picture representation of the system coupling operators is formally given by Aα(t ) =
U †

S (t )AαUS (t ) with US (t ) = T {e−i
∫ t

0 HS (t ′ )dt ′ } and T denoting the time-ordering operator. One can show that for any kind of
driving and also for any fixed choice of t0 and τ , the above coarse-graining dissipator Lτ is of LGKS form [47,49]. This
distinguishes the above generator from other coarse-graining approaches that arise from a temporal averaging of Redfield
equations, which require subsequent secular-type approximations to reach an LGKS form [50].

Thus we can generally split the generator into a unitary part and a dissipative one

ρ̇S = −i
[
Hτ

LS, ρS
] + DτρS, (4)

which specifically for periodic driving have the single-integral expressions

Hτ
LS =

∫
dω

∑
αᾱ

σαᾱ (ω)
1

2i

∑
nn′

∑
abcd

f τ
0 (Ēa − Ēb + n�, Ēc − Ēd + n′�,ω)An

α,abA−n′
ᾱ,dcLabLdc,

DτρS =
∫

dω
∑
αᾱ

γαᾱ (ω)
∑
nn′

∑
abcd

f τ
0 (Ēa − Ēb + n�, Ēc − Ēd + n′�,ω)A+n

α,abA−n′
ᾱ,dc

[
LdcρSLab − 1

2
{LabLdc, ρS}

]
. (5)

Here, the first term converges for large τ to the LGKS
Lamb-shift term, and the second term denotes the dissipative
influence of the reservoir. The functions σαᾱ (ω) as well as
γαᾱ (ω) denote odd and even Fourier transforms of the reser-
voir correlation functions (A8), f τ

0 (Ea, Eb, ω) is a nascent
δ function, the An

α,ab are Fourier components of the system
coupling operator matrix elements, the quasienergies Ēa ∈

[−�/2,+�/2) are chosen in the first Brillouin zone defined
by the period of the driving � = 2π/T , and the Lindblad op-
erators Lab generate transitions between Floquet Hamiltonian
eigenstates; see Appendix A 1 for the precise definitions.

The different coarse-graining schemes sketched in Fig. 1
may lead to different LGKS-type dissipators. For later refer-
ence, we coin the coarse-graining schemes dynamical coarse
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graining [39] (DCG) with t0 = 0 and τ = t and period coarse
graining (PCG) with t0 = 0 and τ = T . Details of these
schemes are found in Appendixes A 3 and A 4, respectively.
Furthermore, we remark that the limit of very large coarse-
graining times τ → ∞ allows for significant simplifications
(see Appendix A 5), which, however, do not always coincide
with the frequently used Born-Markov-secular (BMS) Floquet
master equation exposed in Appendix A 6 and a further sim-
plified variant thereof—the Born-Markov-ultrasecular (BMU)
master equation—in Appendix A 7.

Our problem is defined by three physical timescales. We
will be concerned with driven two-level systems, where the
natural internal timescale of the system dynamics is defined
by their level splitting �E via the relation τint = 2π/�E .
Then, we have the obvious timescale given by the period of
the external driving τdrv = 2π/� = T . Finally, the reservoir
timescales are reflected in the decay timescale of the reservoir
correlation function τdec = 2π/ωc, where ωc is a cutoff in the
reservoir spectral density. We are going to investigate how
the technical timescale—the coarse-graining time τ—can be
optimally chosen depending on the physical ones.

In what follows, we will compare the solutions to various
periodically driven problems that are based on these different
coarse-graining approaches; that is, for the DCG approach
we evaluate Eq. (5) with τ = t , for the PCG approach we
use Eq. (5) with τ = T , and for the BMS and BMU results
we use Eqs. (A16) and (A17), respectively. Furthermore, in
our calculations we will for simplicity neglect the Hermitian
correction term to the Hamiltonian HLS in all perturbative
approaches. Although for the particular pure-dephasing model
considered below this term has no effect anyway, in general
it can only be neglected in the weak-coupling regime where
|H ...

LS| � |HS|.

III. PURE-DEPHASING MODELS

By the term “pure-dephasing models” we summarize
models where the interaction commutes with the system
Hamiltonian at all times, i.e., system and reservoir cannot
exchange energy. The Hamiltonian of a general driven-system
pure-dephasing model with a reservoir of bosonic oscillators
is then given by

H (t ) = HS (t ) + A ⊗
∑

k

(hkbk + h∗
k b†

k ) +
∑

k

ωkb†
kbk,

[HS (t ), A] = 0. (6)

The assumption of commuting coupling operator A and sys-
tem Hamiltonian HS (t ) allows us to solve the dynamics
exactly; see Appendix B.

A. Exact solution

Specifically for a driven two-level system with HS =
σ z[�

2 + λ cos(�t )] with the single system coupling operator
A = σ z we obtain that the populations in the σ z eigenbasis
remain constant

ρS,00(t ) = ρ0
S,00, ρS,11(t ) = ρ0

S,11, (7)

whereas the coherences decay oscillatorily according to

ρS,10(t ) = e+i(�·t+2 λ
�

sin(�t ))

× exp

{
− 4

π

∫ ∞

−∞
dωγ (ω)

sin2
(

ωt
2

)
ω2

}
ρ0

S,10. (8)

Here, the Fourier transform of the single reservoir cor-
relation function is γ (ω) = �(ω)[1 + nB(ω)] with spectral
density �(ω) ≡ 2π

∑
k |hk|2δ(ω − ωk ) [analytically contin-

ued via �(−ω) = −�(ω) to the complete real axis], and the
Bose distribution is nB(ω) = [eβω − 1]−1. In the absence of
driving (λ → 0), this falls back to the known pure-dephasing
solution of the spin-boson model; see, e.g., Ref. [38]. Addi-
tionally, we remark that one may also obtain the above result
from the undriven model by a gauge transform.

B. Master equation solutions

We can now compare this exact solution with the vari-
ous approximate approaches discussed before by dropping
the indices as above, i.e., using A1 = A = σ z and γ11(ω) =
γ (ω) = �(ω)[1 + nB(ω)] for coupling operator and Fourier
transform of the reservoir correlation function. Notably, the
matrix elements of the coupling operators become rather
trivial: An

1,ab = δn,0δab 〈ā| σ z |ā〉, where |ā〉 are Floquet Hamil-
tonian eigenstates. To compute them, it suffices to realize that
for this simple problem the system Floquet Hamiltonian is
just H̄ = �

2 σ z, such that its eigenstates are trivial. All master
equations capture the constant populations (7).

The coarse-graining solution for fixed coarse-graining time
τ predicts for the coherences a decay according to

ρcg,10(t ) = e+i
(
�·t+2 λ

�
sin(�t )

)

× exp

{
− 4

π

t

τ

∫ ∞

−∞
γ (ω)

sin2( ωτ
2 )

ω2
dω

}
ρ0

10, (9)

where the PCG approach is recovered for τ = 2π/�.
Clearly, for DCG (τ = t), the above equation exactly re-

produces the exact solution (8).
Furthermore, for this model the BMS and BMU solutions

coincide:

ρBM,10(t ) = e+i
(
�·t+2 λ

�
sin(�t )

)
e−2γ (0)tρ0

10, (10)

which can also be obtained by virtue of (A10) from Eq. (9) in
the limit τ → ∞.

C. Comparison

We analytically find that the DCG approach [adaptively
choosing τ = t and t0 = 0 in Eq. (5)] always reproduces the
exact solution. We also find analytically from the trivial struc-
ture of the model that BMS (A16) and BMU (A17) solutions
must coincide. In Fig. 2 one can see that the additional driving
modifies the decay of coherences by superimposing small
additional oscillations to the undriven solution (green dashed
curve). Apart from that, we see that the exact reduced dy-
namics cannot be reproduced by a single Markovian generator
(such as PCG, BMS, or BMU). Figure 2 has been computed
for parameters with ωc > � � � (τdec < τdrv � τint ).
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FIG. 2. Plot of 〈σ x〉/2 comparing coarse-graining PCG for τ =
T = 2π

�
(brown curve) and the BMS-BMU solution (solid red and

dashed orange curves) to the exact analytical solution (blue curve)
and the exact solution in the absence of driving (dashed green curve).
BMS and BMU solutions are identical, and the DCG approach (τ =
t) reproduces the exact solution. Inset: By construction, PCG (brown
curve) and DCG solutions (blue curve) intersect at t = T (vertical
dashed line). Parameters: � = 10 �, λ = 1

2 �, �(ω) = �0ωe−|ω|/ωc

with �0 = 0.05, ωc = 20 �, β � = 1, ρ0
S = 1/2(1 + σ x ).

When we consider slower drivings ωc � � = � (τdec �
τdrv = τint), we observe that also the PCG method converges
towards the exact solution (see Fig. 3), whereas the BMS
approach fails to capture the exact dynamics. The failure of
the BMS approach in this limit is not too surprising, given that
it is typically derived for fast driving. The fact that for slow
driving it suffices to coarse grain over the first period (PCG)
to get a sufficiently accurate dissipator is a consequence of the
relatively high temperatures chosen. This can be formally seen
by performing a variable transform ω = ω′t/τ in (9) and using
that in the considered range of parameters γ (�t/(2π )ω) ≈
�0/β ≈ γ (ω). For lower temperatures (not shown) and other
models (see below) we do not see such a clear tendency.

Since pure-dephasing-type models are a very specific
model class, we consider models that allow the exchange of
energy between system and reservoir below.
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FIG. 3. Analogous to Fig. 2, but for slower driving � = �. PCG
and the exact solution agree much better.

IV. CIRCULAR DRIVING

As a second model, we consider a periodically driven open
two-level system of the form

H (t ) = �

2
σ z + Pσ+e−i�t + P∗σ−e+i�t

+
∑

k

(σ+hkbk + σ−h∗
k b†

k ) +
∑

k

ωkb†
kbk, (11)

where P denotes a driving amplitude. For P = 0 and a vacuum
reservoir, the model is exactly solvable [7,51], but we are here
interested in the case of finite driving amplitudes but weak
system-reservoir coupling. We therefore interpret the DCG
solution as a benchmark for this model; see Appendix A 2.

Before treating the model with our standard approaches,
we demonstrate that the model can be mapped to a different
frame where the Hamiltonian becomes time independent. In
this time-independent frame, a standard master equation can
be derived that is equivalent to the Floquet (BMS) master
equation in the original frame.

A. Mapping to a time-independent frame

By employing the unitary gauge transform

V (t ) = exp

[
−i

(
�t

2
σ z + �t

∑
k

b†
kbk

)]
(12)

one can see from the observations

V †(t )σ zV (t ) = σ z, V †(t )σ±V (t ) = σ±e±i�t ,
(13)

V †(t )bkV (t ) = e−i�t bk, V †(t )b†
kV (t ) = e+i�t b†

k,

that the total Hamiltonian becomes time independent under
the transformation

V †(t )H (t )V (t ) = �

2
σ z + Pσ+ + P∗σ−

+
∑

k

(σ+hkbk + σ−h∗
k b†

k ) +
∑

k

ωkb†
kbk .

(14)

Accordingly, by transforming into the corresponding picture,
the expectation value of an observable O can be written as

〈O〉 = Tr{OU (t )ρ0U
†(t )} ≡ Tr{Õ(t )Ũ (t )ρ0Ũ

†(t )}, (15)

with the effective time evolution operator Ũ (t ) = V †(t )U (t )
and transformed observable Õ(t ) = V †(t )OV (t ). The effec-
tive time evolution operator evolves according to a time-
independent picture

d

dt
Ũ (t ) = −iH̃Ũ (t ),

H̃ = V †(t )H (t )V (t ) + iV̇V

= � − �

2
σ z + Pσ+ + P∗σ−

+
∑

k

(σ+hkbk + σ−h∗
k b†

k ) +
∑

k

(ωk − �)b†
kbk,

(16)

such that we can write Ũ (t ) = e−iH̃t .
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Therefore, under the gauge transform (14), the time evolu-
tion is just that of a time-independent open two-level system.
In this picture, we can derive the BMS master equation for
an undriven system. Formally, this master equation looks like
Eq. (A16) but keeps only the n = 0 term and instead of
the Floquet Hamiltonian eigenstates and eigenvalues uses the
eigenstates and eigenvalues of H̃S = �−�

2 σ z + Pσ+ + P∗σ−.
In the last line of the above equation, we can see that the

reservoir single-particle energies are shifted, which eventu-
ally also affects the Kubo-Martin-Schwinger [52–54] relation
obeyed by the reservoir correlation function. Therefore the
resulting master equation does not thermalize even in the
time-independent picture but reaches some nonequilibrium
steady state, which—after transforming back to the origi-
nal picture—exhibits a time dependence with the period of
the driving. This becomes more evident in a simpler long-
term analysis: For nondegenerate eigenvalues of the effective
system Hamiltonian H̃S , the populations decouple from the
coherences, and the evolution is given by the simple rate equa-
tion ˙̃ρS,aa = ∑

b γab,abρ̃S,bb − ∑
b γba,baρ̃S,aa, with transition

rates from energy level b to a given by γab,ab. The steady-state
solution is then given by

¯̃ρS = P− |−〉 〈−| + (1 − P−) |+〉 〈+| ,
P− = γ−+,−+

γ−+,−+ + γ+−,+−
, (17)

where |−〉 and |+〉 denote the ground and excited states of H̃S ,
respectively. For our example the two transition rates read

γ−+,−+ = γ̃12(E+ − E−)| 〈−| σ− |+〉 |2

+ γ̃21(E+ − E−)| 〈−| σ+ |+〉 |2,
(18)

γ+−,+− = γ̃12(E− − E+)| 〈+| σ− |−〉 |2

+ γ̃21(E− − E+)| 〈+| σ+ |−〉 |2,
with γ̃12(ω) = �(ω + �)�(ω + �)[1 + nB(ω + �)] and γ̃21

(ω) = �(−ω + �)�(−ω + �)nB(−ω + �) exemplifying
the broken Kubo-Martin-Schwinger relation γ̃21(−ω)

γ̃12(+ω) =
e−β(ω+�). In this picture, system observables can be
computed via

〈O〉 → TrS
{
e+i�t/2σ z

Oe−i�t/2σ z
ρ̃S (t )

}
, (19)

where for large times we can insert ρ̃(t ) → ¯̃ρS as given by
Eq. (17).

We find numerically that the solutions derived in this way
fully agree with the BMS solutions in the original frame (solid
red curves in Figs. 4 and 5). This is not surprising as the gauge
transformation that we used should not change the general
outcome. In addition, we checked that the simplified long-
term dynamics agrees with the full time-dependent solution
for large times.

B. Master equation solutions

We now go back to the original Schrödinger picture repre-
sentation of Eq. (11), where we can identify system coupling
operators A1 = σ+ and A2 = σ−. Additionally, the nonvan-
ishing correlation functions become γ12(ω) = �(ω)�(ω)[1 +
nB(ω)] and γ21(ω) = �(−ω)�(−ω)nB(−ω). With a gauge
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cording to the undriven DCG (dashed green curve), driven DCG
(purple crosses), PCG (brown curve), BMS (solid red curve), and
BMU (dashed orange curve) solutions. The grid lines mark multiples
of the driving period T . At long times, the DCG, BMS, and BMU
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2 � [with Floquet energies
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2 �) in the first Brillouin zone], β � = 0.1, �0 = 0.05,
ωc = 15 �, ρ0

S = 1/2[1 + 0.6σ x + 0.4σ z].

transform analogous to (12) but only involving the system
parts, one can find the exact time evolution operator of the
driven system alone, and by demanding periodicity of the
kick operator, one finds that the Floquet Hamiltonian and kick
operator are given by

H̄ = � − �

2
σ z + Pσ+ + P∗σ− − �

2
1,

Ukick (t ) = exp

(
−i

�t

2
(1 + σ z )

)
. (20)
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FIG. 5. Analogous to Fig. 4 but for 〈σ z〉. By construction, for
short times the DCG solution is superior to the other perturbative
methods, but again the DCG, BMS, and BMU solutions converge for
large times.
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This allows us to compute the coarse-graining dissipators
DCG (Appendix A 3) and PCG (Appendix A 4) as well as the
BMS (Appendix A 6) and BMU (Appendix A 7) dissipators.

C. Comparison

We compare the resulting dynamics with the previously
discussed asymptotic solution in Fig. 4. At steady state, we see
a convincing agreement of the BMS and BMU (solid red and
dashed orange curves) approaches with the DCG approach.
Additionally, we checked that the BMS approach fully agrees
with the master equation solution from the time-independent
picture (not shown). In the short-term limit, however, some
differences become visible (left inset). In contrast, the PCG
solution (brown curve) captures the short-term evolution but
fails to match the DCG solution for large times.

Analogous results hold for other expectation values; see
Fig. 5. Here, one finds strong differences only transiently,
where for short times the benchmark DCG approach by con-
struction must approximate the unknown exact solution for
the chosen parameters.

These figures have been computed for ωc � � > �, i.e.,
for τdec � τdrv < τint, which explains the good long-term
agreement of the BMS and BMU solutions.

We also explored the regime of faster driving (ωc > � �
�), where the BMS solution performed also transiently better,
and the regime of slower driving (ωc � � ≈ �), where the
BMS solution performed (transiently) worse. However, unlike
Sec. III, the PCG approach did not approximate the DCG
results very well for all times and observables at slow drivings.

V. FAST-DRIVING SOLUTION

As a last example, we consider systems where the driving
breaks the pure-dephasing character of the system

H (t ) = H0
S + λ cos(�t )C + A ⊗

∑
k

(hkbk + h∗
k b†

k )

+
∑

k

ωkb†
kbk, (21)

with system Hamiltonian H0
S and system coupling operator

A = A† fulfilling only the constraint [H0
S , A] = 0 and system

driving operator C = C† with in general [H0
S ,C] �= 0. Under a

naive rotating wave approximation (RWA), the contribution of
the driving vanishes completely, and in the case of a qubit the
exact solution (8) from the previous section in the absence of
driving (λ = 0) applies for all values of the system-reservoir
coupling strength. However, to go beyond the naive RWA,
we transform into an interaction picture with respect to the
driving

U1(t ) = e−iλ/� sin(�t )C, (22)

and in this picture [marked by a tilde, e.g., via Ã(t ) =
U †

1 (t )AU1(t )] the transformed Hamiltonian assumes a time-
dependent pure-dephasing form

H̃ (t ) = H̃0
S (t ) + Ã(t ) ⊗

∑
k

(hkbk + h∗
k b†

k ) +
∑

k

ωkb†
kbk,

(23)

where we still have the equal-time commutation
[H̃0

S (t ), Ã(t )] = U †
1 (t )[H0

S , A]U1(t ) = 0. Nevertheless, we
cannot apply the naive polaron treatment of Appendix B,
since now also the coupling operator has picked up a periodic
time dependence. Then, the polaron transform would become
time dependent as well, leading to an additional term in
the effective Hamiltonian, such that the system-reservoir
interaction would just be moved elsewhere.

However, depending on the problem, one may have the
situation that also the time averages of the operators

H̄0
S ≡ 1

T

∫ T

0
H̃0

S (t )dt, Ā ≡ 1

T

∫ T

0
Ã(t )dt (24)

commute with each other [H̄0
S , Ā] = 0, and in this case the

Hamiltonian after an RWA in the interaction picture

H̄tot = H̄0
S + Ā ⊗

∑
k

(hkbk + h∗
k b†

k ) +
∑

k

ωkb†
kbk (25)

is of pure-dephasing type and can be solved with standard
methods; see Appendix C for details.

The transformation (22) is of course not equivalent to the
interaction picture representation. However, under the RWA in
this transformed frame, the time evolution operator of the sys-
tem becomes US (t ) ≈ U1(t )e−iH̄0

S t , such that we can identify
approximations to kick operator Ukick (t ) ≈ U1(t ) and system
Floquet Hamiltonian H̄ ≈ H̄0

S , respectively.

A. Fast-driving benchmark

Specifically, for a two-level system with

H0
S = �

2
σ z, A = σ z, C = σ x, (26)

we obtain with the Fourier decomposition

Ã(t ) = U †
1 (t )σ zU1(t )

= σ z
∞∑

n=−∞
J2n

(
2λ

�

)
ei2n�t

− iσ y
∞∑

n=−∞
J2n+1

(
2λ

�

)
ei(2n+1)�t (27)

(where Jn(x) denote the Bessel functions of the first kind [55])
that this method—under the RWA in the transformed frame—
yields the following dynamics:

〈σ x〉 = [cos (μ1� · t )〈σ x〉0 − sin (μ1� · t )〈σ y〉0]�(t ),

〈σ y〉 = − sin

(
2λ

�
sin(�t )

)
〈σ z〉0 + cos

(
2λ

�
sin(�t )

)

× [sin (μ1� · t )〈σ x〉0 + cos (μ1� · t )〈σ y〉0]�(t ),

〈σ z〉 = + cos

(
2λ

�
sin(�t )

)
〈σ z〉0 + sin

(
2λ

�
sin(�t )

)

× [sin (μ1� · t )〈σ x〉0 + cos (μ1� · t )〈σ y〉0]�(t ),
(28)

with �(t ) ≡ exp{− 4
π

(μ1)2
∫ ∞
−∞ γ (ω)

sin2( ωt
2 )

ω2 dω} and μ1 ≡
J0( 2λ

�
). Details on this can be found in Appendix C by in-

serting the expressions for a two-level system into Eq. (C4).
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In the absence of driving λ → 0 one can check with μ1 → 1
[as J0( 2λ

�
) → 1 for λ → 0] that this falls back to the exact

pure-dephasing solution [38,56] with constant populations (7)
and decaying coherences (8).

Furthermore, at vanishing system-reservoir coupling we
have �(t ) → 1, where one can immediately verify that the pu-
rity of an initial state is preserved. Finally, we can see that for
reasonable spectral densities we find that limt→∞ �(t ) = 0,
such that the long-term asymptotics of (28) is given by

〈σ y〉 → − sin

(
2λ

�
sin(�t )

)
〈σ z〉0,

(29)

〈σ z〉 → + cos

(
2λ

�
sin(�t )

)
〈σ z〉0.

Importantly, we stress that the fast-driving solution is valid
also for stronger system-reservoir couplings [57]. One can
extend this perturbative scheme by transforming Eq. (23)
into yet another picture and perform the RWA then in this
frame. Doing so has for the parameters considered not led to
significant changes, which makes us believe that the above
fast-driving solution can for large � indeed be considered a
benchmark solution.

B. Master equation solutions

Since we are interested in the fast-driving regime here,
we consider kick operator Ukick (t ) ≈ exp{−iλ/� sin(�t )σ x}
and system Floquet Hamiltonian H̄ ≈ �

2 J0( 2λ
�

)σ z also by
applying the RWA in the transformed frame. Considering
the scaling of the Bessel functions at small arguments, we
therefore consistently only keep the lowest-order terms with
n ∈ {−1, 0,+1} in Eq. (27). Then, the coupling operator in
the interaction picture can be approximately written as

A(t ) ≈ J0

(
2λ

�

)
σ z + 2 sin(�t )J1

(
2λ

�

)
e+iH̄tσ ye−iH̄t

+ O

{
λ2

�2

}
, (30)

which suffices to set up all master equations. We have numer-
ically checked convergence in the shown parameter regime by
considering also the case n ∈ {−2, . . . ,+2} (not shown).

C. Comparison

In the limit of both fast driving and weak coupling we can
compare the benchmark solution with the perturbative PCG,
DCG, BMS, and BMU approaches. The expectation value
〈σ x〉 is shown in Fig. 6. One can see that only the BMU
(dashed orange curve) and PCG (brown curve) solutions fail
to capture the correct dynamics, whereas the BMS (solid red
curve) and DCG (symbols) solutions closely approximate it.
It should be kept in mind, however, that for such fast drivings,
already the naive RWA in the original picture—yielding the
solution (8) with λ = 0 (dashed green curve)—would yield
acceptable results for 〈σ x〉. This is different for the expectation
value 〈σ z〉, which we show in Fig. 7. For this expectation
value, a naive RWA treatment would just predict a constant
evolution—which is indeed best captured by the long-term
fast-driving evolution and not by the perturbative approaches.
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FIG. 6. Plot of the time-dependent expectation value of Pauli
matrix σ x comparing the no-driving solution (dashed green curve),
the analytical fast-driving (FD) solution (blue curve), PCG (brown
curve), BMS (solid red curve), BMU (dashed orange curve), and
DCG (purple crosses). The grid lines mark multiples of the driving
period T . A higher-order approximation for the driving yields simi-
lar results (not shown). Parameters: � = 25 �, λ = 1

2 �, β � = 1,
�0 = 0.05, ωc = 15 �, ρ0 = 1/2(1 + 0.2σ x + 0.4σ z ).

In both figures we observe that the DCG approach is
closest to the fast-driving (FD) solution. It has, however, the
disadvantage that the generator has to be recomputed for
any desired time. Still, all perturbative approaches fail to
correctly capture the long-term dynamics of the fast-driving
solution (28), which is not surprising as the latter is nonper-
turbative in the system-reservoir coupling strength.

So far, we have considered the regime � � ωc � �,
which corresponds to τdrv � τdec � τint . We see that the BMS
and BMU solutions fail to describe the long-term dynamics
correctly, but this is also the case for the DCG approach,
which captures the short-term dynamics by construction. In
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FIG. 7. Analogous to Fig. 6, but for 〈σ z〉. Whereas for the tran-
sient dynamics the DCG, PCG, and BMS solutions are close to the
benchmark fast-driving solution (inset), significant differences arise
for longer times (main plot).
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FIG. 8. Analogous to Fig. 7, but for smaller cutoffs implying a
slower decay of the reservoir correlation function ωc = �. While
DCG and the fast-driving benchmark still agree perfectly, the Marko-
vian approaches (BMS, BMU, and PCG) all deviate strongly.

the regime � � ωc ≈ �, the BMS, BMU, and PCG solutions
perform significantly worse, since then the Markovian approx-
imation is not valid anymore. In contrast, the DCG solution
still matches the fast-driving benchmark very well, as it is not
subject to a Markovian approximation. We show this in Fig. 8
for the expectation value 〈σ z〉 (the expectation value of 〈σ x〉
looks similar, but there the driving has little effect anyway).

VI. CONCLUSIONS

Our intention in this paper was to find an improved
time-independent Lindblad (Markovian [58]) master equation
applicable to periodically driven systems. For this, we ana-
lyzed driven qubit systems coupled to thermal reservoirs with
coarse-graining approaches. All methods used had the formal
advantage of being in LGKS form, which unconditionally
preserves all density matrix properties and leads to a stable
numerical propagation. The negative result is that the ana-
lyzed coarse-graining approach over one period of the driving
(PCG) did not match the expectations, i.e., it was inferior to
the DCG approach, even in the special case of pure dephasing.

On the positive side, we found that the BMS approach can
yield quite reliable results in the long-term limit provided the
secular approximation is performed in a proper way. The DCG
approach performed at least as well as the BMS variant in the
long-term limit and approaches the exact solution by construc-
tion in the short-term limit. As the corresponding systematic
expansion converges in the weak-coupling regime (see Ap-
pendix A 2), we consider it as the most accurate second-order
perturbative solution among the schemes tested. Its draw-
back is the computational cost, since for each time a suitable
dissipator needs to be calculated numerically. To avoid this,
we note that by using spectral densities with a simpler
polynomial structure, the involved integrals in (5) can be per-
formed analytically. The fact that it is not possible to capture
the full dynamics faithfully with a single coarse-graining time
could be taken as a hint that the restriction to LGKS dynamics
is too severe. Using a Redfield approach, however, may be

highly unstable for driven systems even in the weak-coupling
limit, such that one should rather aim at deriving Kraus repre-
sentations from first principles.
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APPENDIX A: COARSE-GRAINING GENERATORS

1. General coarse-graining derivation

To evaluate the right-hand side of the defining equation (2),
we first calculate the time evolution operator in the interaction
picture, where it follows the equation

d

dt
U (t, t0) = −iH I (t, t0)U (t, t0), (A1)

together with the initial condition U (t0, t0) = 1. Formally in-
tegrating this equation and repeatedly inserting the solution
into the right-hand side yields the representation

U (t, t0) =
∞∑

n=0

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtn

× H I (t1)H I (t2) · · · H I (tn), (A2)

where the nested integration bounds make the time ordering
explicit and the n = 0 term is understood as identity. Now,
inserting a generic tensor product decomposition of the inter-
action Hamiltonian

H I (t, t0) =
∑

α

Aα (t, t0) ⊗ Bα (t, t0)

=
∑

α

U †
S (t, t0)AαUS (t, t0)

× ⊗e+iHB (t−t0 )Bαe−iHB (t−t0 ) (A3)

for system and bath coupling operators Aα and Bα [59], re-
spectively, we see that the isolated time evolution operator of
the (undriven) reservoir can be given explicitly, whereas the
explicit calculation is required for the isolated time evolution
operator of the (driven) system US (t, t0).

Applied to the periodically driven Schrödinger equation,
Floquet theory predicts that the time evolution operator can be
expressed as a product of a unitary and periodic kick operator
(that has the period of the driving) and the exponential of
a Floquet Hamiltonian [4]. Specifically, for t0 = 0 one may
write

US (t ) = Ukick (t )e−iH̄t , Ukick (t ) = Ukick (t + T ),

Ukick (nT ) = 1, (A4)

with n ∈ Z, such that the stroboscopic evolution between
full periods is given by the Floquet Hamiltonian US (nT ) =
e−iH̄nT . It should be stressed here that even in this simple
case the above decomposition is not unique. For example,
introducing the eigenbasis of the Floquet Hamiltonian via
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H̄ |ā〉 = Ēa |ā〉, we can see that the time evolution operator re-
mains invariant under the simultaneous transformations H̄ →
H̄ + m� |ā〉 〈ā| and Ukick (t ) → Ukick (t )e+im�t |ā〉〈ā|, which
maintains the periodicity of the kick operator. This gauge
degree of freedom allows one to deliberately choose the con-
vention that all eigenenergies of the Floquet Hamiltonian
should lie in the first Brillouin zone Ēa ∈ [−�/2,+�/2).
Hence the system coupling operators in the interaction picture
Aα (t ) = Aα (t, 0) can be expressed as

Aα (t ) = U †
S (t )AαUS (t ) = eiH̄tU †

kick (t )AαUkick (t )e−iH̄t

=
+∞∑

n=−∞
eiH̄t Ân

αein�t e−iH̄t , (A5)

where due to the periodicity of the kick operator we have
expanded U †

kick (t )AαUkick (t ) in a Fourier series

Ân
α = �

2π

∫ T/2

−T/2
U †

kick (t )AαUkick (t )e−in�t dt, T = 2π

�
.

(A6)

Now, in the eigenbasis of the Floquet Hamiltonian we can also
write this as

Aα (t1) =
∑

ab

∑
n

〈ā| Ân
α |b̄〉 ei(Ēa−Ēb+n�)t1 |ā〉 〈b̄|

≡
∑

ab

∑
n

A+n
α,abe+i(Ēa−Ēb+n�)t1 Lab,

Aᾱ (t2) =
∑
cd

∑
n′

〈c̄| Ân′
ᾱ |d̄〉 ei(Ēc−Ēd +n′�)t2 |c̄〉 〈d̄|

≡
∑
cd

∑
n′

A−n′
ᾱ,dce−i(Ēc−Ēd +n′�)t2 Ldc, (A7)

where Lab ≡ |ā〉 〈b̄| and we exchanged c ↔ d and n′ → −n′
in the last line.

The reservoir contributions to the full time evolution oper-
ator in the interaction picture can be reorganized into reservoir
correlation functions, which for a reservoir at equilibrium
depend only on the difference of time arguments. Therefore
we can introduce their even and odd Fourier transforms [60]

Cαᾱ (t1 − t2) = 1

2π

∫
dωγαᾱ (ω)e−iω(t1−t2 ),

Cαᾱ (t1 − t2)sgn(t1 − t2) = 1

2π

∫
dωσαᾱ (ω)e−iω(t1−t2 ).

(A8)

Inserting both the system and reservoir contributions above
into (2), expanding also its left-hand side to first order, and
solving for Lτ , the temporal integrals can be analytically
performed with the help of

f τ
t0 (α, β, ω) ≡ 1

2πτ

∫ t0+τ

t0

∫ t0+τ

t0

e−iω(t1−t2 )eiαt1 e−iβt2 dt1dt2

= τ

2π
ei(α−β )t0 ei(α−β )τ/2sinc

[
(α − ω)

τ

2

]
× sinc

[
(β − ω)

τ

2

]
. (A9)

These definitions are used in the generators in Eq. (5) in the
main text and in Eqs. (A14), (A16), and (A17) below.

The function defined above has additional useful proper-
ties. For example, for discrete α and β one finds

lim
τ→∞ f τ

t0 (α, β, ω) = δαβδ(α − ω), (A10)

which is used to derive the long-term limit of the coarse-
graining generator in Appendix A 5. Additionally, also for
finite τ , integrals involving this function remain bounded as
we show below.

2. Convergence of the expansion

Inserting the expansion for the time evolution opera-
tor (A2) into the defining coarse-graining equation (2), we
additionally obtain many temporal integrals over higher-order
correlation functions—some of them equipped with Heaviside
� functions depending on time differences that enforce the
time ordering. For linear couplings and harmonic reservoirs,
only correlation functions with an even number of operators
remain, and furthermore, these can then be expressed as prod-
ucts of two-point correlation functions. Thus, defining Fourier
transforms as before, we also obtain for higher-order terms
the nascent δ function (A9) together with a function g(ω) that
contains Fourier transforms in analogy to γαᾱ (ω) and σαᾱ (ω)
from Eq. (A8). We can bound integrals over products of this
nascent δ function with other bounded functions g(ω) by the
essential supremum of the latter

D ≡
∣∣∣∣
∫

dωg(ω) f τ
t0 (ωα, ωβ, ω)

∣∣∣∣
�

∫
dω

∣∣g(ω) f τ
t0 (ωα, ωβ, ω)

∣∣
� [ess supω|g(ω)|]

∫ ∣∣ f τ
t0 (ωα, ωβ, ω)

∣∣dω

� [ess supω|g(ω)|]
√∫

τ

2π
sinc2

[
(ωα − ω)

τ

2

]
dω

×
√∫

τ

2π
sinc2

[
(ωβ − ω)

τ

2

]
dω

= ess supω|g(ω)|. (A11)

Here, in the second inequality we have used Hölder’s in-
equality for the 1-norm and the ∞-norm, and in the third
inequality we have first inserted (A9) and then used Hölder’s
inequality for the 2-norm. Thus, if the maximum of even and
odd Fourier transforms of the correlation functions [that enter
as g(ω)] is small, i.e., in the weak-coupling limit, we may
expect convergence of the series for all τ .

For the bosonic reservoirs that we consider, a finite Fourier
transform of the reservoir correlation function requires at least
ohmic spectral densities. If, for example, the Fourier trans-
form of the reservoir correlation function is given by γ (ω) =
�0ωe−|ω|/ωc [1 + 1/(eβω − 1)], we find at zero temperatures
γ (ω) � �0ωce−1 and at high temperatures γ (ω) � �0/β.
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3. Dynamical coarse graining (DCG)

For dynamical coarse graining, the time-dependent system
density matrix is expressed as

ρS(t ) = exp {Lt · t}ρS(t0). (A12)

This density matrix then formally evolves according to
d
dt ρS = [( d

dt eLt ·t )e−Lt ·t ]ρS(t ), where the term in square brack-
ets can be seen as a non-Markovian generator of the dynamical
coarse-graining evolution [45]. The full term in square brack-
ets is not of LGKS form. Nevertheless, the scheme preserves
all density matrix properties, which follows as Lt is of LGKS
form for fixed t , such that the scheme (A12) is an interpolation
through physically valid density matrices.

4. Initial-period coarse graining (PCG)

Coarse graining only over the initial period (t0 = 0 and τ =
T ), the PCG coarse-graining generator is obtained from (5) by
inserting

f T
0 (ω1, ω1, ω) = T

2π
ei(ω1−ω2 )T/2

× sinc
[
(ω1 − ω)

T

2

]
sinc

[
(ω2 − ω)

T

2

]
.

(A13)

The generator then still contains an integration over ω,
which—depending on the form of the spectral density—may
need to be solved numerically.

5. Long-term coarse graining

When τ → ∞, we get from Eq. (A10) that the remaining
integral in (5) can be fully resolved, leading to

H∞
LS = 1

2i

∑
αᾱ

∑
nn′

∑
abcd

σαᾱ (Ēa − Ēb + n�)

× δĒa−Ēb+n�,Ēc−Ēd +n′�An
α,abA−n′

ᾱ,dcLabLdc,

D∞ρS =
∑
αᾱ

∑
nn′

∑
abcd

γαᾱ (Ēa − Ēb + n�)

× δĒa−Ēb+n�,Ēc−Ēd +n′�A+n
α,abA−n′

ᾱ,dc

×
[

LdcρSLab − 1

2
{LabLdc, ρS}

]
. (A14)

Thus the corresponding generator can be readily evaluated,
and, in particular, the long-term results from Appendix A 3
will coincide with the long-term results from the equation
above.

6. Floquet-BMS master equation

In Eq. (A14), the evaluation of the resonance condition
resulting from the Kronecker δ

Ēa − Ēb + n� = Ēc − Ēd + n′� (A15)

may require some care. The typical argument is that for fast
driving, the above resonance can only be met if separately
n′ = n and Ēa − Ēb = Ēc − Ēd . However, the applicability of
this argument critically depends on the Floquet spectrum. If

for a two-level system we by chance have Floquet energies
well within the first Brillouin zone Ēa ∈ {−�/4,+�/4}, this
generates energy differences Ēa − Ēb ∈ {−�/2, 0,+�/2}. In
this case, the above resonance condition can also be met with
Ēa − Ēb = +�/2, Ēc − Ēd = −�/2, and n′ = n + 1, demon-
strating that in general, the long-term limit of the periodically
driven coarse-graining master equation need not coincide with
the significantly simpler Floquet-BMS master equation that
results from demanding the resonance separately (i.e., by set-
ting n′ = n and Ēa − Ēb = Ēc − Ēd )

HBMS
LS = 1

2i

∑
αᾱ

∑
n

∑
abcd

σαᾱ (Ēa − Ēb + n�)

× δĒa−Ēb,Ēc−Ēd
An

α,abA−n
ᾱ,dcLabLdc,

DBMSρS =
∑
αᾱ

∑
n

∑
abcd

γαᾱ (Ēa − Ēb + n�)

× δĒa−Ēb,Ēc−Ēd
A+n

α,abA−n
ᾱ,dc

×
[

LdcρSLab − 1

2
{LabLdc, ρS}

]
. (A16)

7. The ultrasecular limit (BMU)

Even when (A16) is applicable, we note that the remaining
Kronecker δ leaves many terms that are often neglected. For
example, the above resonance can always be trivially fulfilled
with Ēa = Ēb and Ēc = Ēd , even for the undriven case. For
many models, one has that γαᾱ (0) → 0, such that such terms
would not contribute anyway for undriven systems, where
� → 0. However, in general they will have to be kept. For
comparison we therefore also state the ultrasecular approxi-
mation (BMU), where only terms with a = c and b = d are
kept

HBMU
LS = 1

2i

∑
αᾱ

∑
n

∑
ab

σαᾱ (Ēa − Ēb + n�)

× An
α,abA−n

ᾱ,baLabLba,

DBMUρS =
∑
αᾱ

∑
n

∑
ab

γαᾱ (Ēa − Ēb + n�)A+n
α,abA−n

ᾱ,ba

×
[

LbaρSLab − 1

2
{LabLba, ρS}

]
. (A17)

APPENDIX B: EXACT PURE-DEPHASING SOLUTION

1. General solution

For a driven Hamiltonian of pure-dephasing form (6), the
exact dynamics can be calculated by using a polaron (or Lang-
Firsov [61]) transform:

Up = eA⊗
(

hk
ωk

bk− h∗
k

ωk
b†

k

)
. (B1)

Applying this transformation to system and bath operators
yields

U †
p HS (t )Up = HS (t ), U †

p AUp = A,

U †
p bkUp = bk − h∗

k

ωk
A, U †

p b†
kUp = b†

k − hk

ωk
A, (B2)
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which leads to decoupled system and bath Hamiltonians

U †
p H (t )Up = HS (t ) −

(∑
k

|hk|2
ωk

)
A2 +

∑
k

ωkb†
kbk

≡ H̄S (t ) +
∑

k

ωkb†
kbk, (B3)

with H̄S (t ) denoting an effective system Hamiltonian. Hence
the time evolution operator in the polaron picture Ũ (t ) is given
by the system and bath evolution separately

Ũ (t ) = T
{
e−i

∫ t
0 H̄S (t ′ )dt ′}

e−i
∑

k ωkb†
kbkt , (B4)

where T denotes the time-ordering operator of the system. For
a general unitary transformation V (t ) into another frame via
|�(t )〉 = V (t ) |�̃(t )〉, the time evolution operator in the origi-
nal frame U (t ) can be expressed in terms of the time evolution
operator in the new frame Ũ (t ) as U (t ) = V (t )Ũ (t )V †(0).
Thus, for the time-independent polaron transform, this rela-
tion yields

U (t ) = UpŨ (t )U †
p . (B5)

From this, the expectation value of any system observable OS ,

〈OS〉 = Tr{(OS ⊗ 1B)ρ(t )}
= Tr{U †(t )(OS ⊗ 1B)U (t )ρ0}, (B6)

can be calculated as

〈OS〉 = Tr{UpŨ
†(t )U †

p (OS ⊗ 1B)UpŨ (t )U †
p ρ0}. (B7)

2. Two-level system

For the example of a two-level system,

HS (t ) = �

2
σ z+λ cos �t, A = σ z, (B8)

the populations ρS,00(t ) = 1
2 〈1 + σ z〉 and ρS,11(t ) = 1

2 〈1 −
σ z〉 are constant as 1 and σ z commute with Up and Ũ (t ), and
we obtain (7) in the main text.

For the coherences ρ01 = 〈σ−〉 and ρ10 = 〈σ+〉, the calcu-
lations are more involved. Using that

U †
p σ±Up = e±2

∑
k

(
h∗

k
ωk

b†
k−

hk
ωk

bk

)
σ±, (B9)

and organizing bath and system parts together, one gets

〈σ±〉 = Tr
{
UpU

†
B (t )e±2

∑
k

(
h∗

k
ωk

b†
k−

hk
ωk

bk

)
UB(t )U †

S (t )σ±

× US (t )U †
p ρ0

}
, (B10)

with UB(t ) = e−i
∑

k ωkb†
kbkt and US (t ) = e−i( �

2 t+ λ
�

sin(�t ))σ z
.

Now, one can use that

ei
∑

k ωkb†
kbkt e±2

∑
k

(
h∗

k
ωk

b†
k−

hk
ωk

bk

)
e−i

∑
k ωkb†

kbkt

= e±2
∑

k

(
h∗

k
ωk

b†
keiωk t − hk

ωk
bke−iωk t

)
,

eixσ z
σ±e−ixσ z = e±2ixσ±, (B11)

which leads by inserting the identity U †
p Up = 1 into

〈σ±〉 = e±2i
(

�
2 t+ λ

�
sin(�t )

)
× Tr

{
Upe±2

∑
k

(
h∗

k
ωk

b†
keiωk t −H.c.

)
U †

p Upσ
±U †

p ρ0
}
.

(B12)

Next, the polaron transformation is applied to the system and
bath parts separately:

Upe
±2

∑
k

h∗
k

ωk
b†

keiωk t −H.c.
U †

p = e
±2

∑
k

h∗
k

ωk

(
b†

k+
hk
ωk

σ z
)

eiωk t −H.c.
,

Upσ
±U †

p = e∓2
∑

k

(
h∗

k
ωk

b†
k−

hk
ωk

bk

)
σ±. (B13)

Separating system and bath parts and inserting the initial
condition ρ0 = ρ0

S ⊗ ρ̄B yields

〈σ±〉 = e±2i( �
2 t+ λ

�
sin(�t ))

× Tr
{

e
±4i

∑
k

|hk |2
ω2

k
sin(ωkt )σ z

σ±ρ0
S

}
B±(t ),

B±(t ) = Tr
{

e
±2

∑
k

(
h∗

k
ωk

b†
keiωk t − hk

ωk
bke−iωk t

)

× e
∓2

∑
k

(
h∗

k
ωk

b†
k−

hk
ωk

bk

)
ρ̄B

}
. (B14)

The trace over the bath parts B±(t ) gives

B±(t ) = exp

{
∓4i

∑
k

|hk|2
ω2

k

sin(ωkt )

}

× exp

{
−4

∑
k

|hk|2
ω2

k

[1 − cos(ωkt )][1 + 2nB(ωk )]

}
.

(B15)

Here, nB(ωk ) = 1
eβωk −1

denotes the Bose distribution. Plug-
ging the expression for B±(t ) into Eq. (B14) and using

Tr
{

e
±4i

∑
k

|hk |2
ω2

k
sin(ωkt )σ z

σ±ρ0
S

}
= e

±4i
∑

k
|hk |2
ω2

k
sin(ωkt )

Tr
{
σ±ρ0

S

}
(B16)

yields—after inserting the spectral coupling density �(ω) =
2π

∑
k |hk|2δ(ω − ωk )—the expectation value of 〈σ+〉 = ρ10

in Eq. (8) in the main text.

APPENDIX C: ANALYTIC FAST-DRIVING
APPROXIMATION

We consider the simplified form of Eq. (21) with H0
S =

�
2 A. First, we move into an interaction picture with respect
to the driving by performing the transformation U1(t ) =
e−i λ

�
sin(�t )C , which yields after applying the rotating wave

approximation

H̃RWA = Ã

(
�

2
+

∑
k

(hkbk + h∗
k b†

k )

)
+

∑
k

ωkb†
kbk,

Ã = �

2π

∫ 2π
�

0
U †

1 (t )AU1(t )dt . (C1)
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This is the Hamiltonian of a simple pure-dephasing system
[see Eq. (6)], with a time-independent system Hamiltonian.

Applying the polaron transform (B1), the system and bath
parts of the Hamiltonian can be decoupled, and (B3) becomes

Hp = U †
p H̃RWAUp

= �

2
Ã −

∑
k

|hk|2
ωk

Ã2 +
∑

k

hkb†
kbk, (C2)

which yields for the time evolution operator in this picture:

Ũ (t ) ≈ e−i
(

�
2 Ã−∑

k
|hk |2
ωk

Ã2
)

t e−i
∑

k hkb†
kbkt . (C3)

In an analogous way to the approach used for the pure-
dephasing system, we can write the expectation value of an

observable as

〈OS〉 = Tr{UpŨ
†(t )U †

p U †
1 (OS ⊗ 1B)U1UpŨ (t )U †

p ρ0}. (C4)

For a two-level system [Eq. (26)], we get

Ã = J0

(
2λ

�

)
σ z, (C5)

with Jn(x) denoting the Bessel function of the first kind,
which is defined as the solution of the differential equation
x2J ′′

n (x) + xJ ′
n (x) − (z2 + n2)Jn(x) = 0, eventually leading

to (28) in the main text.
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