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Exact result for the polaron mass in a one-dimensional Bose gas
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We study the polaron quasiparticle in a one-dimensional Bose gas. In the integrable case described by the
Yang-Gaudin model, we derive an exact result for the polaron mass in the thermodynamic limit. It is expressed
in terms of the derivative with respect to the density of the ground-state energy per particle of the Bose gas
without the polaron. This enables us to find high-order power series for the polaron mass in the regimes of weak
and strong interaction.
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Polarons were originally introduced to represent electrons
that had changed their properties due to the influence of
lattice distortions in ionic crystals [1]. The motion of elec-
trons in such environments can be strongly modified as they
move together with a surrounding cloud of phonons. This
gives rise to a polaron mass that is larger than the electron
one [2]. The concept of polarons is nowadays wider and
applies well beyond solids, with particular importance for
ultracold gases. Such environments offer numerous possibil-
ities where polarons can be realized. Experiments provided
both higher-dimensional [3–9] and one-dimensional [10,11]
systems which host polarons.

Many theoretical papers address polaron properties in
one-dimensional bosonic systems [12–31]. Several of them
[12,14,15,18,23,27] rely on models solvable by the Bethe
ansatz [32–34]. Theoretical studies of such models are impor-
tant for experiments, which are amenable to simulate them.
Moreover, studies of integrable models can give rise to exact
analytical results for physically relevant quantities, which are
per se important.

A one-dimensional system of bosons with contact interac-
tion is described by the Hamiltonian

H = h̄2

2m

⎡
⎣−

N∑
j=1

∂2

∂x2
j

+ c
∑
j �=l

δ(x j − xl )

⎤
⎦. (1)

Here m is the particle mass, c > 0 controls the interaction
strength, and N is the total number of particles in the system.
We consider the case with periodic boundary conditions. For
a single-component Bose gas, the Hamiltonian (1) is exactly
solved by the Bethe ansatz technique and is known as the
Lieb-Liniger model [35,36].

The Hamiltonian (1) is solvable by the Bethe ansatz for
more general symmetries of the wave function [32–34]. Let
us consider a two-component (isospin- 1

2 ) Bose gas [12,32,33].
In this case the Hamiltonian (1) is known as the Yang-Gaudin
model for a Bose gas. Its eigenstates can be classified with
respect to the value of the total isospin. In the sector where it
has the maximal value N/2, one studies a single-component
system described by the Lieb-Liniger model. It is character-
ized by N density quantum numbers I1, I2, . . . , IN that define

N quasimomenta k1, k2, . . . , kN . In the case of the total isospin
N/2 − 1, which will be the focus of this paper, the system
acquires an additional spin quantum number that defines spin
rapidity η. The corresponding Bethe ansatz equations can be
expressed as1 [18]

k jL +
N∑

l=1

θ (k j − kl ) = 2π I j + π + θ (2k j − 2η), (2)

where L is the system size, I j are integers for odd N and odd
half-integers for even N , and θ (k) = 2 arctan(k/c) is, up to
the sign, the scattering phase shift. The momentum p and the
energy E of the system are

p = h̄
N∑

j=1

k j, E = h̄2

2m

N∑
j=1

k2
j . (3)

Note that the spin rapidity η indirectly enters Eq. (3) through
the quasimomenta k j that depend on η via Eq. (2).

In the special case η → +∞, the Bethe ansatz equa-
tions (2) describe the quasimomenta of the single-component
(i.e., isospin-polarized) system described by the Lieb-Liniger
model [35]. Its ground state is realized for a symmetric con-
figuration of quasimomenta around zero, which occurs for

I j = j − N + 1

2
, j = 1, 2, . . . , N. (4)

The density of quasimomenta ρ(k j ) = [L(k j+1 − k j )]−1 in the
thermodynamic limit (N → ∞ and L → ∞ such that the
density n = N/L is fixed) satisfies the integral equation [35]

ρ(k, Q) − 1

2π

∫ Q

−Q
dq θ ′(k − q)ρ(q, Q) = 1

2π
. (5)

Here θ ′(k) = dθ (k)/dk and Q is the Fermi rapidity, which
denotes the largest occupied quasimomentum in the ground
state. The density of quasimomenta enables us to express the

1Note that Eq. (2) conveniently contains an extra additive term
π and thus it has different quantum numbers Ij from those in
Refs. [12,14,27].
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particle density as

n(Q) =
∫ Q

−Q
dk ρ(k, Q), (6)

where we emphasized that n is a function of Q. The ground-
state momentum is zero and the ground-state energy per
particle ε0 is given by [35]

ε0 = h̄2

2mn

∫ Q

−Q
dk k2ρ(k, Q). (7)

We note that the Fermi rapidity Q naturally enters ε0 in
Eq. (7). However, we can eventually express Q in terms of
n by inverting their connection (6).

At finite η, Eq. (2) describes the Bose gas with one isospin
reversed. In the case of an unchanged set of quantum numbers
(4), the system is in an excited state that is called spin-wave
excitation [14] or a magnon [18]. In the context of this paper,
such collective excitation of the system describes a polaron
quasiparticle excitation.

The momentum of the system in the excited state coincides
with the momentum of the polaron excitation. Substituting k j

expressed from Eq. (2) into Eq. (3), in the thermodynamic
limit we obtain [18]

p(Q, η) = h̄
∫ Q

−Q
dk ρ(k, Q)[π + θ (2k − 2η)]. (8)

We note that the momentum explicitly depends on the Fermi
rapidity Q and the spin rapidity η. As expected, at η → +∞
we obtain p = 0, i.e., the polaron is not excited.

The evaluation of the energy of the system in the ex-
cited state is more involved. At finite η, the quasimomenta
become shifted by 	k j = k j (η) − k j (η → +∞) = O(1/L).
From Eq. (2) we then find

	k jL = −
N∑

l=1

θ ′(k j − kl )(	k j − 	kl )

+ π + θ (2k j − 2η) + O

(
1

N

)
. (9)

The formal expression ρ(k, Q) = 1
L

∑N
j=1 δ(k − k j ) substi-

tuted into Eq. (5) gives 1 + 1
L

∑N
j=1 θ ′(k j − k) = 2πρ(k, Q).

After introducing g(k j, Q) = Lρ(k j, Q)	k j , the latter equa-
tion enables us to express Eq. (9) as an integral equation

g(k, Q) − 1

2π

∫ Q

−Q
dq θ ′(k − q)g(q, Q) = r(k, η), (10a)

r(k, η) = 1

2
+ θ (2k − 2η)

2π
. (10b)

The energy of the system (3) in the thermodynamic limit now
becomes E = Nε0 + E (Q, η), where ε0 is given by Eq. (7),
while the energy of the polaron excitation corresponding to
the momentum (8) is given by

E (Q, η) = h̄2

m

∫ Q

−Q
dk kg(k, Q). (11)

Here g(k, Q) depends on η and satisfies Eq. (10).

In order to further transform Eq. (11), we introduce the
Green’s function for the linear operator in Eq. (10) by [37,38]

G(k, k′) − 1

2π

∫ Q

−Q
dq θ ′(k − q)G(k′, q) = δ(k − k′). (12)

It is symmetric, G(k, k′) = G(k′, k), as we can show
by iterations. Multiplying Eq. (12) by r(k′, η), after
the integration over k′ we obtain Eq. (10) provided
g(k, Q) = ∫ Q

−Q dk′G(k, k′)r(k′, η). Equation (11) then

becomes E (Q, η) = ∫ Q
−Q dk σ (k, Q)r(k, η), where we have

defined σ (k, Q) = (h̄2/m)
∫ Q
−Q dk′k′G(k, k′). Multiplying

Eq. (12) by k′ and performing the integration over it, we
obtain that σ (k, Q) satisfies the integral equation

σ (k, Q) − 1

2π

∫ Q

−Q
dq θ ′(k − q)σ (q, Q) = h̄2

m
k. (13)

Since σ (k, Q) is an odd function of k we eventually obtain

E (Q, η) = 1

2π

∫ Q

−Q
dk σ (k, Q)θ (2k − 2η). (14)

Equation (14) gives E = 0 at η → +∞, as expected.
Equations (8) and (14) are exact and determine the disper-

sion of the polaron excitation with the momentum 0 � p �
2π h̄n in the parametric form. It is difficult to find analytically
the explicit form of the dispersion E (p) for arbitrary values
of the interaction. Instead, here we study the dispersion at the
smallest momenta. This is achieved if we expand θ (2k − 2η)
at η/c � 1 in Eqs. (8) and (14). Accounting for the leading-
order term, we obtain the low-momentum spectrum2 [14,18]

E (p) = p2

2m∗ , (15)

where the mass of the polaron excitation m∗ is given by

1

m∗ = S(Q)

π h̄2cn2
, S(Q) =

∫ Q

−Q
dk kσ (k, Q). (16)

Equation (16) is the exact result.
The function S(Q) [Eq. (16)] and ε0 [Eq. (7)] are not

independent. We found that they satisfy a remarkable relation

S(Q) = 2πn2 ∂ε0(n)

∂n
. (17)

Equation (17) can be showed by differentiating Eq. (7) with
respect to n [which is a function of Q; see Eq. (6)] and then
using the relation [39]

ρ ′
Q(k, Q)

ρ(Q, Q)
+ σ ′

k (k, Q)

σ (Q, Q)
= 2π h̄2

mσ (Q, Q)
ρ(k, Q) (18)

between the functions ρ(k, Q) and σ (k, Q) satisfying Eqs. (5)
and (13), respectively. Equation (18) can be shown by differ-
entiating Eq. (5) with respect to Q and Eq. (13) with respect to

2Note that in the language of magnetic systems, the quadratic
spectrum (15) is expected for a long-wavelength spin wave in fer-
romagnets.
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k and then comparing the obtained expressions. From Eq. (17)
we finally obtain

1

m∗ = 2

h̄2c

∂ε0(n)

∂n
, (19)

which is our main result.
Equation (19) is exact and thus valid at arbitrary interaction

c. It shows that the polaron mass in the Yang-Gaudin model
depends only on the derivative with respect to the density of
the ground-state energy per particle of the single-component
Lieb-Liniger Bose gas (7). The latter can be expressed in
terms of the dimensionless function e(γ ) defined by [35]

ε0 = h̄2n2

2m
e(γ ). (20)

Here γ = c/n is the dimensionless parameter that accounts
for the interaction strength. The particular form (20) enables
us to express the polaron mass as

m

m∗ = −γ 2 ∂

∂γ

(
e(γ )

γ 2

)
, (21)

which is an alternative form of Eq. (19). Equations (19) and
(21) apply in the thermodynamic limit.

The function e(γ ) defined by Eq. (20) can be routinely
evaluated numerically [35,40]. On the other hand, to date there
is no simple closed expression for e(γ ). It was calculated
perturbatively at γ � 1 and γ � 1 at low orders [35] and
recently to very high orders [40–42]. From e(γ ) at weak
interaction calculated in Refs. [40,42] we obtain the power
series

m

m∗ = 1 − 2

3π

√
γ + 4 − 3ζ (3)

16π3
γ 3/2 + 4 − 3ζ (3)

24π4
γ 2

+ 3[32 − 60ζ (3) + 45ζ (5)]

2048π5
γ 5/2 + O(γ 3) (22)

in the regime γ � 1. Equation (22) shows that by decreasing
the interaction strength, the polaron mass approaches the bare
impurity mass. This is expected, since the impurity in this
limit becomes decoupled from the system. We notice the
absence of the term proportional to γ in Eq. (22), which
is obvious from the form of the derivative in Eq. (21). The
first two terms of the expression for m/m∗ were calculated in
Ref. [15] using the discrete Bethe ansatz and in Ref. [14] using
the hydrodynamic description.3 Our expression (22) that relies
on the Bethe ansatz is in agreement with Ref. [14]. However,
we calculated several further terms of the series, which would
be very hard to obtain using alternative methods.

3Note that the first two terms in Eq. (22) follow from Eq. (D15) of
Ref. [43] taken at M = m, G = g, and kF = 0.

FIG. 1. Plot of the inverse of the polaron mass as a function of the
interaction strength γ . The dots represent the exact result obtained
directly from Eq. (16), while the two curves are the analytical results
at small and large γ given by Eqs. (22) and (23), respectively.

The function e(γ ) at strong interaction was calculated in
Ref. [41]. It enables us to find

m

m∗ = 2π2

3γ
− 4π2

γ 2
+ 16π2

γ 3
− 32π2(15 − π2)

9γ 4
+ O(γ −5)

(23)

in the regime γ � 1. At strong interaction, the impurity
motion implies the motion of many surrounding bosons.
The resulting polaron quasiparticle is therefore heavy due
to the surrounding cloud; its effective mass is determined
by Eq. (23). The leading-order term in Eq. (23) was known
before [14,15]. We note that the first subleading term was
calculated in Ref. [15], but it disagrees within a numerical
coefficient from our result (23). Plotted in Fig. 1 is the exact
result for the polaron mass obtained by numerically solving
the integral equations (5) and (13) and its comparison with
the two analytical expressions (22) and (23).

In conclusion, analyzing the Bethe ansatz equations of the
Yang-Gaudin model for a Bose gas, we have found the exact
result for the polaron mass m∗. It is given by Eq. (19) or its
equivalent form (21). The latter expressions show that m∗
is fully determined by the dependence of the ground-state
energy per particle of the Lieb-Liniger Bose gas on density
or equivalently on γ . The latter function, and thus m∗, can
be calculated analytically at very high orders at weak or
strong interaction [41,42]. We note that the specific form of
the scattering phase shift is not used in Eqs. (5)–(14) and
(18). Therefore, the described procedure might be applicable
in studies of other two-component models [44] that can also
describe polarons.

Useful discussions with B. Reichert are gratefully ac-
knowledged.

[1] S. I. Pekar, Research in Electron Theory of Crystals (U.S.
Atomic Energy Commission, Oak Ridge, 1963).

[2] L. D. Landau and S. I. Pekar, Effective mass of a polaron, Zh.
Eksp. Teor. Fiz. 18, 419 (1948).

052218-3



ZORAN RISTIVOJEVIC PHYSICAL REVIEW A 104, 052218 (2021)

[3] A. Schirotzek, C.-H. Wu, A. Sommer, and M. W. Zwierlein,
Observation of Fermi Polarons in a Tunable Fermi Liq-
uid of Ultracold Atoms, Phys. Rev. Lett. 102, 230402
(2009).

[4] M. Koschorreck, D. Pertot, E. Vogt, B. Fröhlich, M. Feld, and
M. Köhl, Attractive and repulsive Fermi polarons in two dimen-
sions, Nature (London) 485, 619 (2012).

[5] C. Kohstall, M. Zaccanti, M. Jag, A. Trenkwalder, P.
Massignan, G. M. Bruun, F. Schreck, and R. Grimm,
Metastability and coherence of repulsive polarons in a
strongly interacting Fermi mixture, Nature (London) 485, 615
(2012).

[6] N. B. Jørgensen, L. Wacker, K. T. Skalmstang, M. M. Parish,
J. Levinsen, R. S. Christensen, G. M. Bruun, and J. J.
Arlt, Observation of Attractive and Repulsive Polarons in
a Bose-Einstein Condensate, Phys. Rev. Lett. 117, 055302
(2016).

[7] M.-G. Hu, M. J. Van de Graaff, D. Kedar, J. P. Corson, E. A.
Cornell, and D. S. Jin, Bose Polarons in the Strongly Interacting
Regime, Phys. Rev. Lett. 117, 055301 (2016).

[8] Z. Z. Yan, Y. Ni, C. Robens, and M. W. Zwierlein, Bose po-
larons near quantum criticality, Science 368, 190 (2020).

[9] M. G. Skou, T. G. Skov, N. B. Jørgensen, K. K. Nielsen,
A. Camacho-Guardian, T. Pohl, G. M. Bruun, and J. J. Arlt,
Non-equilibrium quantum dynamics and formation of the Bose
polaron, Nat. Phys. 17, 731 (2021).

[10] J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio, F.
Minardi, A. Kantian, and T. Giamarchi, Quantum dynamics of
impurities in a one-dimensional Bose gas, Phys. Rev. A 85,
023623 (2012).

[11] F. Meinert, M. Knap, E. Kirilov, K. Jag-Lauber, M. B.
Zvonarev, E. Demler, and H.-C. Nägerl, Bloch oscillations in
the absence of a lattice, Science 356, 945 (2017).

[12] Y.-Q. Li, S.-J. Gu, Z.-J. Ying, and U. Eckern, Exact results
of the ground state and excitation properties of a two-
component interacting Bose system, Europhys. Lett. 61, 368
(2003).

[13] G. E. Astrakharchik and L. P. Pitaevskii, Motion of a heavy
impurity through a Bose-Einstein condensate, Phys. Rev. A 70,
013608 (2004).

[14] J. N. Fuchs, D. M. Gangardt, T. Keilmann, and G. V.
Shlyapnikov, Spin Waves in a One-Dimensional Spinor Bose
Gas, Phys. Rev. Lett. 95, 150402 (2005).

[15] M. T. Batchelor, M. Bortz, X. W. Guan, and N. Oelkers, Col-
lective dispersion relations for the one-dimensional interacting
two-component Bose and Fermi gases, J. Stat. Mech. (2006)
P03016.

[16] K. Sacha and E. Timmermans, Self-localized impurities
embedded in a one-dimensional Bose-Einstein condensate
and their quantum fluctuations, Phys. Rev. A 73, 063604
(2006).

[17] A. Kamenev and L. I. Glazman, Dynamics of a one-dimensional
spinor Bose liquid: A phenomenological approach, Phys. Rev.
A 80, 011603(R) (2009).

[18] M. B. Zvonarev, V. V. Cheianov, and T. Giamarchi, Edge ex-
ponent in the dynamic spin structure factor of the Yang-Gaudin
model, Phys. Rev. B 80, 201102(R) (2009).

[19] M. Schecter, D. M. Gangardt, and A. Kamenev, Dy-
namics and Bloch oscillations of mobile impurities in

one-dimensional quantum liquids, Ann. Phys. 327, 639
(2012).

[20] C. J. M. Mathy, M. B. Zvonarev, and E. Demler, Quantum flut-
ter of supersonic particles in one-dimensional quantum liquids,
Nat. Phys. 8, 881 (2012).

[21] E. Burovski, V. Cheianov, O. Gamayun, and O. Lychkovskiy,
Momentum relaxation of a mobile impurity in a one-
dimensional quantum gas, Phys. Rev. A 89, 041601(R)
(2014).
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