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Exactly solvable model for anyons with non-Abelian flux
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We present an exactly solvable model for synthetic anyons carrying non-Abelian flux. The model corresponds
to a two-dimensional electron gas in a magnetic field with a specific spin interaction term, which allows only
fully aligned spin states in the ground state; the ground state subspace is thus twofold degenerate. This system is
perturbed with identical solenoids carrying a non-Abelian gauge potential. We explore dynamics of the ground
state as these solenoids are adiabatically braided and show they behave as anyons with a non-Abelian flux. Such
a system represents a middle ground between the ordinary Abelian anyons and the fully non-Abelian anyons.
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I. INTRODUCTION

One of the peculiarities of two-dimensional (2D) quantum
systems is the existence of particles that are neither bosons nor
fermions, but whose exchange statistics interpolates between
the two. Since these particles can have any statistical phase,
they were termed anyons [1]. Anyons are a direct consequence
of the fact that the process of exchanging two identical parti-
cles is not merely a permutation of their quantum numbers,
but an adiabatic interchange of the positions of the particles.
The dimension of a quantum system determines the possible
indistinguishable particles it can support [2,3]. The topology
of 2D systems, unlike the more familiar 3D systems, makes
the interchange of two indistinguishable quantum particles
nontrivial, leading to the very existence of anyons. For two
identical noninteracting anyons whose energy spectrum is
nondegenerate, the exchange phase is a special case of the
geometrical (Berry) phase [4]. In this case, the Berry phase is
not only geometrical, but is also topological in nature. These
types of anyons are called Abelian anyons. On the other hand,
a prerequisite for non-Abelian anyons is a degenerate ground
state manifold [5], such that braiding of anyons corresponds to
a unitary transformation (rotation) within the manifold. This
rotation is described by a unitary Wilczek-Zee matrix [6],
which is a direct generalization of the Berry phase.

Although anyons do not exist (or at least they were not
found) as elementary particles, they have been experimentally
realized as emergent quasiparticle excitations in condensed
matter systems. The most notable phenomenon in which
anyons appear as emergent quasiparticles is the fractional
quantum Hall effect (FQHE) [7–11]. Anyons are found, as
well, in Kitaev spin systems [12–15] and Majorana zero
modes [16,17]. Both the FQHE and the Kitaev model, together
with other approaches including synthetic gauge potentials,
have been proposed as routes for experimental realizations
of anyons in ultracold atomic gases [18–24]. Alternative
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schemes have been proposed to achieve FQH states of light
[25,26]. Anyonic statistics has been simulated in photonic
quantum simulators [27,28] and superconducting quantum
circuits [29], and with the use of nuclear magnetic resonance
[30]. Scanning tunneling microscopy (STM) has been pro-
posed for imaging anyons [31], and it plays a key role in
the experimental search for Majorana zero modes [32]. Novel
ideas have also been put forward [33] according to which
anyons could be experimentally realized on a non-trivial 2D
surface (a sphere), using molecular impurities. Recently, suc-
cessful experiments were carried out in which FQH states
were observed to be anyonic using interferometry [34] and
in a particle collision in the beam splitter [35]. Also, direct
braiding of anyons was achieved using photonic waveguides
[36].

The most attractive property of (non-Abelian) anyons is
their topological stability, which makes them a highly desir-
able platform for fault tolerant quantum computing [5,12].
However, an experimental implementation of this idea still
evades effective realization [5,16,37]. Recent progress in syn-
thesizing and observing non-Abelian gauge fields [38] invites
further research in this and related directions. The conven-
tional scheme of anyons appearing only as a result of an
interaction between constituents of a system has been chal-
lenged and other ideas have also been put forward, in which
anyons would appear as a result of coupling noninteracting
(or weakly interacting) electrons to either a topologically
nontrivial background, or a topologically nontrivial exter-
nal perturbations. In this regard, anyons were proposed to
be realized in a system of an artificially structured type-II
superconducting film [39,40] adjacent to a 2D electron gas
(2DEG) in the integer quantum Hall effect (IQHE) [41,42], in
IQHE magnets [43], in topological defects in graphene [44],
and by sandwiching a charged magnetic dipole between two
semi-infinite blocks of a high permeability metamaterial [45].
Recently, a theoretical model for synthetic Abelian anyons
in a noninteracting system was proposed along these lines
[46], in which specially tailored localized probes are brought
into the IQHE setup and shown to have anyonic properties.
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FIG. 1. A sketch of the system consisting of two solenoids with
non-Abelian flux immersed in the planar arrangement of electrons
with two internal degrees of freedom.

It should be pointed out that these synthetic Abelian anyons
are not emergent quasiparticles (see Refs. [46,47] and the
commentary on Refs. [39,40] therein)

In this paper we follow the aforementioned model [46]
and generalize it in two aspects. First, we introduce the spin
interaction between the electrons in such a way to produce a
degenerate ground state, the arena for non-Abelian physics,
and second, we equip the probes with a non-Abelian gauge
potential. For the model to remain exactly solvable, it is
necessary that the non-Abelian features of the gauge poten-
tial are as simple as possible. The price we pay for this
simplicity is that the anyons that form are not fully non-
Abelian, but merely carry the non-Abelian flux. However, this
is an important step in reaching the goal of true non-Abelian
anyons.

II. THE SYSTEM UNDER CONSIDERATION

We consider a system consisting of Ne identical charged
particles of mass μ and charge q. Each particle has two
internal degrees of freedom. For clarity of the presentation,
we will call the particles electrons, and the internal degree
of freedom spin, having in mind that both the “charge” and
“spin” of the “electron” could be of synthetic origin in the
sense that the pertinent Hamiltonian could be experimentally
realized on a different platform (e.g., ultracold atomic gases).
The electrons are confined to move in the xy plane with the
uniform magnetic field �B0 = B0ẑ, with B0 > 0, normal to
the plane. We will use the vector potential in a symmetric
Coulomb gauge to describe this magnetic field, �A0 = 1

2
�B0 × �r,

where �r is a 2D position vector taken from some origin in the
plane. In addition to the uniform magnetic field, the plane is
pierced by N identical thin solenoids located at positions �ηk ,
as sketched in Fig. 1. The standard Abelian solenoid located
at �ηk produces a vector potential

�A′
k = �

2π

ẑ × (�r − �ηk )

(�r − �ηk )2
,

where � is the magnetic flux through the solenoid. In compar-
ison to the system studied in [46], the difference here is that
the vector potential of the solenoids is non-Abelian. We write
it in the form

�Ak = − h̄

q

ẑ × (�r − �ηk )

(�r − �ηk )2
M ≡ �AkM, (1)

where M is a constant, dimensionless 2 × 2 Hermitian matrix
operating on the spin degrees of freedom. The potential having
this form was first introduced in [48], and a physical realiza-

tion of it has recently been discussed in [49]. The matrix M
can be readily diagonalized in the form

M =
(

α 0
0 β

)
, (2)

with real entries α and β. The matrix M is a linear combina-
tion of the unit matrix I and the third Pauli matrix σ3, M =
I (α + β )/2 + σ3(α − β )/2. In this basis, the spin-up electron
sees the solenoid carrying magnetic flux proportional to α,
while the spin-down electron similarly sees the magnetic flux
of the solenoid to be proportional to β. Therefore, different
spin orientations couple differently to the solenoids. However,
we keep the external magnetic field �B0 Abelian, so that both
spin orientations couple to it the same way. Having said that,
we are in position to write a single-particle Hamiltonian of the
jth electron in the form

H1, j = 1

2μ

{
I[ �p j − q �A0(�r j )] − M

N∑
k=1

q �Ak (�r j )

}2

. (3)

The total Hamiltonian H = H0 + V consists of H0, describing
Ne noninteracting electrons in an external non-Abelian vector
potential, which is just the sum of single particle Hamiltoni-
ans,

H0 =
Ne∑
j=1

H1, j, (4)

and V describes the spin interaction between electrons.
Here we assume that V acts on the spin states as follows.

For the state with all spins up, V |↑〉 = ε0|↑〉, and equivalently
for the state with all spins down, V |↓〉 = ε0|↓〉, we take ε0 =
0 without losing any generality. At the same time, any state
with two or more unaligned spins is much higher in energy.
Therefore, all unaligned spin states are excluded from further
analysis.

This form of the interaction V assures that there is a gap
between the two spin states, |↑〉 and |↓〉, and the other 2Ne−1

spin states. In simple words, the spin interaction term V se-
lects only two spin states from the Hilbert space to form a
twofold degenerate ground state manifold, which provides a
possibility for the non-Abelian dynamics. With this in mind,
we may write V in the form

V = 	(I − |↑〉〈↑| − |↓〉〈↓|), (5)

where I is the identity operator and 	 > 0 is an energy defect,
sufficiently larger than the ground state energy. We neglect the
Zeeman splitting between the |↑〉 and |↓〉 states. Finally, we
do not consider the effect of Coulomb repulsion between the
electrons. This formally means that we are considering the
limit q → 0, with α and β, as well as the magnetic length
lB = √

h̄/|q|B0 and cyclotron frequency ωB = |q|B0/μ held
constant. While this model may be difficult to experimentally
realize in a realistic setting, we proceed with the analysis as it
will provide a useful information on the possibility to obtain
synthetic non-Abelian anyons following the proposed scheme.
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III. GROUND STATE DYNAMICS

Having constructed a Hamiltonian such that (at most) two
of its spin states, |↑〉 and |↓〉, contribute to the ground state,
we proceed to calculate that very state. As we have just ar-
gued, for ground state (GS) considerations, one can effectively
disregard the potential V and use the Hamiltonian HGS = H0.
Writing the GS ket in the form

|ψ〉GS = ψ1|↑〉 + ψ2|↓〉, (6)

where the wave functions ψ1,2({�ri}, {�η j}) depend on the po-
sitions of all the electrons and solenoids, the Schrödinger
equation (SE) H0|ψ〉GS = E0|ψ〉GS reduces to a set of two
scalar equations,

1

2μ

Ne∑
j=1

{
[ �p j − q �A0(�r j )] − α

N∑
k=1

q �Ak (�r j )

}2

ψ1 = E0ψ1, (7)

1

2μ

Ne∑
j=1

{
[ �p j − q �A0(�r j )] − β

N∑
k=1

q �Ak (�r j )

}2

ψ2 = E0ψ2, (8)

which are just the SE for the system under consideration
with the Abelian vector potential. Therefore, the ground state
equations for our non-Abelian model simplifies to two sep-
arate Abelian problems, each of which couples to the same
solenoids with different strength. This problem was studied
in Ref. [46] (see the Appendix of that paper for details of
calculation), we only briefly outline the key steps leading to
the solution.

First of all, let us consider a single particle (Ne = 1) solu-
tion of Eq. (7) in the case of a single Abelian solenoid (N =
1). This is a typical IQHE setup with a single perturbation.
It is no surprise that the energy spectrum of Eq. (7) is split
into Landau levels, with additional solenoid-induced states
appearing in mid-gaps. Since the transformation α → α + 1
corresponds to the gauge transformation of the vector poten-
tial, we assume that α ∈ 〈0, 1〉. In that case, the lowest Landau
level (LLL) single particle state is of the form

ψ1
LLL(z) = z − η

|z − η|α z̄m exp
(−|z|2/4l2

B

)
, (9)

where we have switched to complex notation, so that, in-
stead of �r j = x j x̂ + y j ŷ and �ηk = ηk,xx̂ + ηk,yŷ, we write z j =
x j + iy j and ηk = ηk,x + iηk,y, respectively. Here, m is a non-
negative integer, labeling the states within the LLL. These
states are degenerate, with energies ELLL = h̄ωB/2, inde-
pendent of the solenoid strength α. This fact is especially
important, because it ensures that the ground state energies of
systems in Eqs. (7) and (8) will be the same, regardless of the
fact that the systems differ in the couplings α and β. It should
be noted that the energies of excited states in general depend
on α (or β), which makes simultaneously solving Eqs. (7)
and (8) much more difficult. However, for our purposes, it is
sufficient to consider the simpler, ground state case.

After explicitly solving the SE in the case of a single
solenoid, we move on to the case of multiple solenoids. Now
the complexity of the SE is such that we have to resort to
some educated guesswork to obtain the ground state solution.
From the form of Eq. (9), it seems that, at least for N = 1, the
effect of the solenoid is to multiply the LLL for the IQHE with

the factor (z − η)/|z − η|α , and this also turns out to work for
multiple solenoids, as the ansatz

ψN
LLL(z) =

N∏
k=1

(
z − ηk

|z − ηk|α
)

z̄m exp
( − |z|2/4l2

B

)
(10)

satisfies the single particle SE for N solenoids located at ηk .
The ground state energy is unchanged by the introduction of
multiple solenoids, while the excited states remain unobtain-
able by this method.

Having solved the single particle problem for arbitrary
number of solenoids, we can construct the many-body wave
function by forming a Slater determinant with the solutions
in (10). We assume that there are only Ne states in the LLL
and that electrons fill all of them. The determinant obtained
in this manner is of Vandermonde form and can be explicitly
calculated. With this, we arrive at the solution for the ground
state of Eq. (7),

ψ1 = 1√
Z

Ne∏
j=1

N∏
k=1

(
z j − ηk

|z j − ηk|α
)

×
Ne∏

i< j

(z̄i − z̄ j ) exp

(
−

Ne∑
j=1

|z j |2
4l2

B

)
, (11)

with the ground state energy E0 = Neh̄ωB/2, independent of
α. For Eq. (8), the result is similar, with the substitution α →
β. Here, Z is the normalization constant, implicitly depending
on the positions of the solenoids. It should be noted, for later
convenience, that ψ1,2 are single valued functions of both the
variables z j , as well as the parameters ηk .

IV. GEOMETRIC PHASES IN THE SYSTEM

In the previous section, we have found the ground state
for the Hamiltonian H = H0 + V , which is twofold degen-
erate. Now we study the evolution of GS as the solenoids
are adiabatically moved around in the plane. Therefore, we
study the time-dependent SE H (t )|�(t )〉 = ih̄|�̇(t )〉, limited
to the GS subspace. The Hamiltonian H (t ) becomes time
dependent due to the time dependence of the positions of the
solenoids ηk → ηk (t ). At any moment t , we can diagonalize
the Hamiltonian according to H (t )|ψn(t )〉 = E0|ψn(t )〉, with
|ψ1(t )〉 = ψ1(t )|↑〉 and |ψ2(t )〉 = ψ2(t )|↓〉. By construction,
this basis is orthonormal. Note that the energy eigenvalue
E0 does not have any time dependence because it does not
depend on the positions of the solenoids. Now, let us track the
evolution of two orthogonal states |�n〉, n = 1, 2, that were,
initially, a specific linear combination of the energy basis
eigenstates, |�n(0)〉 = Cnm|ψm(0)〉 for some unitary matrix
Cnm (summation over repeated indices is implied). By hy-
pothesis, the evolution is adiabatic so that, at any time, we
can write |�n(t )〉 ≈ Unm(t )|ψm(t )〉. Substituting this ansatz
into the time dependent SE, we find that the unitary operator
Unm(t ) has to satisfy the differential equation

U̇nk = Unm

(
−i

E

h̄
δmk − iAmk

)
, (12)

with the initial condition Unm(0) = Cnm. Here we have
defined the Hermitian non-Abelian Berry connection as
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Amk = −i〈ψk|ψ̇m〉. The solution of the differential equation
(12) is

Unk (t ) = exp
(
−i

E0t

h̄

)
Cnm P exp

(
−i

∫ t

0
Amk (t ′)dt ′

)
, (13)

where P exp is a path ordered exponential operator. Now we
are in the position to calculate the overlap of the evolved state
with the initial state,

�nm(t ) = 〈�m(0)|�n(t )〉 = C̄mrUnp(t )〈ψr (0)|ψp(t )〉. (14)

In general, 〈ψr (0)|ψp(t )〉 is not a unitary matrix, and neither
is �nm(t ). However, if we consider cyclic evolution of pa-
rameters ηk , so that after some time t = τ , the Hamiltonian
returns to its initial form, H (τ ) = H (0), and so the eigenstates
{|ψp(τ )〉} span the same subspace as {|ψr (0)〉}. Therefore,
we may introduce the unitary matrix 	pr = 〈ψr (0)|ψp(τ )〉
which measures the degree of rotation of the eigenbasis after a
complete cycle. With this, we finally arrive at the Wilczek-Zee

matrix

�nm ≡ �nm(τ ) = Unp(τ )	prC̄mr, (15)

which contains all the information about the geometrical
phases encoded in the system.

For the system at hand, the Wilczek-Zee matrix is greatly
simplified in comparison to its most general form. First of
all, the basis eigenstates {|ψn(t )〉} are, by construction, single
valued function of the positions of the solenoids ηk , so that
a cyclic evolution ηk (τ ) = ηk (0) implies |ψn(τ )〉 = |ψn(0)〉,
which means that the matrix 	pr = δpr is a unit matrix. Even
greater simplification occurs due to the fact that, due to care-
fully chosen spin basis, the connection is diagonal,

Amk =
(−i

∫
d2Ne z ψ̄1ψ̇1 0

0 −i
∫

d2Ne z ψ̄2ψ̇2

)
mk

, (16)

with entries that correspond to the Abelian Berry connections
for two different couplings α and β to the solenoid vector
potential. In other words, our connection is a double copy
of the Abelian Berry connection that was studied in [46].
Because of the diagonal form of the connection, the evolution
operator can be explicitly calculated as

Unk (τ ) = exp
(
−i

E0τ

h̄

)
Cnm ×

(
exp [− ∫

d2Ne z
∮

ψ̄1dψ1] 0
0 exp [− ∫

d2Ne z
∮

ψ̄2dψ2]

)
mk︸ ︷︷ ︸

Bmk

. (17)

Therefore, the Wilczek-Zee matrix for our system is of the
form

� = exp
(
−i

E0τ

h̄

)
CBC†, (18)

where the B matrix is the diagonal matrix describing the cyclic
adiabatic evolution and the C matrix contains the information
about initial conditions. In what follows, we will omit the
dynamical phase factor exp(−iE0τ/h̄) so that we are left with
purely geometric phase.

Before moving on to the main results of this paper, let us
comment on some details regarding the adiabatic assumption.
For this assumption to hold, the solenoids should move around
slow enough so that their motion does not introduce addi-
tional energy to the system. The next available energy state,
after the ground state, is the first excited state of the reduced
Schrödinger equation H0|ψ〉 = E1|ψ〉. Therefore, one can say
that the adiabatic assumption holds as long as the kinetic
energies of the solenoids are less than E1 − E0. To give a more
precise answer, one should know the energy of the first excited
state E1. This is, however, unobtainable by the methods we
use to solve the ground state case. On the other hand, if
the adiabatic assumption does not hold, the evolution of the
system is no longer exclusively geometric in character and the
desired anyonic interpretation of its behavior is lost.

V. RESULTS AND DISCUSSION

Having calculated the Wilczek-Zee matrix for the sys-
tem, let us now investigate the possibility of interpreting the
solenoids as non-Abelian anyons. (This was successfully done

for the Abelian case in Ref. [46].) At first, the idea seems
promising since the geometric phase of a system is described
by the nontrivial Wilczek-Zee matrix. First of all, we calculate
the trace of an arbitrary Wilczek-Zee matrix, i.e., the Wilson
loop. Using the cyclic property of the trace, we find that
the unitary matrix C makes no contribution to the trace and
therefore

Tr � = Tr B. (19)

Earlier we have shown that B is a diagonal 2 × 2 matrix
with different phases as its elements. Therefore, we have
|Tr �| < 2. This is a necessary but not a sufficient condition
for the presence of non-Abelian anyons in the system [50,51].
A sufficient condition is the existence of two different loops in
the parameter space, γ1 and γ2, which share the starting point
and give rise, via adiabatic evolution, to Wilczek-Zee matrices
�1 and �2, respectively, that do not commute, [�1, �2] 
= 0.
However, the Wilczek-Zee matrices obtained earlier fail this
condition. Even though �1,2 are not diagonal themselves, they
are unitarily equivalent to the diagonal matrices B1,2, i.e.,
�1,2 = CB1,2C†. This makes the commutator trivial

[�1, �2] = C[B1, B2]C† = 0, (20)

because the diagonal matrices always commute, [B1, B2] = 0.
Therefore, there are no synthetic non-Abelian anyons in the
system under consideration. Rather, there are two different
kinds of synthetic Abelian anyons, which mix and carry a
non-Abelian flux. A few comments are in order.

First, the diagonal nature of matrix B is a direct conse-
quence of the diagonal matrix M in the Hamiltonian. This
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s1

s2

(a) The loop γ1 does
not swap solenoids.

s1

s2

(b) The loop γ2

swaps solenoids.

FIG. 2. Two loops, γ1 and γ2, along which the solenoids s1 and
s2 are adiabatically transported. Left: The loop γ1 does not swap
solenoids. Right: The loop γ2 swaps solenoids. Note that both loops
span the same surface area so that no excess Aharonov-Bohm phase
is introduced in the exchange phase [52].

would imply that systems of the type described by the Hamil-
tonian in Eqs. (3) and (4) with a constant M do not contain
non-Abelian anyons. In order to have a nonvanishing com-
mutator [�1, �2], one needs to have a nondiagonal matrix
B, which requires the matrix M to be both (a) nondiagonal
and (b) position dependent so that at each point in space,
the diagonalization is performed by a different matrix. This
means that, in the class of systems we are investigating, there
would have to be a coupling between spin and position for the
non-Abelian anyons to appear.

Second, it would certainly be possible to obtain the nonvan-
ishing commutator for the two � matrices if we chose different
initial conditions C for two different paths. However, such a
commutator would lack any physical interpretation.

Third, we can deduce the statistical phase obtained when
we exchange the two solenoids, according to the procedure
developed in Ref. [52]. To calculate this phase, we use the
two different loops γ1 and γ2, shown in Fig. 2, corresponding
to unswapping and swapping of solenoids, respectively. If the
corresponding Wilczek-Zee matrices are �1 and �2, then the
statistical phase is contained in the matrix S given by

�2 = S�1. (21)

Due to the commuting nature of �1 and �2, and using the
methods of Ref. [46], it can be verified that the matrix S is
simply given by

S = −
(

eiπα 0
0 eiπβ

)
. (22)

This result also confirms that the system carries non-Abelian
flux and transforms simply, but nontrivially under the ex-
change of solenoids.

Finally, having discussed the theoretical predictions of our
model, let us comment on its possible experimental imple-
mentation. Two most important features of our model can
be realized in ultracold atomic gases [53]: (1) the particles
need to be confined in two spatial dimensions, and (2) they
experience synthetic non-Abelian gauge potentials of external

probes. The first one has been successfully implemented in
numerous experiments (e.g., see [53] and references therein).
As for the second feature, the first proposals for non-Abelian
gauge potentials date more than fifteen years ago [54–56];
however, non-Abelian gauge potentials have been success-
fully engineered only recently [57–60]. Therefore, ultracold
atomic gases seem like a promising platform for the exper-
imental implementation of the Hamiltonian discussed here.
For example, fine-tuned laser beams piercing the 2D ultracold
atomic gas could be used in principle to create synthetic gauge
potentials [51,61,62]. However, at present, we are unable to
propose a way to manipulate laser beams in order that they
generate the specific form of the potential (1). Another viable
route towards realization of non-Abelian vector potential in
our model could be in specifically designed ion traps, as
already presented recently in Ref. [49]: there, a toroidal trap
simulates the motion of a planar rotor for a charged spin- 1

2
ion, and an additional current and background magnetic field
are present. In closing, we stress that, in this paper, we studied
a model of synthetic anyons, rather than a concrete physical
system with such properties.

VI. CONCLUSION

In conclusion, we have presented an exactly solvable
model of synthetic anyons in a many-body quantum system
by employing external perturbations in the form solenoids
carrying a non-Abelian flux. The model is fine tuned so that
each spin component of the electrons couples differently to the
solenoids. To keep the model exactly solvable, we chose the
simplest form of the non-Abelian potential of the solenoids
that gives a non-Abelian flux and found the behavior to be
similar to a double copy of the corresponding Abelian model.
Although this model does not show the characteristic non-
Abelian anyonic behavior under the adiabatic exchange of
solenoids, it is, nevertheless, a convenient stepping stone in
reaching such a model. Furthermore, similar Abelian systems
with non-Abelian flux have recently sparked interest in their
own right [63]. It would be interesting to see how much
information on the fully non-Abelian system can be extracted
using this type of intermediate systems which are in between
Abelian and non-Abelian anyons.
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KLAJN, DOMAZET, JUKIĆ, AND BULJAN PHYSICAL REVIEW A 104, 052217 (2021)

[7] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.
48, 1559 (1982).

[8] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[9] D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev. Lett. 53,

722 (1984).
[10] F. E. Camino, Wei Zhou, and V. J. Goldman, Phys. Rev. B 72,

075342 (2005).
[11] D. E. Feldman and B. I. Halperin, Rep. Prog. Phys. 84, 076501

(2021).
[12] A. Y. Kitaev, Ann. Phys. (NY) 303, 2 (2003).
[13] A. Y. Kitaev, Ann. Phys. (NY) 321, 2 (2006).
[14] H.-N. Dai, B. Yang, A. Reingruber, H. Sun, X.-F. Xu, Y.-A.

Chen, Z.-S. Yuan, and J.-W. Pan, Nat. Phys. 13, 1195 (2017).
[15] N. Janša, A. Zorko, M. Gomilšek, M. Pregelj, K. W. Krämer,

D. Biner, A. Biffin, Ch. Rüegg, and M. Klanjšek, Nat. Phys. 14,
786 (2018).

[16] S. Das Sarma, M. Freedman, and C. Nayak, npj Quantum Inf.
1, 15001 (2015).

[17] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012).

[18] B. Paredes, P. Fedichev, J. I. Cirac, and P. Zoller, Phys. Rev.
Lett. 87, 010402 (2001).

[19] Y. Zhang, G. J. Sreejith, N. D. Gemelke, and J. K. Jain, Phys.
Rev. Lett. 113, 160404 (2014).

[20] L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 91,
090402 (2003).

[21] L. Jiang, G. K. Brennen, A. V. Gorshkov, K. Hammerer, M.
Hafezi, E. Demler, M. D. Lukin, and P. Zoller, Nat. Phys. 4,
482 (2008).

[22] M. Burrello and A. Trombettoni, Phys. Rev. Lett. 105, 125304
(2010).

[23] B. Andrade, V. Kasper, M. Lewenstein, C. Weitenberg, and T.
Graß, Phys. Rev. A 103, 063325 (2021).

[24] N. Baldelli, B. Juliá-Díaz, U. Bhattacharya, M. Lewenstein, and
T. Graß, Phys. Rev. B 104, 035133 (2021).

[25] E. Kapit, M. Hafezi, and S. H. Simon, Phys. Rev. X 4, 031039
(2014).

[26] R. O. Umucalilar and I. Carusotto, Phys. Rev. A 96, 053808
(2017).

[27] C.-Y. Lu, W.-B. Gao, O. Guhne, X.-Q. Zhou, Z.-B. Chen, and
J.-W. Pan, Phys. Rev. Lett. 102, 030502 (2009).

[28] J. K. Pachos, W. Wieczorek, C. Schmid, N. Kiesel, R. Pohlner,
and H. Weinfurter, New J. Phys. 11, 083010 (2009).

[29] Y.-P. Zhong, D. Xu, P. Wang, C. Song, Q.-J. Guo, W.-X. Liu, K.
Xu, B.-X. Xia, C.-Y. Lu, S. Han, J.-W. Pan, and H. Wang, Phys.
Rev. Lett. 117, 110501 (2016).

[30] K. Li, Y. Wan, L.-Y. Hung, T. Lan, G. Long, D. Lu, B. Zeng,
and R. Laflamme, Phys. Rev. Lett. 118, 080502 (2017).
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Phys. Rev. Lett. 120, 267201 (2018).
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102, 013322 (2020).
[48] T. T. Wu and C. N. Yang, Phys. Rev. D 12, 3845 (1975).
[49] B. Zygelman, Phys. Rev. A 103, 042212 (2021).
[50] N. Goldman, A. Kubasiak, P. Gaspard, and M. Lewenstein,

Phys. Rev. A 79, 023624 (2009).
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