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Standard theoretical descriptions of the dynamics of open quantum systems rely on the assumption that the
correlations with the environment can be neglected at some reference (initial) time. While being reasonable in
specific instances, such as when the coupling between the system and the environment is weak or when the
interaction starts at a distinguished time, the use of initially uncorrelated states is questionable if one wants
to deal with general models, taking into account the mutual influence that the open-system and environmental
evolutions perform on each other. Here we introduce a perturbative method that can be applied to any microscopic
modeling of the system-environment interaction, including fully general initial correlations. Extending the
standard technique based on projection operators that single out the relevant part of the global dynamics, we
define a family of projections adapted to a convenient decomposition of the initial state, which involves a convex
mixture of product operators with proper environmental states. This leads us to characterize the open-system
dynamics via an uncoupled system of differential equations, which are homogeneous and whose number is
limited by the dimensionality of the open system, for any kind of initial correlations. Our method is further
illustrated by means of two case studies, for which it reproduces the expected dynamical behavior in the
long-time regime more consistently than the standard projection technique.
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I. INTRODUCTION

The realistic characterization of quantum systems interact-
ing with an environment, i.e., open quantum systems [1,2],
plays a key role from both the conceptual and the practical
point of view, whenever one aims at a general understand-
ing of quantum evolutions, possibly in view of the control
of quantum properties of the physical system at hand. The
complexity of the global system composed of the open system
and the environment calls for rather drastic simplifications to
obtain a self-contained description of the relevant degrees of
freedom. The assumption that the open system and the envi-
ronment are uncorrelated at the initial time is usually the very
starting point for a microscopic modeling of the dynamics.
Besides simplifying the equations of motion, the presence of
an initial global product state guarantees that the open-system
dynamics is fixed by completely positive and trace preserving
(CPTP) maps defined for a generic initial condition, in this
way providing a description of the dynamics with the rich
mathematical structure of CPTP maps [3].

However, the choice of an initial product state has to be put
under scrutiny, like all other assumptions used to treat open
quantum systems, whenever one wants to associate a given de-
scription with concrete physical systems. While the absence of
initial system-environment correlations is naturally expected
if the interaction between the open system and the environ-
ment starts at a specific instant of time and it can be rigorously
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proven to be justified in the weak-coupling regime [4,5], it
is by now clear that initial correlations can have instead a
significant impact in many situations, including the interac-
tion of a two-level system with bosonic modes [6–9], the
damped harmonic oscillator [10–13], spin systems [14], and
even many-body [15,16] and transport-related [17–20] open
systems. In addition, a full understanding of the role of the
correlations, and possibly of their quantum or classical na-
ture, in the evolution of open quantum systems should indeed
include the analysis of those correlations that are present be-
tween the system and the environment at the initial time, thus
complementing the related studies on the correlations built up
by the dynamics [21–25].

As a consequence, the dynamics of open quantum systems
in the presence of initial correlations with the environment
has been the object of intense study, even though a gen-
eral convenient treatment of such dynamics is still missing.
Mostly, the investigation has been focused on the possibility
to define reduced maps at the level of the set of states of
the open system only and in that case to extend the CPTP
property to this scenario [26–39]. Furthermore, it was shown
that specific behaviors of distinguishability quantifiers among
quantum states, which can be tomographically reconstructed,
can be traced back to the presence [40–45] or even to the
classical or quantum nature [46,47] of initial correlations.

On the other hand, knowing that the open-system dy-
namics can be described via, possibly CPTP, maps does not
mean that one is actually able to evaluate the action of these
maps and thus to obtain explicit predictions about physi-
cal quantities of interest. Perturbative techniques represent
a general strategy yielding an explicit characterization of
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the open-system dynamics that is approximate but that can
be applied in principle to any model and is linked directly
to the microscopic features defining the system-environment
interaction. As relevant examples we mention the second-
order expansion in the coupling constant of the propagator
expressed in the Bargmann coherent-state basis [48], the
expansion building on the system-environment correlations
and leading to coupled reduced system and environmen-
tal integro-differential equations [49], and the perturbative
method tailored to the correlations built up by the previous
system-environment interaction [50]. Furthermore, a system-
atic perturbative approach can be obtained by means of a
cumulant expansion [51,52] defined via projection operators,
which single out the part of the global unitary dynamics that
is relevant for the evolution of the open system. While the
standard method uses projections into product states [1,53],
correlated-projection techniques can be defined in full gener-
ality [54–59].

In this paper we introduce a refined version of the pro-
jection operator techniques, which combines the standard
approach based on projections into product states with a
recently introduced representation of the open-system dy-
namics [39]. Relying on the theory of frames [60,61], the
latter is based on the decomposition of any initial global state
into a convex combination of product operators, where the
operators on the environment are guaranteed to be proper
states, while those on the open system are not, so that also
initial entangled states can be taken into account. Defin-
ing a family of projectors into product states, one for each
state in the decomposition, we derive a description of the
open-system dynamics that always consists of a family of
uncoupled homogeneous differential equations, whose num-
ber is limited by the dimensionality of the open system and
not of the environment. In addition, we also show how the
mentioned representation of the initial global state can be
used in the presence of a single projection operator to get a
general, more explicit form of the resulting equations of mo-
tion and connect them with physically relevant environmental
correlation functions. Note that we focus on the time-local
version of the projection operator techniques, leading to (a
system of) differential equations, but the latter can be linked
with the time-nonlocal version leading to integro-differential
equations [62–64].

After deriving the explicit form of the second-order equa-
tions for a fully general microscopic model and initial
system-environment state, we consider two simple paradig-
matic case studies for the open-system dynamics of a qubit,
namely, pure dephasing and damping by a bosonic bath. The
first model describes a two-level system undergoing only de-
coherence due to the interaction with the environment and it
possesses an analytic solution, which allows us to compare our
general approximated expressions with the exact result, while
the second, which is not exactly solvable, includes an energy
exchange between the open system and the environment. We
also compare the predictions of our perturbative approach to
those of the standard projection operators, focusing on the
intermediate- and long-time regimes, where the two descrip-
tions can differ significantly.

The rest of the paper is organized as follows. In Sec. II
we introduce the main features of the product-state projection

operator method and its correlated-state generalization that
will be useful for the following. In Sec. III, after recalling the
global-state decomposition put forward in [39] and applying
it to the standard projection operator techniques, we present
the main finding of the paper, that is, the systematic definition
of a perturbative expansion based on a family of product-state
operators, adapted to the decomposition of the initial system-
environment state. Our results are further discussed by means
of examples in Sec. IV, while a summary, general conclusions,
and possible outlook for our work are given in Sec. V.

II. TIME-LOCAL PROJECTION OPERATOR
TECHNIQUES

The main idea behind projection operator techniques ap-
plied to open-system dynamics is to introduce a projection at
the level of the overall system-environment evolution, cap-
turing the relevant part of the global state, that is, the one
needed to reconstruct the reduced state at a generic time [1]. In
particular, this can lead to both time-local and time-nonlocal,
i.e., integro-differential, master equations, which can be ex-
panded perturbatively to get an explicit characterization of the
reduced dynamics. Importantly, the error due to the truncation
of the expansion can be estimated in full generality and can
be reduced by taking into account higher orders. On the other
hand, due to the usual complexity of the perturbative expan-
sion,1 it is desirable to get well-behaved solutions already
when restricting to the lowest orders. It is then important
to compare different expansions, based on the definition of
different projections or on distinct decompositions of the ini-
tial global state ρSE , to evaluate which one yields a better
description, once we fix the order of truncation. Here we
consider different perturbative expansions, all of them taking
into account a possibly correlated initial state ρSE ; moreover,
we restrict our analysis to time-local, or time-convolutionless
(TCL), master equations, expanded up to the second order.

Given an open system S, associated with the Hilbert space
HS , and an environment E , associated with HE , let us assume
that their joint dynamics at different times t is fixed by a group
of unitary operators U (t ) (where we set t0 = 0 as the initial
time) on the global Hilbert space HS ⊗ HE , i.e., we assume
that the system and the environment together form a closed
system. The open-system state ρS (t ), also called reduced state,
at a generic time t is an element of the set of statistical oper-
ators S (HS ), i.e., the linear operators on HS that are positive
and with unit trace, and it can always be written in terms of a
map from the set of statistical operators on the global S − E
degrees of freedom S (HS ⊗ HE ) to S (HS ). This map consists
in the composition of the unitary evolution and the partial
trace on the environmental degrees of freedom TrE , according
to

ρS (t ) = TrE [U (t )ρSEU (t )†], (1)

and it is CPTP, while its domain involves the whole S (HS ⊗
HE ). On the other hand, when we deal with the evolution of an

1For a systematic procedure that expresses all the orders of the
expansion in a compact recursive way see [65].
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open quantum system, we would like to focus our description
on maps defined on S (HS ) only.

To achieve this, we can introduce a projection operator P ,
which is a linear map such that P2 = P , on the set of bipar-
tite Hilbert-Schmidt operators L2(HS ⊗ HE ) and additionally
require that TrEP = TrE , so that the projection is trace pre-
serving and in particular preserves the reduced dynamics

ρS (t ) = TrE [ρSE (t )] = TrE [P[ρSE (t )]]. (2)

This relation means that the reduced state ρS (t ) at a generic
time can be obtained from the evolution of the relevant part
P[ρSE (t )] of the global state; in fact, projection operator
techniques define general procedures to get closed dynamical
equations for the relevant part. The starting point is a given
microscopic model of the open system, the environment, and
their interaction, as fixed by the global Hamiltonian (which
for simplicity we take to be time independent)

H = HS ⊗ 1E + 1S ⊗ HE + gHI , (3)

with the three terms on the right-hand side representing the
free system and environment Hamiltonians and their interac-
tion Hamiltonian, respectively; g is a dimensionless parameter
quantifying the strength of the coupling, which will be useful
for the perturbative expansions. The evolution of the global
state ρSE (t ) is fixed by the Liouville–von Neumann equation,
which in the interaction picture reads

d

dt
ρSE (t ) = −i[gHI (t ), ρSE (t )] = gL(t )[ρSE (t )], (4)

where we introduced the Liouville map L(t )[•] =
−i[HI (t ), •] and HI (t ) = eiH0t HI e−iH0t is the interaction
Hamiltonian in the interaction picture (we set h̄ = 1). Now
applying the projection P on both sides of Eq. (4) and
introducing its complementary Q = IdSE − P [using IdSE

to denote the identity map on L2(HS ⊗ HE )], along with
the propagator forward in time of the irrelevant part of the
dynamics (T← is the time-ordering operator)

G(t, t1) = T← exp

[
g
∫ t

t1

dτ QL(τ )

]
, (5)

the propagator backward in time of the global dynamics (T→
is the antichronological time-ordering operator)

G(t, t1) = T→ exp

[
−g

∫ t

t1

dτ L(τ )

]
, (6)

and the map

�(t ) = g
∫ t

0
dt1G(t, t1)QL(t1)PG(t, t1), (7)

we can derive the equation for the relevant part of the dynam-
ics [1]

d

dt
P[ρSE (t )] = KTCL(t )P[ρSE (t )] + ITCL(t )Q[ρSE ], (8)

with the time-local generator, called TCL generator,

KTCL(t ) = gPL(t )[IdSE − �(t )]−1P (9)

and the inhomogeneity

ITCL(t ) = gPL(t )[IdSE − �(t )]−1G(t, 0)Q. (10)

This equation is well defined for times when the operator
IdSE − �(t ) is invertible, which is always the case for times
short enough (depending on the coupling g) since �(0) =
0 [1]. Under this condition, Eqs. (8)–(10) are equivalent to
the initial Liouville–von Neumann equation (4), so Eq. (8) is
as difficult to solve as the full unitary global evolution; on
the other hand, Eq. (8) is the starting point for a systematic
perturbative expansion of the open-system dynamics.

A. Standard projection

Now, different equations, as well as different perturbative
expansions, are obtained from Eqs. (8)–(10) depending on the
specific choice of P . Within the standard projection operator
approach, we consider a projection given by [1]

P = TrE [•] ⊗ ρE , (11)

where ρE is a reference environmental state, i.e., the system-
environment state ρSE is projected by P into the product
state ρS ⊗ ρE . Such a choice is the natural one if the initial
system-environment state is a product state, with a fixed state
of the environment, i.e., ρSE = ρS ⊗ ρE , in which case using
Eq. (11) with ρE = ρE would indeed make the inhomoge-
neous term in Eq. (8) equal to zero, as Q[ρSE ] = 0. More in
general, Eq. (11) can be used also in the presence of initial
correlations, even if in this case it is a priori not clear which
choice of the reference state ρE can be convenient and other
projections that reflect the initial correlations could actually
be preferred, as will be discussed in the following.

Assuming that the inverse of IdSE − �(t ) can be ex-
panded into the geometric series [which is also guaranteed
for times short enough; see the remark after Eq. (10)] [IdSE −
�(t )]−1 = ∑∞

n=0[�(t )]n by substituting the expression for the
projection operator given by Eq. (11) into Eqs. (9) and (10),
we first expand the propagators G(t, t1) and G(t, t1) with re-
spect to the coupling g, which gives a perturbative evaluation
of the relevant part of the global dynamics. Taking then the
partial trace over the environment in Eq. (8), we obtain the
perturbative expansion on the reduced dynamics, which up to
second order in g reads [1]

d

dt
ρS (t ) = J (1)

S (t )[Q[ρSE ]] + J (2)
S (t )[Q[ρSE ]]

+ J (1)
S (t )[ρS (t ) ⊗ ρE ] + J (2)

S (t )[ρS (t ) ⊗ ρE ],

(12)

where we have defined the maps

J (1)
S (t )[•] = gTrE [L(t )[•]],

J (2)
S (t )[•] = g2

∫ t

0
dτ {TrE [L(t )L(τ )[•]]

− TrE [L(t )PL(τ )[•]]}. (13)

B. Correlated-state projection

As second choice, we consider a much wider class of
projections, namely, those that are in the form

P = IdS ⊗ �, (14)
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where � : L2(HE ) → L2(HE ) is a completely positive, trace-
preserving, and idempotent map, which ensure that P2 = P ,
as well as the validity of Eq. (2). For these projections there
exists a representation theorem [55] stating that they can al-
ways be written as

P[•] =
∑

i

TrE [(1S ⊗ Y i )•] ⊗ X i, (15)

with {Y i} and {X i} self-adjoint environmental operators satis-
fying

TrE [X iY j] = δi j,
∑

i

TrE [X i]Y i = 1E ,

∑
i

Y
T
i ⊗ X i � 0. (16)

The standard projection defined in Eq. (11) is a special case
of the construction above, for a single pair of environmental
operators given by X = ρE and Y = 1E . More in general, the
projection in Eq. (15) implies that the relevant part of the
bipartite state ρSE (t ) at time t takes the form

P[ρSE (t )] =
∑

i

ηi(t ) ⊗ X i, (17)

with

ηi(t ) = TrE [(1S ⊗ Y i )ρSE (t )], (18)

which then includes system-environment correlations. Note
that the proof of the representation theorem is not construc-
tive, so additional insights are necessary in order to determine
a relevant choice of operators {Y i} and {X i}. Indeed, up to
now this has been successfully considered only for struc-
tured environments where the coupling between system and
environment was dictated by the structure of the environ-
ment [54,58].

Substituting Eqs. (17) and (18) into Eq. (8) and using the
first identity in Eq. (16), it is possible to write a dynamical
equation for each component ηi(t ) as

d

dt
ηi(t ) = Ki(t )[P[ρSE (t )]] + Ii(t )[Q[ρSE (0)]], (19)

with

Ki(t )[•] = TrE [(1S ⊗ Y i )KTCL(t )[•]],

Ii(t )[•] = TrE [(1S ⊗ Y i )ITCL(t )[•]]. (20)

Expanding the exact equation (19) up to second order and
generalizing the definitions in Eq. (13) as

J (1)
i (t )[•] = gTrE [(1S ⊗ Y i )L(t )[•]],

J (2)
i (t )[•] = g2

∫ t

0
dτ {TrE [(1S ⊗ Y i )L(t )L(τ )[•]]

− TrE [(1S ⊗ Y i )L(t )PL(τ )[•]]}, (21)

we obtain [compare with Eq. (12)]

d

dt
ηi(t ) = J (1)

i (t )[Q[ρSE ]] + J (2)
i (t )[Q[ρSE ]]

+
∑

j

{
J (1)

i (t )[η j (t ) ⊗ X j]+ J (2)
i (t )[η j (t ) ⊗ X j]

}
.

(22)

In the next section we will see how the expressions in both
Eqs. (12) and (22) can take a more explicit form by using a
proper decomposition of the initial global state, from which
the reduced state ρS (t ) can thus be obtained.

III. ADAPTED PERTURBATIVE EXPANSIONS

After recalling the general formalism of projection opera-
tor techniques, we will now introduce a projection operator
expansion based on a decomposition of the initial system-
environment state in terms of positive environmental operators
rather than on a decomposition of the projection operator as
in Eq. (15). Since this expansion is specifically tailored to a
representation of the initial correlated state as a convex mix-
ture of tensor-product operators with positive environmental
states, we will call it the adapted projection operator (APO)
technique. As we will show, this representation of the initial
state directly follows from the expression of the state itself, at
variance with the representation of correlated-projection oper-
ators that has to be introduced on the basis of some additional
information. Before establishing the APO technique, we will
show that also the standard expansions can take advantage of
such a decomposition, so as to make the comparison between
the two approaches easier.

A. Decomposition of bipartite states via positive
environmental operators

Every bipartite statistical operator ρSE ∈ S (HS ⊗ HE ) can
be written as [39]

ρSE =
N∑

α=1

ωαDα ⊗ ρα, (23)

where the ρα ∈ S (HE ) are statistical operators on the environ-
ment and the ωα > 0 are positive numbers, while the Dα are
operators within the set L2(HS ) of Hilbert-Schmidt operators
on HS , i.e., the trace of the square of their absolute value
is finite, but they are not necessarily positive. If the Dα are
also positive operators, the state ρSE in Eq. (23) is a separable
state [66], and if in addition the Dα or the ρα or both are given
by a family of orthogonal projections, ρSE is a zero-discord
state [31,67,68] (according to, respectively, the asymmetric
or the symmetric definitions for bipartite states). Neverthe-
less, we stress once more that every bipartite state, including
any kind of classical or quantum correlations, possesses a
decomposition as in Eq. (23). Such a decomposition can
be constructed explicitly by means of frame theory [60,61],
which also allows one to connect in full generality the number
N of terms with the rank of ρSE [69]. This implies that N is
limited by the dimensionality d of the reduced system, being
anyway bounded by N � d2, for any dimensionality of the
environment and initial system-environment correlations.

The central point of interest for the characterization of
open-system dynamics is that the decomposition in Eq. (23)
allows us to express the reduced state at time t via a family of
maps that are CPTP and that are defined on operators on HS
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FIG. 1. Graphical illustration of the decomposition of the reduced-state evolution in Eq. (24). The initial state ρS can be written as a
combination of operators in the family {Dα} with positive weights {ωα}. A different map acts on each operator of the family. The final state is
found recombining each evolved operator with the corresponding initial weight.

only. In fact, substituting Eq. (23) into Eq. (1), we get

ρS (t ) =
N∑

α=1

ωα
α (t )[Dα], (24)

where


α (t ) : L2(HS ) → L2(HS ),

A �→ 
α (t )[A] = TrE [U (t )A ⊗ ραU (t )†],
(25)

so that the N CPTP maps {
α (t )}1,...,N on L2(HS ) associate
the initial reduced state

ρS =
N∑

α=1

ωαDα (26)

with the reduced state at time t , as illustrated in Fig. 1. Indeed,
in the case of an initial product state, i.e., N = 1, we recover
the usual description of the reduced dynamics in terms of a
single CPTP map [1,70]. The price to pay due to the presence
of initial correlations is that we will generally need N > 1
CPTP maps, but this price is (at least, partially) mitigated
by the fact that the same family of maps can be used for
different initial states: As shown in [39], one can use the
same set {
α (t )}1,...,N for all the states connected by any local
operation on S.

1. Standard projection

Returning to the perturbative expansion of the reduced dy-
namics via projection operator techniques, we first substitute
the decomposition given by Eq. (23) of the initial state ρSE

into Eq. (12) so that the linearity of the maps defined in
Eq. (13) leads us to

d

dt
ρS (t ) =

N∑
α=1

ωα

{
J (1)

S (t )[Dα ⊗ �α] + J (2)
S (t )[Dα ⊗ �α]

}
+ J (1)

S (t )[ρS (t ) ⊗ ρE ] + J (2)
S (t )[ρS (t ) ⊗ ρE ],

(27)

where we have introduced

�α = ρα − ρE , (28)

i.e., the differences between each environmental statistical
operator ρα in the decomposition in Eq. (23) and the reference
state associated with the standard projection. Since the maps
J (1,2)

S (t ) in Eq. (27) are applied to factorized self-adjoint
operators, we can exploit the decomposition of the interaction
Hamiltonian as [1,2] HI = ∑

j A j ⊗ Bj , with self-adjoint op-
erators Aj and Bj , to express the second-order TCL equation
in a more explicit form. In the interaction picture we have

HI (t ) =
∑

j

A j (t ) ⊗ Bj (t ), (29)

with Aj (t ) = eiHSt A je−iHSt and Bj (t ) = eiHE t B je−iHE t , so
that the corresponding Liouville map reads L(t )[•] =
−i

∑
j[Aj (t ) ⊗ Bj (t ), •]. Substituting this expression into

Eq. (13), we encounter the functions

F
(ρα,ρE )
j1 j2

(t1, t2) = 〈Bj1 (t1)Bj2 (t2)〉
ρα

− 〈Bj1 (t1)〉
ρE

〈Bj2 (t2)〉
ρα

,

(30)

G
(ρα,ρE )
j2 j1

(t2, t1) = 〈Bj2 (t2)Bj1 (t1)〉
ρα

− 〈Bj1 (t1)〉
ρE

〈Bj2 (t2)〉
ρα

,

(31)

where we use the common notation

〈O〉ρ = Tr[Oρ]; (32)

importantly, for ρα = ρE , the functions in Eqs. (30) and (31)
reduce to the usual covariance functions of the environmental
interaction operators with respect to the reference state ρE ,
that is,

F
(ρE ,ρE )
j1 j2

(t1, t2) = G
(ρE ,ρE )
j1 j2

(t1, t2) = CovρE
j1, j2

(t1, t2). (33)

The functions in Eqs. (30), (31), and (33) allow us to write
Eq. (27) as [see also Eqs. (28) and (32)]

d

dt
ρS (t ) =

N∑
α=1

ωα

(
−ig

∑
j

[Aj (t ), Dα] 〈Bj (t )〉
�α

− g2
∑
j1, j2

∫ t

0
dτ [Aj1 (t ), Aj2 (τ )Dα]F(�α,ρE )

j1 j2
(t, τ )

+g2
∑
j1, j2

∫ t

0
dτ [Aj1 (t ), DαAj2 (τ )]G(�α,ρE )

j2 j1
(τ, t )

)

052215-5



TREVISAN, SMIRNE, MEGIER, AND VACCHINI PHYSICAL REVIEW A 104, 052215 (2021)

− ig
∑

j

[Aj (t ), ρS (t )] 〈Bj (t )〉
ρE

− g2
∑
j1, j2

∫ t

0
dτ [Aj1 (t ), Aj2 (τ )ρS (t )]CovρE

j1, j2
(t, τ )

+ g2
∑
j1, j2

∫ t

0
dτ [Aj1 (t ), ρS (t )Aj2 (τ )]CovρE

j2, j1
(τ, t ).

(34)

The homogeneous part of the second-order TCL equation [the
last three lines in Eq. (34)] does not depend on the initial-state
parameters ωα and ρα: The effects of the initial system-
environment correlations on the subsequent reduced dynamics
are fully encoded in the inhomogeneous part of the equation
(first three lines). More precisely, the homogeneous part de-
pends on the environmental covariance functions with respect
to the environmental reference state ρE , while in the inhomo-
geneous part the functions in Eqs. (30) and (31) appear, which
can be seen as generalizations of the covariance functions ac-
counting for the initial correlations. In fact, F(ρα,ρE )

j1 j2
(t1, t2) and

G
(ρα,ρE )
j1 j2

(t1, t2) include, besides the expectation values of the
environmental operators on ρE , their expectation values and
two-time correlation functions on the environmental states ρα .
The access to these functions via the reconstruction of the
open-system dynamics can be at the basis, for example, of
noise-spectroscopy protocols in the presence of initial corre-
lations, as investigated extensively in [39].

2. Correlated-state projection

Also in the case of correlated-state projections we can
exploit the decomposition of the initial state ρSE as in Eq. (23),
along with Eq. (29), to apply the maps in Eq. (21) to factorized
self-adjoint operators. In analogy with Eq. (27), the evolution
equations take the form

d

dt
ηi(t ) =

N∑
α=1

ωα

{
J (1)

i (t )[Dα ⊗ �̃α] + J (2)
i (t )[Dα ⊗ �̃α]

}

+
∑

j

{
J (1)

i (t )[η j (t ) ⊗ X j]+ J (2)
i (t )[η j (t ) ⊗ X j]

}
,

(35)

where we have defined

�̃α = ρα −
∑

i

X iTrE [Y iρα]. (36)

Thus, we have now a system of coupled differential equa-
tions, as a consequence of the general definition of the
projection in Eq. (15). Using the definitions in Eq. (21), one
obtains evolution equations for the components ηi(t ) as re-
ported in Appendix A, in which correlation functions appear
that however lack the transparent physical reading in terms of
covariance functions obtained for a product-state projection.
Once we know the evolution for each different component
ηi(t ), we can then reconstruct the reduced state at time t as
[see Eqs. (2) and (17)]

ρS (t ) =
∑

i

TrE [X i]ηi(t ). (37)

Let us stress that this is a general feature of correlated-state
projections and it is indeed analogous to what happens with
the decomposition of the dynamics in Eq. (23) [see Eq. (24)].

The treatments considered are considerably simplified if
the projected state P[ρSE (t )] is a separable state. If we restrict
the study to the case where the operators {X i} and {Y i} are
positive, X i � 0 and Y i � 0, such that TrE [X i] = 1,

∑
i Y i =

1E , and TrE [X iY j] = δi j ,2 the conditions in Eq. (16) hold and
the resulting action of the correlated-projection operator in
Eq. (17) can be written as

P[ρSE (t )] =
∑

i

pi(t )ρS,i(t ) ⊗ ρE ,i. (38)

Importantly, the operators ρE ,i = X i are environmental states
and the coefficients pi(t ) = TrSE [(1S ⊗ Y i )ρSE (t )] are posi-
tive and sum up to 1, which means that the projection P
provides us with a representation of the relevant part of
the global state P[ρSE (t )] as in Eq. (23). Furthermore, also
the operators ρS,i(t ) defined by [see Eq. (18)] pi(t )ρS,i(t ) =
TrE [(1S ⊗ Y i )ρSE (t )] are proper open-system statistical op-
erators, meaning that the relevant part in Eq. (38) actually
consists of a separable state. Conversely, whenever the initial
global state is a separable state ρSE = ∑

i piρS,i ⊗ ρE ,i and it
is possible to introduce a family of positive environmental
operators {Y i � 0} such that

∑
i Y i = 1E and TrE [ρE ,iY j] =

δi j , choosing the correlated-projection operator as in Eq. (15)
(with X i = ρE ,i) would remove the inhomogeneity in Eq. (19),
since Q[ρSE ] = 0, and the representation of P[ρSE ] = ρSE as
in Eq. (17) would coincide with the representation of ρSE as
in Eq. (23).

B. Adapted projection operator

So far, we have derived a description of the reduced dy-
namics starting from the TCL equation for the global unitary
evolution with respect to a generic projection P [Eqs. (8)–
(10)] and, after expanding to the second order the equation
for a specific choice of P , we used the decomposition of the
initial global state ρSE as in Eq. (23) to get an explicit ap-
proximated master equation for ρS (t ). We will now introduce
a different strategy that instead takes the decomposition of
ρSE in Eq. (23) as its starting point. Such a decomposition
represents any initial global state as a convex combination of
N product operators Dα ⊗ ρα [see Eq. (23)], implying that the
dynamics of ρS (t ) can be expressed as the convex combination
[see Eq. (24) and Fig. 1]

ρS (t ) =
N∑

α=1

ωαDα (t ) =
N∑

α=1

ωα
α (t )[Dα], (39)

2An example of a family of operators satisfying these conditions is
given by [55] Y i = �i and X i = �iρE �i

TrE [�iρE ] , where {�i}i is a family of
orthogonal projections on HE summing up to the identity and ρE is a
fixed environmental state. Note that since

∑
i(1S ⊗ �i )P[ρSE ](1S ⊗

�i ) = P[ρSE ], in this case P actually projects into the set of zero-
discord states [71].
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fixed by the maps 
α (t ), which in the interaction picture read
[compare with Eq. (25)]


α (t )[•] = TrE [UI (t )(• ⊗ ρα )U †
I (t )]. (40)

Our basic idea is now to treat each of these contributions
independently, in this way getting an equation of motion for
each component Dα (t ) rather than for the entire state.

Hence, for any environmental state ρα , let us introduce a
product-state projection

Pα[•] = TrE [•] ⊗ ρα. (41)

The standard technique associated with product-state projec-
tion operators recalled in Sec. II A, when applied to Eq. (40),
leads us to the exact equation [compare with Eq. (8)]

d

dt
Dα (t ) ⊗ ρα = Kα,TCL(t )[Dα (t ) ⊗ ρα], (42)

where Kα,TCL(t ) is as in Eq. (9) with Pα instead of P and
�α (t ) instead of �(t ) defined accordingly. Quite remarkably,
no inhomogeneous term appears, since

(IdSE − Pα )[Dα ⊗ ρα] = 0 (43)

for any α as a direct consequence of the choice of projections
in Eq. (41). As anticipated, we call this choice of projections
APOs to stress that it is guided by the initial global state and in
particular by its decomposition as in Eq. (23). Crucially, the
open-system dynamics resulting from Eqs. (39) and (42) is
fixed by a system of N uncoupled homogeneous equations,
where N � d2 for a d-dimensional open system, whatever
the dimensionality of the environment and the correlations
in the initial global state. This is in stark contrast with the
approaches described in the previous section. A product-state
projection as in Eq. (11) leads to a single equation that is
however homogeneous only in the presence of an initial prod-
uct state. On the other hand, any correlated-state projection
as in Eq. (15) allows for homogeneous equations for a wider
class of initial global states, including separable ones, but it
involves a coupled system of equations whose number is fixed
by the cardinality of the set of indices {i}, which is generally
bounded by the square of the environment dimension.

From Eq. (42) it is straightforward to introduce a pertur-
bative expansion associated with the APO technique. Since
the latter is defined by a family of product-state projections
[see Eq. (41)], we can follow exactly the same lines that
led us from Eq. (11) to Eq. (34), but this time without any
inhomogeneous contribution, getting

d

dt
Dα (t ) = −ig

∑
j

[Aj (t ), Dα (t )] 〈Bj (t )〉
ρα

− g2
∑
j1, j2

∫ t

0
dτ [Aj1 (t ), Aj2 (τ )Dα (t )]Covρα

j1, j2
(t, τ )

+ g2
∑
j1, j2

∫ t

0
dτ [Aj1 (t ), Dα (t )Aj2 (τ )]Covρα

j2, j1
(τ, t ).

(44)

The second-order expansion of the APO TCL master equation
is thus fixed solely by the expectation values and covariance
functions Covρα

j1, j2
(t1, t2) of the environmental operators with

respect to the environmental states ρα , where Covρα

j1, j2
(t1, t2)

is defined as in Eq. (33) with ρE replaced by ρα . Comparing
Eq. (44) with Eq. (34), we can see how, as a consequence of
the dependence of the projections Pα on the environmental
states ρα , the APO master equation encloses the full depen-
dence on the initial correlations in a time homogeneous term,
which is essentially what allows one to avoid a time inho-
mogeneous contribution for any initial state. Importantly, the
APO expansion yields uncoupled homogenous equations for
the operators {Dα (t )}, at variance with the case of correlated
projections leading to coupled equations for the {ηi(t )} opera-
tors.

IV. EXAMPLES

We consider now two case studies in order to compare
the descriptions of the open-system dynamics provided by the
perturbative expansions obtained with the standard projection
operator technique discussed in Sec. II and the APO tech-
nique introduced in Sec. III B, respectively. The first model
we take into account, a two-level system undergoing pure
decoherence, can be solved exactly [1], which also allows
us to compare the two perturbative techniques with the exact
solution. The second model, a damped two-level system in
a bosonic bath, is not exactly solvable, while it includes both
decoherence and dissipation effects induced by the interaction
with the environment, thus leading to a richer open-system
dynamics.

A. Exactly solvable dephasing model

Whenever the loss of coherence with respect to the eigen-
basis of the free system Hamiltonian occurs on a much faster
timescale than the other effects due to the interaction with
the environment, the pure-dephasing (or pure decoherence)
microscopic modeling [1,72] yields a satisfactory charac-
terization of the open-system dynamics; this is the case in
a variety of relevant physical systems, including quantum-
optical [73,74] and condensed-matter [75,76] ones. Thus, let
us consider a two-level system HS = C2 and its environment
such that their global unitary evolution is fixed by a Hamilto-
nian as in Eq. (3) with

HS = ς

2
σ3, HI = σ3 ⊗ B, (45)

where σ3 is the z Pauli matrix (σ1 and σ2 are the x and y Pauli
matrices), ς is the free frequency of the two-level system,
and B is a generic self-adjoint operator of the environment.
Since [HS ⊗ 1E , HI ] = 0 the overall unitary evolution can be
determined exactly and, moving to the interaction picture, we
have HI (t ) = σ3 ⊗ B(t ), where B(t ) = eiHE t Be−iHE t , and then

UI (t ) = T← exp

[
−i

∫ t

0
dτHI (τ )

]

= |1〉 〈1| ⊗ V (t ) + |0〉 〈0| ⊗ V †(t ), (46)

with |1〉 and |0〉 the eigenstates of σ3 with respect to the
eigenvalues 1 and −1, respectively, and the unitary operator
V (t ) acting on HE that reads

V (t ) = T← exp

[
−i

∫ t

0
dτB(τ )

]
. (47)
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Having the explicit expression of the global unitary, we
can get the reduced state at time t for any initial state
ρSE , possibly including system-environment correlations. Let
ρ j j (t ) = 〈 j| ρS (t ) | j〉, j = 0, 1, and ρ jk (t ) = 〈 j| ρS (t ) |k〉, j 
=
k = 0, 1, be the populations and coherences of the reduced
state with respect to the σ3 eigenvectors. It is easy to see from
Eq. (46) that the populations do not change in time, while,
introducing the representation of ρSE given in Eq. (23), the
coherence ρ10(t ) at time t can be written as [39]

ρ10(t ) =
N∑

α=1

ωα 〈1|Dα|0〉 κα (t ), (48)

where we defined the generally complex functions

κα (t ) = TrE [[V (t )]2ρα]; (49)

of course, ρ01(t ) = ρ∗
10(t ). Thus, Eqs. (48) and (49) give us

the exact reduced dynamics, at any time t and for any initial
global state ρSE .

In the following, we always consider the decomposition of
the initial state ρSE as in Eq. (23) obtained from the Pauli basis
of operators in L2(C2). In this case, the system operators Dα

are simply given by [39]

D0 = 1√
2

(12 − σ1 − σ2 − σ3), D1 = 1√
2
σ1,

D2 = 1√
2
σ2, D3 = 1√

2
σ3, (50)

while the products between the weights ωa and the envi-
ronmental operators ρα are related to ρSE by the positive
operators

F0 = 1√
2
12, F1 = 1√

2
(12 + σ1),

F2 = 1√
2

(12 + σ2), F3 = 1√
2

(12 + σ3) (51)

via

ωαρα = TrS[Fα ⊗ 1ρSE ]. (52)

1. Perturbative expansions

Moving to the perturbative expansions discussed in Secs. II
and III B, it can be easily seen that they also yield a description
of the reduced dynamics where the populations do not evolve
in time, while the evolution of the coherence has the same
form as in Eq. (48), but with time-dependent functions that
are different from the exact case.

Let us start from the second-order equation (34) obtained
from a standard projection as in Eq. (11). The interaction
Hamiltonian in the interaction picture is as in Eq. (29) with a
single term, such that the open-system interaction operator σ3

does not depend on time. Moreover, we have, for any operator

O acting on C2,

〈 j|[σ3, O]| j〉 = 〈 j|[σ3, σ3O]| j〉
= 〈 j|[σ3, Oσ3]| j〉 = 0, j = 0, 1;

〈1|[σ3, O]|0〉 = − 〈1|[σ3, σ3O]|0〉
= 〈1|[σ3, Oσ3]|0〉 = −2 〈1|O|0〉 . (53)

The first relation implies that the populations do not evolve in
time, while the second relation leads us to

d

dt
ρTCL

10 (t ) =
N∑

α=1

ωα 〈1|Dα|0〉 h(�α,ρE )(t )

+ h(ρE ,ρE )(t )ρTCL
10 (t ), (54)

with

h(�α,ρE )(t ) = 2ig 〈B(t )〉�α
− 4g2

∫ t

0
dτ Re[F(�α,ρE )(t, τ )],

h(ρE ,ρE )(t ) = 2ig 〈B(t )〉ρE
− 4g2

∫ t

0
dτ Re[Cov(ρE )(t, τ )],

(55)

where recall that �α is defined as in Eq. (28), while
Cov(ρE )(t, τ ) is the covariance function of the environmen-
tal interaction operator B(t ) on the reference state ρE [see
Eq. (33)] and F(�α,ρE ) is its generalization involving the expec-
tation values with respect to both ρE and �α [see Eq. (30)];
note that we use the label TCL to denote the state obtained
via the standard second-order TCL expansion. The solution
of Eq. (54), with the initial condition [see Eq. (26)]

ρ10(0) =
N∑

α=1

ωα 〈1|Dα|0〉 , (56)

can be written as

ρTCL
10 (t ) =

N∑
α=1

ωα 〈1|Dα|0〉 κTCL
α (t ), (57)

with

κTCL
α (t ) =1 +

∫ t

0
dτ1 exp

[∫ t

τ1

dτ2h(ρE ,ρE )(τ2)

]
h(ρα,ρE )(τ1),

(58)

where we used h(�α,ρE )(t ) = h(ρα,ρE )(t ) − h(ρE ,ρE )(t ).
Analogously, the second-order master equation obtained

via the APO technique [Eq. (44)] can be simplified by means
of Eq. (53), leading to time-independent populations and to

d

dt
〈1|Dα (t )|0〉 = h(ρα,ρα )(t ) 〈1|Dα (t )|0〉 , (59)

where h(ρα,ρα ) is defined as in the second line of Eq. (55), but
with ρE replaced by ρα . The solution of Eq. (59) reads

〈1|Dα (t )|0〉 = 〈1|Dα|0〉 exp

[∫ t

0
dτh(ρα,ρα )(τ )

]
, (60)
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so the coherence of the reduced state ρAPO
10 (t ) as described by

the APO technique is

ρAPO
10 (t ) =

N∑
α=1

ωα 〈1|Dα|0〉 κAPO
α (t ), (61)

with

κAPO
α (t ) = exp

[∫ t

0
dτh(ρα,ρα )(τ )

]
. (62)

Summarizing, both the standard TCL and the APO tech-
nique lead us to a solution in the form as in Eq. (48) [see
Eqs.(57) and (61)], but with the exact functions κα (t ) in
Eq. (49) replaced by κTCL

α (t ) in Eq. (58) and κAPO
α (t ) in

Eq. (62).

2. Dephasing of polarization degrees of freedom

To make an explicit comparison among the exact functions
κα (t ) and the approximated ones κTCL

α (t ) and κAPO
α (t ), we

need to specify the environmental interaction operator B(t )
and the initial global state ρSE . Hence, we consider a simple
instance of the pure-dephasing model, where the environment
is a single continuous degree of freedom, i.e., HE = L2(R).
This model is associated, for example, with the evolution of
a photon going through a quartz plate, which has been exten-
sively studied both theoretically and experimentally within the
context of non-Markovian quantum dynamics [42,73,74,77].

Hence, let B be the environmental interaction operator de-
fined as

B = ξ

2

∫
dQ Q |Q〉 〈Q| , (63)

where ξ is a dimensionless parameter fixing the strength of
the system-environment coupling (we set g = 1 for the cou-
pling parameter used in the previous sections); in the case
of a photon going through a quartz plate, ξ is the difference
between the refractive index in the horizontal and vertical
polarizations, while Q is associated with the momentum of
the photon, focusing on its propagation in one direction. Note
that a formally identical model has been considered in the
context of dynamical decoupling, identifying the continuous
degree of freedom with the position of a particle moving in
one dimension [78]. From Eq. (49) it is easy to see that the
exact dynamics is fixed by the functions

κα (t ) =
∫

dQ e−iξQt pα (Q), (64)

where we introduced

pα (Q) = 〈Q|ρα|Q〉 , (65)

i.e., the momentum probability density for the environmental
state ρα; the exact κα (t ) is then the corresponding charac-
teristic function. If we further introduce the first and second
moments of the probability pα (Q),

mα =
∫

dQ Q pα (Q), m(2)
α =

∫
dQ Q2 pα (Q), (66)

along with the variance

σ 2
α = m(2)

α − m2
α, (67)

the second-order TCL expression [see Eq. (58)] can be written
as

κTCL
α (t ) = 1 − e−iξmE t e−ξ 2σ 2

E t2/2

×
(

iξmα

∫ t

0
dτ eiξmE τ eξ 2σ 2

E τ 2/2

+ ξ 2
(
m(2)

α − mαmE
) ∫ t

0
dτ τ eiξmE τ eξ 2σ 2

E τ 2/2

)
,

(68)

where mE and σ 2
E are as in Eqs. (66) and (67), but with ρα in

Eq. (65) replaced by the reference state ρE used to define the
projection operator in Eq. (11). In addition, the second-order
APO expression [see Eq. (62)] is

κAPO
α (t ) = exp

[−iξmαt − 1
2ξ 2σ 2

α t2
]
. (69)

We note in particular that the second-order APO technique
is equivalent to the replacement of the probability distribution
pα (Q) in Eq. (64) with a Gaussian distribution with the same
mean value mα and variance σ 2

α . Importantly, this guarantees
that the second-order APO technique reproduces the exact
behavior in the long-time limit. In fact, since ρα is a state,
due to the Riemann-Lebesgue lemma, the Fourier transform
of pα (Q) decays to zero for t → +∞ so that

lim
t→+∞ κα (t ) = 0. (70)

Indeed, the same is true for κAPO
α (t ), since, as said, it is still

defined as the Fourier transform of a (Gaussian) probability
distribution:

lim
t→+∞ κAPO

α (t ) = 0. (71)

On the other hand, for the second-order TCL expansion we
find

lim
t→+∞ κTCL

α (t ) = 1 − m(2)
α − mαmE

m(2)
E − m2

E

, (72)

which is generally different from zero (unless the first and
second moments with respect to ρα and ρE coincide).

3. Comparison of the expansions

To proceed further and compare the exact and approxi-
mated solutions also in the transient time region, we specify a
class of initial correlated global states. We consider pure states
of the form

|ψ〉 = C0 |1〉 ⊗
∫

dQ f (Q) |Q〉

+ C1 |0〉 ⊗
∫

dQ f (Q)eiθ (Q) |Q〉 , (73)

with |C1|2 + |C0|2 = 1 and
∫

dQ| f (Q)|2 = 1, so that there are
correlations if and only if the function θ (Q) is not constant.
These states were studied in [42,74], where it was shown how
a complete simulation of any qubit dephasing dynamics can
be obtained with an appropriate control on f (Q) and θ (Q), so
that indeed they provide an important class of reference states.
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For the sake of simplification, we assume C0,C1 ∈ R and

| f (Q)|2 = | f (−Q)|2, θ (−Q) = −θ (Q). (74)

Taking into account the Pauli decomposition introduced
in Eqs. (50)–(52), the environmental-state probabilities in
Eq. (65) are

p0(Q) = p3(Q) = | f (Q)|2,

p1(Q) = 1

N | f (Q)|2[1 + 2C1C0 cos θ (Q)],

p2(Q) = | f (Q)|2[1 − 2C1C0 sin θ (Q)],

where N is a normalization constant warranting∫
dQ p1(Q) = 1 [p2(Q) is already normalized due to Eq. (74)

and normalization of f (Q)]. Using the relations

ω0 〈1| D0 |0〉 = 1

2
(i − 1), ω1 〈1| D1 |0〉 = N

2
,

ω2 〈1| D2 |0〉 = − i

2
, ω3 〈1| D3 |0〉 = 0, (75)

we can then show that the exact evolution of the coherence
[see Eqs. (48) and (64)] can be written as

ρ10(t ) = C1C0

∫
dQ| f (Q)|2eiθ (Q)−iξQt = C1C0κ (t ), (76)

with

κ (t ) =
∫

dQ| f (Q)|2eiθ (Q)−iξQt , (77)

which, due to Eq. (74), is a real function of time.
To determine the approximated TCL and APO expressions,

we need to evaluate the first and second moments mα and
m(2)

α , respectively, of the probability distributions pα (Q) [see
Eqs. (68) and (69)]. The property (74) implies that p0(Q),
p1(Q), and p3(Q) are even, so m0 = m1 = m3 = 0; instead,
p2(Q) has an odd contribution such that m2 
= 0 and, in ad-
dition, m(2)

2 = m(2)
0 = ∫

dQ Q2| f (Q)|2. Using these relations
and making the choice ρE = ρE = TrE [|ψ〉 〈ψ |], we deter-
mine ρTCL

10 (t ) and ρAPO
10 (t ) according to Eqs. (68) and (69),

respectively. Further, using Eqs. (57) and (61) together with
Eq. (75), the expressions for ρTCL

10 (t ) and ρAPO
10 (t ) are readily

obtained as

ρTCL
10 (t ) = C1C0

(
1 − m(2)

1

m(2)
0

(1 − e−ξ 2m(2)
0 t2/2)

)

+ 1

2

(
1 − m(2)

1

m(2)
0

)
(1 − e−ξ 2m(2)

0 t2/2)

− 1

2
m2ξe−ξ 2m(2)

0 t2/2
∫ t

0
dτ eξ 2m(2)

0 τ 2/2 (78)

and

ρAPO
10 (t ) = i − 1

2
e−ξ 2m(2)

0 t2/2 + N
2

e−ξ 2m(2)
1 t2/2

− i

2
e−iξm2t−ξ 2(m(2)

2 −m2
2 )t2/2. (79)

We observe that, contrary to the exact solution and the second-
order TCL approximation, the second-order APO solution

FIG. 2. Entropy of entanglement [see Eq. (81)] for a system-
environment correlated state as in Eq. (73) with momentum
distribution f (Q) and phase θ (Q) as in Eq. (82), as a function of
r and q; the section for q = 0 (thick blue line) corresponds to the
case where f (Q) is a single Gaussian peak, i.e., Eq. (80).

presents a nontrivial evolution for the imaginary part of the
coherence.

We now consider specific choices of the functions fixing
the initial global state in Eq. (73). Let us first consider a
symmetric Gaussian f (Q) centered in Q = 0 and a linear
phase θ (Q), i.e.,

| f (Q)|2 = 1√
2πσ 2

e−Q2/2σ 2
, θ (Q) = r

Q

σ
. (80)

For greater |r| the initial reduced state is more mixed, i.e., the
pure state |ψ〉 is more entangled. Thus, |r| provides an indica-
tion of the amount of correlation for this class of pure states;
for r = 0 we have an initial product state, while |r| → ∞
leads to a maximally entangled state. More in detail, in Fig. 2
(thick blue line) we show the amount of entanglement for an
initial global state fixed by Eqs. (73) and (80) as a function
of r, where the entanglement is quantified by the entropy of
entanglement [79], which is the von Neumann entropy S of
the reduced state ρS , i.e.,

S(TrE [|ψ〉 〈ψ |]) = −TrS[ρS log ρS]. (81)

The entropy of entanglement is even with respect to r and it
increases monotonically as a function of |r|, already approxi-
mating quite closely (up to 1.5%) the maximum value 1/

√
2

for |r| = 2.
In Fig. 3 we compare the exact (black dashed line), the

TCL (blue dot-dashed line), and the APO (red solid line)
solutions of the real component of the coherence, Re[ρ10(t )],
for different values of r. We observe that both approximations
are in good agreement with the exact solution at short times.
On the other hand, the TCL description departs significantly
from the exact solution, possibly even becoming unphysical,
at intermediate and long times, while the APO solution is
always bounded between 0 and 1 and reproduces to a good
extent the exact solution during the whole time evolution, for
small and intermediate values of the correlation parameter |r|,
i.e., for |r| � 1, and it anyway captures both the short- and
long-time dynamics even for stronger correlations.

The overall better agreement between the second-order
APO and the exact solution for Re[ρ10(t )] is further confirmed
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FIG. 3. Comparison between the exact evolution (black dashed line), TCL solution (blue dot-dashed line), and APO solution (red solid
line) of the real part of the coherence Re[ρ10(t )] for different values of the correlation parameter r in the pure-dephasing dynamics fixed by
Eqs. (45) and (63) and the initial state given by Eq. (73), for f (Q) and θ (Q) as in Eq. (80): (a) r = −2, (b) r = −1, (c) r = 1, and (d) r = 2.
The values of the parameters are C0 = C1 = 1√

2
and ς = 0; note that the latter can be read as an indication of a strong system-environment

coupling regime of the pure dephasing.

by Figs. 4(a) and 4(b). There we consider the difference be-
tween the approximated predictions and the exact solution, as
a function of both time and the correlation parameter r. We
notice in both cases the presence of a blue region, associated
with a negative error, around ξσ t = r for r > 2. This is due
to the fact that for large r we have mα ≈ 0 and m(2)

α ≈ σ , so
that Re[ρTCL

10 (t )] ≈ Re[ρAPO
10 (t )] ≈ 0, while the exact solution

presents a Gaussian peak at ξσ t = r. The horizontal orange
regions in the plot representing the TCL solution are due to
the fact that the TCL solution converges at long times to a
value significantly different from zero; in fact, it can be shown
that limt→+∞ Re[ρTCL

10 (t )] = (r2/2)e−r2/2. Instead, the APO
solution always reproduces the exact behavior at long times
[see Eq. (71)], which also results in a better approximation in
the transient time region. The APO solution fits particularly
well the exact evolution at all times for |r| < 1, while for
|r| > 1 the approximation fails at times σξ t ≈ r and this is
again due to the Gaussian peak of the exact solution. Finally,
in Fig. 4(c) we show the evolution of the imaginary part of
the coherence in the second-order APO approximation; the
deviation from the exact solution (which is always identically
equal to zero) is anyway two orders of magnitude smaller than
the value of the real part.

In Figs. 5 and 6 we consider instead an initial state as in
Eq. (73), but where now the momentum distribution | f (Q)|2

is given by the balanced mixture of two symmetric Gaussians
centered around ±Q0:

| f (Q)|2 = 1

2
√

2πσ 2
(e−(Q−Q0 )2/2σ 2 + e−(Q+Q0 )2/2σ 2

),

θ (Q) = r
Q

σ
. (82)

Indeed, | f (Q)|2 is an even function, so κ (t ) is still real. If we
define the ratio q = Q0/σ [for q → 0 the distribution reduces
to a single Gaussian centered in Q = 0, which is the case
of Eq. (80)], now the correlations are parametrized by the
couple (r, q). In particular, we observe in Fig. 2 the entropy of
entanglement defined in Eq. (81) as a function of r and q: The
initial state is maximally entangled for qr = (2k + 1)π/2,
k ∈ Z, which explains the oscillating behavior as a function of
r for values of q different from zero; in addition the maximum
value 1/

√
2 is reached for |r| → ∞ and approximated very

closely for r � 2.
In Fig. 5 we notice that the exact evolution of Re[ρ10(t )]

presents an oscillation of frequency qσξ/2π , which is cor-
rectly reproduced only by the APO solution, for small values
of r, while the TCL solution completely misses such an os-
cillation. At higher values of r, both the APO and the TCL
solutions depart significantly from the exact one at interme-
diate times, but the former is indeed still able to properly

�0.03

�0.02

�0.01

0

FIG. 4. (a) Difference between the TCL and exact solution for Re[ρ10(t )] and difference between the APO and exact solution for
(b) Re[ρ10(t )] and (c) Im[ρ10(t )], as a function of time and of the correlation parameter r. The values of the other parameters are as in
Fig. 3, so f (Q) and θ (Q) are as in Eq. (80). The comparison between (a) and (b) shows the better performance of the APO approximation
when compared with the standard TCL.
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FIG. 5. Comparison of the exact evolution (black dashed line), TCL solution (blue dot-dashed line), and APO solution (red solid line), for
(a) r = 0.1 and q = π/2r and (b) r = q = 2, of Re[ρ10(t )] in the pure-dephasing dynamics fixed by Eqs. (45) and (63) and the initial state
given by Eq. (73), for f (Q) and θ (Q) as in Eq. (82). (c) APO solution of Im[ρ10(t )] (the exact and TCL values are identically equal to 0 at
every time) for r = 0.1 and q = π/2r; the values of the other parameters are as in Fig. 3.

reproduce the long-time decay. On the other hand, the APO
solution introduces an imaginary component of the coherence
Im[ρ10(t )] (the exact and the TCL solutions are identically
equal to zero), which can now take on significant values (of
the same order as Re[ρ10(t )]). Once again, the overall better
agreement between the predictions of the APO description of
Re[ρ10(t )] and the exact solution seem to be robust for differ-
ent values of the correlation parameters r and q, as shown in
Fig. 6. Here we plot the difference between the approximated

FIG. 6. (a) and (c) Difference between the TCL and exact solu-
tion and (b) and (d) difference between the APO and exact solution
for Re[ρ10(t )], as a function of time and of the correlation parameter
r for (a) and (b) q = 2 and (c) and (d) q = 15; the values of the other
parameters are as in Fig. 5.

solutions and the exact one as a functions of t and r, for differ-
ent values of q. The diagonal stripes that can be observed in
both cases are a consequence of the Gaussian peak of the exact
solution, which now modulates an oscillation becoming faster
for greater q and not captured by the TCL or the APO solution
for high values of q. On the other hand, the APO description
matches better the exact solution for smaller values of q and
especially if one further has small or intermediate values of
r; here the plot of the TCL solution presents also horizontal
stripes, in correspondence with a nonzero long-time limit,
whose value oscillates from negative values (blue stripes) to
positive ones (orange stripes) for different r.

B. Damped two-level system in a bosonic bath

In the second model we consider, the open system is still
a two-level system HS = C2, which is now interacting with
a bosonic environment exchanging also excitations with it.
In particular, we consider a Jaynes-Cummings form of the
interaction Hamiltonian so that the global Hamiltonian is as
in Eq. (3) (g = 1) with

HS = ς

2
σ3, HE =

∑
k

ωkb†
kbk,

HI =
∑

k

gkσ+ ⊗ bk + g∗
kσ− ⊗ b†

k, (83)

where σ+ = |1〉 〈0| and σ− = |0〉 〈1| are the raising and low-
ering operators of the two-level system, respectively, with
bk and b†

k the annihilation and creation operators of the kth
bosonic mode, while gk is its coupling strength with the sys-
tem. The interaction picture Hamiltonian can thus be written
as in Eq. (29) with [having assigned j �→ (k,±)]

Ak,+(t ) = eiςtσ+, Ak,−(t ) = e−iςtσ−,

Bk,+(t ) = gke−iωkt bk, Bk,−(t ) = g∗
keiωkt b†

k . (84)

Unless one restricts the study to a single-bath mode [80]
or to a zero-temperature bath [81,82], this model cannot be
solved analytically; moreover, standard projective approaches
have been applied to it [1,80] only in the absence of initial
correlations. We will now instead apply both the standard pro-
jection technique discussed in Sec. II and the APO technique
introduced in Sec. III B taking into account the presence of
initial correlations.
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1. Standard and adapted projection second-order master equations

For the sake of simplicity, we focus on initial global states
ρSE such that the environmental states defining its decompo-
sition as in Eq. (23) satisfy

〈bk〉ρα
= 〈bkbk′ 〉ρα

= 0, 〈b†
kbk′ 〉

ρα
= δk,k′nα

k , (85)

where we introduced the expectation value of the number op-
erator of the kth mode on ρα , nα

k = 〈b†
kbk〉ρα

; these conditions
generalize the analogous ones for a thermal state, but, indeed,
choosing different nα

k for different α allows us to describe ini-
tially correlated states. Moreover, we perform the continuum
limit of the bath modes [1] with the replacements ωk �→ ω,
where ω can take any real positive value,

∑
k �→ ∫ ∞

0 dω, and
defining the spectral density

J (ω) =
∑

k

|gk|2δ(ω − ωk ). (86)

For the standard projection technique, we set ρE = ρE =∑N

α=1 ωαTr[Dα]ρα in the definition of the projection operator
in Eq. (11), so the conditions in Eq. (85) directly imply similar
conditions with respect to ρE ,

〈bk〉ρE
= 〈bkbk′ 〉ρE

= 0, 〈b†
kbk′ 〉

ρE
= δk,k′nav

k , (87)

where nav
k is the occupation number of the modes aver-

aged with the coefficients appearing in the decomposition in
Eq. (23), i.e.,

nav
k =

N∑
α=1

ωαTr[Dα]nα
k . (88)

Substituting Eqs. (84) into Eq. (34) using (85) and (87) and
taking into account the continuum limit, we get

d

dt
ρS (t ) =

N∑
α=1

wα{−i[�Iα
+(t )σ+σ− + �Iα

−(t )σ−σ+, Dα]

+ �Rα
+(t )D+[Dα] + �Rα

−(t )D−[Dα]}
− iIE

+ (t )[σ+σ−, ρS (t )] − iIE
− (t )[σ−σ+, ρS (t )]

+ RE
+(t )D+[ρS (t )] + RE

−(t )D−[ρS (t )], (89)

where we defined the map

D±[O] = σ∓Oσ± − 1
2 {σ±σ∓, O}, (90)

as well as the functions

Rα
+(t ) =

∫ ∞

0
J (ω)[nα (ω) + 1]

sin[(ς − ω)t]

ς − ω
,

Rα
−(t ) =

∫ ∞

0
J (ω)nα (ω)

sin[(ς − ω)t]

ς − ω
,

Iα
+(t ) =

∫ ∞

0
J (ω)[nα (ω) + 1]

1 − cos[(ς − ω)t]

ς − ω
,

Iα
−(t ) = −

∫ ∞

0
J (ω)nα (ω)

1 − cos[(ς − ω)t]

ς − ω
,

�Iα
±(t ) = Iα

±(t ) − IE
± (t ), �Rα

±(t ) = Rα
±(t ) − RE

±(t ), (91)

and indeed RE
±(t ) and IE

± (t ) are defined as Rα
±(t ) and Iα

±(t ),
respectively, but with nα (ω) replaced by nav (ω). Interestingly,

Eq. (90) shows that both the homogeneous and inhomoge-
neous parts of the second-order TCL master equation (89) are
written in the canonical form [1,75,83], generalizing the stan-
dard Gorini-Kossakowski-Lindblad-Sudarshan [83,84] one to
the time-dependent case.

On the other hand, substituting Eqs. (84) into Eq. (44) and
exploiting again (85) and (87), we obtain that the second-order
APO description of the dynamics reads

d

dt
Dα (t ) = −iIα

+(t )[σ+σ−, Dα (t )] − iIα
−(t )[σ−σ+, Dα (t )]

+ Rα
+(t )D+[Dα (t )] + Rα

−(t )D−[Dα (t )]. (92)

Indeed, we have an uncoupled system of homogeneous equa-
tions, each of which takes the canonical form mentioned
above. The time-dependent functions defining the master
equation are the same real and imaginary parts of the envi-
ronmental interaction operators with respect to the states ρα

fixed by Eq. (91).
In Appendix B we report the analytical solutions of

Eqs. (89) and (92), which are at the basis of the comparison
between the standard and the APO solutions performed in the
next section.

2. Comparison between the two approximated descriptions

For the sake of concreteness, we focus also in this case on
initial pure entangled global states; in particular, we consider
states in the form

|�〉 = C0 |0〉 ⊗ |0〉 + C1 |1〉 ⊗ |{Nk}k〉 , (93)

where |{Nk}k〉 denotes the pure environmental state with Nk

bosons in the mode of frequency ωk . The Pauli decomposition
of this state [see Eqs. (50)–(52)] is thus fixed by

w0 = w1 = w2 = 1, w3 = 2|C1|2 (94)

and

ρ0 = |C0|2 |0〉 〈0| + |C1|2 |{Nk}k〉 〈{Nk}k| ,
ρ j = |ξ j〉 〈ξ j | , (95)

where

|ξ1〉 ≡ C0 |0〉 + C1 |{Nk}k〉 , |ξ2〉 ≡ C0 |0〉 + iC1 |{Nk}k〉 ,

|ξ3〉 ≡ |{Nk}k〉 . (96)

From this we readily obtain the average numbers of bosons

n0
k = n1

k = n2
k = |C1|2Nk, n3

k = Nk (97)

and hence the explicit expression of the functions fixing both
the standard and the APO second-order master equations. Fi-
nally, we perform the continuum limit and consider an Ohmic
spectral density [1]

J (ω) = γω�(ω − ωc), (98)

where γ is an adimensional parameter setting the overall
strength of the system-environment interaction and the Heavi-
side theta function � introduces a hard cutoff to the maximum
value of the frequency ωc. Moreover, we consider N bosons
for each mode up to the cutoff frequency ωc, i.e.,

N (ω) = N�(ω − ωc) (99)

(in the continuum limit).
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FIG. 7. Second-order APO (red solid line) and second-order
TCL (blue dot-dashed line) solutions for ρ11(t ) as a function of time
t , for the damped two-level system dynamics fixed by Eq. (83), with
a spectral density as in Eq. (98) and an initial correlated global state
as in Eq. (93), with C0 = C1 = 1/

√
2 and the number of bosons in

the mode with frequency ω as in Eq. (99). The values of γ and N are
(a) γ = 0.05 and N = 3, (b) γ = 0.5 and N = 3, (c) γ = 0.05 and
N = 10, and (d) γ = 0.5 and N = 10. The inset shows the difference
between the APO and TCL second-order solution in the short-time
regime. In all panels, ωc/ν = 100 and ς = 0.

In Fig. 7 we report the second-order solutions of the TCL
(blue dot-dashed line) and APO (red solid line) of the excited-
state population ρ11(t ), for different values of the coupling
strength γ and number of bosons N , for an initial pure state
as in Eq. (93) that is maximally entangled, i.e., for C0 = C1 =
1/

√
2; the coherence ρ10(t ) is identically equal to zero at all

times. We observe that the two descriptions agree approxi-
mately only in the short-time regime (shown in the insets),
while they depart quite significantly already at intermediate
times. Moreover, the difference between the APO and TCL
solutions is enhanced by larger values of the coupling strength
and the number of bosons. In any case, also for this model, the
two approximations lead to very different predictions about
the asymptotic behavior. In particular, the second-order TCL
solution always yields a complete decay to the ground state,
while the second-order APO solution provides us with a fi-
nite nonzero asymptotic value of the excited-state population,
compatibly with the fact that the two-level system is damped
by an environment that is not in the vacuum state. Indeed, the
asymptotic value is larger for higher values of the number of
bosons N initially in the environment, as can be observed by
comparing Figs. 7(a) and 7(b) with Figs. 7(c) and 7(d).

The difference between the APO and TCL second-order
solutions for ρ11(t ) is further investigated in Fig. 8, where it
is shown as a function of both time t and coupling strength
γ . Again, we see how such a difference is negligible only
at short times and/or for weak couplings, while it leads to
different asymptotic values already for intermediate values of
the couplings. In addition, we note some oscillations in time
of the difference between the APO and TCL solution [also

FIG. 8. Difference between the second-order APO and TCL so-
lutions for ρ11(t ), as a function of time t and coupling constant γ , for
N = 3; the other parameters are as in Fig. 7.

observable in Fig. 7(a)], which are suppressed by larger values
of the coupling.

V. CONCLUSION AND OUTLOOK

We have developed a perturbative approach for the treat-
ment of open-quantum-system dynamics that is able to deal
with general microscopic models of the system-environment
interaction and, above all, with arbitrary, possibly correlated
initial global states. Our approach combines features of the
standard projection operator techniques with a convenient
decomposition of the initial state obtained relying on frame
theory. The initial state is expressed as a convex combination
of product operators, which involve proper states on the en-
vironmental side and whose number is limited by the square
dimension of the open system. As a result, the dynamics of the
open system is characterized by a limited set of differential
equations uncoupled and homogeneous even for correlated
initial states, at variance with existing techniques. This has
allowed us to deal with correlated initial states in a spin-boson
scenario. The equations are fixed by environmental correlation
functions with a clear physical meaning, which generalize the
usual covariance functions and in principle can be accessed
experimentally. The detailed analysis of two significant two-
level system dynamics, i.e., pure dephasing and damping by
a continuous bosonic bath, also shows that our method repro-
duces expected dynamical behaviors in the long-time regime
more closely than the standard approach.

To further appreciate the potential and versatility of our
method, it will be important to take into account more com-
plex open-system dynamics, and a first step in this direction
might be the study of multiqubit evolutions where the men-
tioned decomposition of the initial global state has already
been applied successfully [85]. In addition, the effective-
ness of the projection operator approach we introduced here
should be clarified by a systematic analysis of higher-order
contributions, as well as by the analogous treatment for the
time-nonlocal form of the equations of motion, which can
give an improved approximation of the dynamics in certain
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circumstances [62,86]. Finally, a realistic treatment of the
correlations between an open quantum system and its envi-
ronment at the initial time will help reach a full understanding
of the connection between the (quantum or classical) system-
environment correlations and their impact on the subsequent
dynamics.
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APPENDIX A: SECOND-ORDER MASTER EQUATION FOR A CORRELATED-STATE PROJECTION

In this Appendix we give a more explicit, albeit unavoidably cumbersome, expression for the second-order master equa-
tion (35), obtained by combining a generic correlated-state projector and the decomposition of the initial global state as in
Eq. (23).

Using the definitions in Eq. (21), Eq. (35) can be written as

d

dt
ηi(t ) =

N∑
α=1

ωα

[
−ig

∑
j

[Aj (t )Dα 〈Y iB j (t )〉
�̃α

− DαAj (t ) 〈Bj (t )Y i〉�̃α
]

− g2
∑
j1, j2

∫ t

0
dτ

[
Aj1 (t )Aj2 (τ )DαH

(�̃α )
i; j1 j2

(t, τ ) − Aj1 (t )DαAj2 (τ )K(�̃α )
i; j2 j1

(τ, t )

− Aj2 (τ )DαAj1 (t )L(�̃α )
i; j1 j2

(t, τ ) + DαAj2 (τ )Aj1 (t )M(�̃α )
i; j2 j1

(τ, t )
]]

− ig
∑
j, j1

[Aj1 (t )η j (t ) 〈Y iB j1 (t )〉X j
− η j (t )Aj1 (t ) 〈Bj1 (t )Y i〉X j

]

− g2
∑
j, j1, j2

∫ t

0
dτ

[
Aj1 (t )Aj2 (τ )η j (t )H(X j )

i; j1 j2
(t, τ ) − Aj1 (t )η j (t )Aj2 (τ )K(X j )

i; j2 j1
(τ, t )

− Aj2 (τ )η j (t )Aj1 (t )L(X j )
i; j1 j2

(t, τ ) + η j (t )Aj2 (τ )Aj1 (t )M(X j )
i; j2 j1

(τ, t )
]
, (A1)

where we introduced the functions (implying their dependence on the environmental operators {Y i} and {X i})
H

(O)
i; j1 j2

(t, τ ) = 〈Y iB j1 (t )Bj2 (τ )〉O −
∑

i0

〈Y i0 Bj2 (τ )〉O 〈Y iB j1 (t )〉X i0
,

K
(O)
i; j2 j1

(τ, t ) = 〈Bj2 (τ )Y iB j1 (t )〉O −
∑

i0

〈Bj2 (τ )Y i0〉O 〈Y iB j1 (t )〉X i0
,

L
(O)
i; j1 j2

(t, τ ) = 〈Bj1 (t )Y iB j2 (τ )〉
�̃α

−
∑

i0

〈Y i0 Bj2 (τ )〉
�̃α

〈Bj1 (t )Y i〉X i0
,

M
(O)
i; j2 j1

(τ, t ) = 〈Bj2 (τ )Bj1 (t )Y i〉�̃α
−

∑
i0

〈Bj2 (τ )Y i0〉�̃α
〈Bj1 (t )Y i〉X i0

. (A2)

We note that the presence of the operators {X i} and {Y i} related to it does not allow us to express the terms in the equation by
means of (generalized) correlation functions of the environmental interaction operators as done with Eqs. (30), (31), and (33),
but the more general functions in Eq. (A2) are needed.

APPENDIX B: ANALYTIC SOLUTIONS OF THE SECOND-ORDER MASTER EQUATIONS FOR THE DAMPED
TWO-LEVEL SYSTEM

Here we provide the explicit analytic solutions of Eqs. (89) and (92), which correspond to the second-order description of the
dynamics of a two-level open system damped by a bosonic bath according to the standard and the APO perturbative expansions,
respectively.

Introducing the functions

R̄α (t ) = Rα
+(t ) + Rα

−(t ) =
∫ ∞

0
J (ω)[2nα (ω) + 1]

sin[(ς − ω)t]

ς − ω
,

Īα (t ) = Iα
+(t ) − Iα

−(t ) =
∫ ∞

0
J (ω)[2nα (ω)α + 1]

1 − cos[(ς − ω)t]

ς − ω
, (B1)
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as well as R̄E (t ) = RE
+(t ) + RE

−(t ) and ĪE (t ) = IE
− (t ) + IE

− (t ), and using

Tr[Dα (t )] = Tr[Dα], 〈0|Dα (t )|1〉 = 〈1|Dα (t )|0〉∗ , 〈1|D+[D]|1〉 = − 〈1|D|1〉 , 〈1|D−[D]|1〉 = Tr[D] − 〈1|D|1〉 ,

〈1|D+[D]|0〉 = − 1
2 〈1|D|0〉 , 〈1|D−[D]|0〉 = − 1

2 〈1|D|0〉 , (B2)

Eq. (89) leads to

d

dt
ρ11(t ) =μ(t ) − R̄E (t )ρ11(t ),

d

dt
ρ10(t ) = ν(t ) − 1

2
[iĪE (t ) + R̄E (t )]�10(t ), (B3)

where

μ(t ) =
N∑

α=1

wα{−R̄α (t ) 〈1|Dα|1〉 + Rα
−(t )Tr[Dα]} + �11(0)R̄E (t ),

ν(t ) = −1

2

N∑
α=1

wα 〈1|Dα|0〉 {i[Īα (t ) − ĪE (t )] + [R̄α (t ) − R̄E (t )]}. (B4)

The solutions to Eq. (B3) are

ρTCL
11 (t ) = ρ11(0) exp

{
−

∫ t

0
ds R̄E (s)

}
+

∫ t

0
dτ exp

{
−

∫ t

τ

ds R̄E (s)

}
μ(τ ),

ρTCL
10 (t ) = ρ10(0) exp

{
−1

2

∫ t

τ

ds[iĪE (s) + R̄E (s)]

}
+

∫ t

0
dτ exp

{
−1

2

∫ t

τ

ds[iĪE (s) + R̄E (s)]

}
ν(τ ). (B5)

On the other hand, using Eqs. (B1) and (B2), Eq. (92) leads to two independent closed differential equations

d

dt
〈1|Dα (t )|1〉 = Tr[Dα]Rα

−(t ) − 〈1|Dα (t )|1〉 R̄α (t ),
d

dt
〈1|Dα (t )|0〉 = −1

2
[−iĪα (t ) + R̄α (t )] 〈1|Dα (t )|0〉 , (B6)

whose solutions read

〈1|Dα (t )|1〉 = 〈1|Dα|1〉 exp

{
−

∫ t

0
ds R̄α (s)

}
+ Tr[Dα]

∫ t

0
dτ exp

{
−

∫ t

τ

ds R̄α (s)

}
Rα

−(τ ),

〈1|Dα (t )|0〉 = 〈1|Dα|0〉 exp

{
−1

2

∫ t

0
dτ iĪα (τ ) + R̄α (τ )

}
. (B7)

Notice that choosing the Pauli decomposition, we have that D0 is the only operator with nonvanishing trace and 〈1|D0|1〉 = 0,
so we get

ρAPO
11 (t ) =

∑
α

wα 〈1|Dα (t )|1〉 = ρ11(0) exp

{
−

∫ t

0
ds R̄3(s)

}
+

∫ t

0
dτ exp

{
−

∫ t

τ

ds R̄0(s)

}
R0

−(τ ), (B8)

ρAPO
10 (t ) =

∑
α

wα 〈1|Dα (t )|0〉 = −1

2
(1 − i) exp

{
−i

1

2

∫ t

0
dτ Ī0(τ )

}
exp

{
−1

2

∫ t

0
dτ R̄0(τ )

}

+ 1

2
w1 exp

{
−i

1

2

∫ t

0
dτ Ī1(τ )

}
exp

{
−1

2

∫ t

0
dτ R̄1(τ )

}

− 1

2
iw2 exp

{
−i

1

2

∫ t

0
dτ Ī2(τ )

}
exp

{
−1

2

∫ t

0
dτ R̄2(τ )

}
. (B9)
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