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Intrinsic quantum correlations for Gaussian localized Dirac cat states in phase space
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Following the information-based approach to Dirac spinors under a constant magnetic field, the phase-space
representation of symmetric and antisymmetric localized Dirac cat states is obtained. The intrinsic entanglement
profile implied by the Dirac Hamiltonian is then investigated so as to shed a light on quantum states as carriers
of qubits correlated by phase-space variables. Corresponding to the superposition of Gaussian states, cat states
exhibit nontrivial elementary information dynamics which include the interplay between intrinsic entanglement
and quantum superposition as reported by the corresponding Dirac archetypes. Despite the involved time evo-
lution as nonstationary states, the Wigner function constrains the elementary information quantifiers according
to a robust framework which can be consistently used for quantifying the time-dependent SU(2) ⊗ SU(2) (spin
projection and intrinsic parity) correlation profile of phase-space localized Dirac spinor states. Our results show
that the Dirac Wigner functions for cat states—described in terms of generalized Laguerre polynomials—exhibit
an almost maximized timely persistent mutual information profile which is engendered by either classical- or
quantumlike spin-parity correlations, depending on the magnetic field intensity.
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I. INTRODUCTION

Quantum superposition and entanglement are two in-
tertwined concepts that lie at the very heart of quantum
mechanics. Considering a broader description of the informa-
tional aspects of two-qubit systems [1–4], formal extensions
to include continuous degrees of freedom and quantify their
influence on localization decoherence and correlation infor-
mation aspects have been investigated in the last decades.
They include, for instance, a plethora of issues closer to mag-
netoelectronics [5] and spintronics [6], to the evaluation of
quantum computation techniques [7–9], and to the reported
existence of cat states in quantum optics [10]. In particular,
experimental platforms for cat states [11–15] driven by Dirac
spinor structures have already featured subtle properties of
nonclassical phenomena, and the setup for continuous vari-
able dependent Dirac spinor solutions driving the elementary
information content of such systems must be investigated. In
the scope of the Dirac-like systems [16–21], which also in-
cludes experimental platforms for low-energy and mesoscopic
phenomena [10,22–29], confining potentials implemented by
Dirac Hamiltonians have only been recently addressed as the
evolution operator for a two-qubit system codified by posi-
tion and momentum variables [30]. According to the spinor
structure framework developed for describing spinor asso-
ciated intrinsic quantum correlations [16–20], the intrinsic
spin-parity correlations of Dirac spinors were classified in
terms of Poincaré classes of Dirac constant potentials [16]. At
the same time, concerning the inclusion of continuous degrees
of freedom, the Weyl-Wigner phase-space formalism [31–33]
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has been cast into the spinor structure form of a Dirac-Wigner
formalism [30,34–36] so as to include position and momen-
tum variables as the drivers of quantum correlations.

Since the SU(2) ⊗ SU(2) group structure of the Dirac
equation encompasses the systematicness for probing intrinsic
entanglement [20], a nontrivial entanglement profile from the
interference between localized Dirac spinors is expected. It
is supported by the SU(2) ⊗ SU(2) algebra related to the
spin-parity degrees of freedom, which, in turn, are generally
correlated by position and momentum degrees of freedom
as described by their dynamics [21]. Concomitantly, in the
Weyl-Wigner framework [31–33], the Wigner function can be
expanded around the classical probability distribution in phase
space [37], thus becoming a quantumness quantifier [38]
and allowing for the understanding of quantum-to-classical
transitions. Furthermore, the Weyl-Wigner approach evinces
a quantum informational perspective on localized quantum
states, as the Wigner function suggests a straightforward con-
nection to probability distributions. Considering that Dirac
spinors also exhibit an information-based structure associ-
ated to Hilbert spaces of finite dimensions, it is relevant to
comprehend the interplay between resource-based spinors and
the phase-space representation. As a matter of fact, given the
above-mentioned group structure which drives the Dirac equa-
tion alongside the spinor decomposition, the Wigner function
itself can be related to the density operator of an information
theory for confined particles, from which quantum correla-
tions can be quantified algebraically [30,34–36].

The Wigner function decomposition into the 16 generators
of the corresponding Clifford algebra [35] clarifies the con-
nection between the Wigner representation and the standard
formulation of quantum mechanics, even according to the
second quantization framework. Indeed, an explicit one-to-
one correspondence between these two approaches can be
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established so as to provide, for instance, the theoretical tools
for the computation of the quantum purity. In particular, it can
be obtained either from the aforementioned decomposition or
from the coordinate representation of the spin-parity traced
out density matrix, from which the analysis of more generic
Wigner functions for a dynamical system can be performed.

Exploring the implications of superpositions on the in-
formation profile of confined Dirac spinors, the dynamics
of a fermion under a magnetic field shall be investigated.
In particular, the formation of Landau levels described by
Laguerre polynomials in phase space shall be recovered so as
to allow one to derive the nontrivial dynamics of two relevant
configurations of quantum states. First, Dirac-Gaussian states
shall be engendered from a superposition involving only Dirac
eigenstates with the same principal quantum number. Besides
their easy-working mathematical properties, and due to their
correspondence with their classical counterparts, Gaussian
states usually work as an effective measurement platform, for
instance, in quantum optics experiments [39] and in the scope
of quantum chemistry [40–44] involving molecular integra-
tion techniques [45–47]. Considering that Gaussian Wigner
functions are non-negative definite, and conversely, that the
reported existence of Gaussian engendered cat states may
result from the interference between different Landau levels
driven by the above-mentioned Dirac Hamiltonian dynamics
[30], Dirac cat states shall be explicitly described both in con-
figuration and phase spaces. Through this second frame, Dirac
cat states are suited for interpreting and clarifying the prop-
erties of nonclassical phenomena, with their corresponding
elementary information content being analytically computed.

With the final aim of obtaining the intrinsic entanglement
profile implied by the Hamiltonian for a charged fermion
trapped by a magnetic field B, described according to the
Dirac spinor structure, Gaussian and cat states described as
superpositions of associated Dirac spinor stationary states
are engendered and read as carriers of qubits correlated
by phase-space variables. Such Dirac Wigner functions for
cat states—once described in terms of generalized Laguerre
polynomials—provide the elements for the evaluation of spin-
parity correlations depending on the magnetic-field intensity,
which is the final goal of this paper.

The paper is thus organized as follows. In Sec. II, from
initial Gaussian superpositions, symmetrical and antisymmet-
rical Dirac cat states are obtained for fermions described
as Dirac spinors under a magnetic field. In Sec. III, the
phase-space Wigner formalism for Dirac spinors is briefly
recovered in order establish the grounds for quantifying local
and global spin-parity correlations for the localized states
introduced in Sec. II. Analytical tools for obtaining phase-
space averaged information quantifiers, namely, for quantum
purity and mutual information, are implemented. More rele-
vantly, considering the phase-space dynamical evolution and
the Gaussian pattern of the involved systems, the measure of
the Dirac spin-parity nonseparability is obtained in terms of
the associated quantum concurrence, which is computed in a
twofold way: (i) as the difference between total and classical
mutual information between continuous and discrete degrees
of freedom implied by the Dirac equation and (ii) from the
previous formulation applied to two-qubit quantum systems,
now applied to localized states. Our conclusions are drawn in

Sec. IV, where the main findings of our paper are summarized
and relevant extensions are posed to future investigation.

II. DYNAMICS OF DIRAC LOCALIZED STATES
IN CONFIGURATION SPACE

The stationary states for a charged fermion trapped by a
magnetic field B can be obtained from the dynamical evolu-
tion driven by the Hamiltonian:

H = α · [p + (−1)r eA] + βm, (1)

where the potential vector A results in the magnetic field B =
∇ × A, e is the positive unit of charge, and r = 1 and 2 label
the positive and negative intrinsic parity states, respectively.
For the gauge chosen as A = B x ŷ, which corresponds to a
magnetic field along the z direction, a set of orthogonal Dirac
Hamiltonian eigenstates from (1) can be written as [30]

ψ = exp[i(−1)rEnt + kyy + kzz]u±
n,r (sr ), (2)

i.e., plane-wave solutions in both y and z directions. For com-
pactness of the notation, the parameters An, Bn, and ηn,

An = kz

En + m
, Bn =

√
2n eB

En + m
, ηn = En + m

2En
, (3)

are introduced for describing the energy associated parameters
so as to resume a set of constraints given by 0 � An, Bn � 1,
and ηn(A2

n + B2
n + 1) = 1, for the energy of the nth Landau

level identified by

(−1)rEn = (−1)r
√

m2 + k2
z + 2neB, with r = 1, 2. (4)

To summarize the influence of the magnetic field, the dynam-
ics along the x coordinate is shifted according to

sr =
√

eB
(

x + (−1)r ky

eB

)
, (5)

such that the positive parity (r = 1) space-dependent spinors
can be written as

u+
n,1(s1) = √

ηn

⎛⎜⎜⎜⎝
Fn−1(s1)

0

An Fn−1(s1)

−Bn Fn(s1)

⎞⎟⎟⎟⎠,

u−
n,1(s1) = √

ηn

⎛⎜⎜⎜⎝
0

Fn(s1)

−Bn Fn−1(s1)

−An Fn(s1)

⎞⎟⎟⎟⎠, (6)

and the negative parity (r = 2) ones can be written as

u+
n,2(s2) = √

ηn

⎛⎜⎜⎝
Bn Fn−1(s2)

An Fn(s2)

0
Fn(s2)

⎞⎟⎟⎠,

u−
n,2(s2) = √

ηn

⎛⎜⎜⎝
−An Fn−1(s2)

Bn Fn(s2)

Fn−1(s2)
0

⎞⎟⎟⎠, (7)
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where the functions Fn(sr ) are related to the Hermite polyno-
mials, Hn(sr ), by

Fn(sr ) =
( √

eB
n! 2n

√
π

)1/2

e−(sr )2/2Hn(sr ), (8)

which are only defined for non-negative integers n and imply
the following properties,1∫

dsFn(s)Fm(s) =
√

eB δmn (9)

and ∑
n

Fn(s)Fn(s′) =
√

eB δ(s − s′) = δ(x − x′), (10)

i.e., the orthonormalization and completeness relations, re-
spectively. An equivalent basis of eigenfunctions was used in
[48,49].

At this point, it is worth mentioning that the definition of
the sr coordinate in Eq. (5) takes into account the intrinsic
parity and momentum orientation of the plane-wave solutions,

allowing one to easily implement the orthogonality relations
between spinors.2 For instance,∫

ds u±
n,1(s1)†u∓

n,1(s1) =
∫

ds u±
n,2(s2)†u∓

n,2(s2) = 0. (11)

Therefore, spinors with the same parity but opposite spin
projection are orthogonal. These relations can be extended to
spinors with opposite parity by noticing that

(u+
n,1(s1))†u+

n,2(s2)

= ηnBn[Fn−1(s1)Fn−1(s2) − Fn(s1)Fn(s2)], (12)

which does not vanish upon integration due to the distinct
arguments inside the functions. One can either reverse the
momentum of the negative parity states or simply set ky = 0
so that s1 = s2 = s, since changing the momentum of the
corresponding plane wave is not desirable. In this way, or-
thogonality relations become∫

ds u±
n,1(s)†

u±
n,2(s) =

∫
ds u±

n,1(s)†
u∓

n,2(s) = 0, (13)

from which nonstationary states can finally be engendered.

Suppressing the arguments by setting Fn(s) ≡ Fn, u±
n,1(s) ≡ u±

n,1, and so forth, the following superposition of eigenstates is
proposed:

G (1)

n (s, t ) = [exp(−iEnt )u+
n,1 + exp(iEnt )(−Anu−

n,2 + Bnu+
n,2)]

= √
ηn

⎧⎪⎪⎨⎪⎪⎩exp(−iEnt )

⎛⎜⎜⎝
Fn−1

0
AnFn−1

−BnFn

⎞⎟⎟⎠+ exp(iEnt )

⎛⎜⎜⎝
(B2

n + A2
n)Fn−1

0
−AnFn−1

+BnFn

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

≡ ηn

⎛⎜⎜⎝
[

exp(−iEnt ) + exp(iEnt )
(
A2

n + B2
n

)]]
Fn−1

0
−2i sin(Ent )AnFn−1

2i sin(Ent )BnFn

⎞⎟⎟⎠. (14)

One notices that the y and z exponential dependent term was
omitted, since all waves travel with the same momentum, and
thus the relevant one-dim dynamics is along the s coordinate.

The states above described by G (1)

n (s, t ) exhibit a simple
form for t = 0, (Fn−1 0 0 0)T such that, if n = 1, one
has a Gaussian state,

F0(s) =
(√

eB
2
√

π

)1/2

e−s2/2, (15)

which simply corresponds to the lowest Hermite polynomial.

1A possible definition for negative integers l is simply Fl (sr ) = 0.
2The compact expression for the sr coordinate and the spin po-

larization of spinors u±
n,2 should be clear when one works with the

negative parity states; thus, the physical spin operator is also defined
with opposite sign. In the language of the hole theory, this corre-
sponds to redefining the spin projection for fermions with negative
energy [50]. Previously, one has worked with the stationary solutions
only, so reversing momentum is harmless; here, one is interested in
nonstationary states, and thus the momentum sign must be carefully
chosen.

A complete basis, in the sense of spinor components, can
be obtained with distinct polarizations, for instance, as

G (2)

n (s, t ) = [exp(−iEnt )u−
n,1 + exp(iEnt )(Anu+

n,2 + Bnu−
n,2)]

≡ ηn

⎛⎜⎜⎜⎝
0[

exp(−iEnt ) + exp(iEnt )
(
A2

n + B2
n

)]
Fn

2i sin(Ent )BnFn−1

2i sin(Ent )AnFn

⎞⎟⎟⎟⎠,

(16)

and the two remaining spinors are similarly obtained as

G (3)

n (s, t ) = [exp(iEnt )u−
n,2 + exp(−iEnt )(Anu+

n,1 − Bnu−
n,1)]

(17)

and

G (4)

n (s, t ) = [exp(−iEnt )(−Bnu+
n,1− Anu+

n,1) + exp(iEnt )u+
n,2],

(18)

which encompass the four time-dependent quantum states
that can describe departing Gaussian states with distinct
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spin-parity polarizations. However, setting n = 0 in G (2)

n and
G (4)

n yields states without relevant dynamics, since the spatial
part will permanently be Gaussian for any t . They can be
contrasted with G (1)

n and G (3)

n , which can be prepared as an ini-
tial Gaussian state for n = 1 that evolves into a non-Gaussian
state due to the contribution from F1(s). As it shall be de-
picted in the following, when the phase-space formulation
is considered, the choice of the particular polarization has
implications for the local aspects of the quantum information
content.

Cat states

Before moving on to the Wigner formalism, the quantum
states obtained above can also be worked out so as to en-
compass the interference between states with noncoincident
quantum numbers. Generically, from the generalized quantum
superposition given by

φi(s, t ) = N 1/2
∞∑

n=0

cn G (i)
n (s, t ) (19)

with the normalization constant N , and with G (i)
n ob-

tained from Eqs. (14)–(18) for i = 1, 2, 3, 4, one has,
for instance, for i = 1, c2n+1 = 0, and c2n = exp(−a2/4)
(a/

√
2)2n/

√
(2n)!, with a parametrizing a dimensionless dis-

tance, the only nonvanishing component of the Dirac spinor
for t = 0 given by (1 0 0 0)T multiplied by

exp(−a2/4)
∞∑

n=0

F2n(s)
(a/

√
2)2n

√
(2n)!

=
(

eB
π

)1/4

e−s2/2
∞∑

n=0

H2n(s)

(2n)!

(a

2

)2n
. (20)

Since one has the even contributions from the infinite sum
from Eq. (19), the expression from (20) simplifies into [51]

φS (s, t = 0) = 1

2

(
eB
π

)1/4{
exp

[
−1

2
(s − a)2

]
+ exp

[
−1

2
(s + a)2

]}
(1 0 0 0)T

,

(21)

where the index S stands for a symmetric superposition of
two Gaussian states centered at s = ±a: a symmetric Dirac
cat state. Including the time-dependent factors from Eq. (14),
the time-evolved S state is written as

φS (s, t ) =

⎛⎜⎜⎝
φS

1 (s, t )
0

φS
3 (s, t )

φS
4 (s, t )

⎞⎟⎟⎠, (22)

with

φS
1 (s, t ) =

∞∑
n=0

e−a2/4F2n(s)

1 + A2
2n+1 + B2

2n+1

(a/
√

2)2n

√
(2n)!

× (e−iE2n+1t + (A2
2n+1 + B2

2n+1)eiE2n+1t ), (23)

φS
3 (s, t ) = −2i

∞∑
n=0

e−a2/4A2n+1

1 + A2
2n+1 + B2

2n+1

(a/
√

2)2n

√
(2n)!

×F2n(s) sin(E2n+1t ), (24)

φS
4 (s, t ) = 2i

∞∑
n=0

e−a2/4B2n+1

1 + A2
2n+1 + B2

2n+1

(a/
√

2)2n

√
(2n)!

×F2n+1(s) sin(E2n+1t ). (25)

Analogously, antisymmetric (A) cat states can be en-
gendered from the odd contributions from the infinite
sum from Eq. (19), i.e., by setting c2n = 0 and c2n+1 =
exp(−a2/4)(a/

√
2)2n+1/

√
(2n + 1)!. Following the same

procedure, the initial spinor becomes

φA(s, t = 0) = 1

2

(
eB
π

)1/4{
exp

[
−1

2
(s − a)2

]
− exp

[
−1

2
(s + a)2

]}
(1 0 0 0)T

,

(26)

and the time-evolved A state can thus be written in the general
form of

φA(s, t ) =

⎛⎜⎜⎝
φA

1 (s, t )
0

φA
3 (s, t )

φA
4 (s, t )

⎞⎟⎟⎠, (27)

with

φA
1 (s, t ) =

∞∑
n=1

e−a2/4F2n−1(s)

1 + A2
2n + B2

2n

(a/
√

2)2n−1

√
(2n − 1)!

× [e−iE2nt + (A2
2n + B2

2n

)
eiE2nt

]
, (28)

φA
3 (s, t ) = −2i

∞∑
n=1

e−a2/4A2n

1 + A2
2n + B2

2n

(a/
√

2)2n−1

√
(2n − 1)!

×F2n−1(s) sin(E2nt ), (29)

φA
4 (s, t ) = 2i

∞∑
n=1

e−a2/4B2n

1 + A2
2n + B2

2n

(a/
√

2)2n−1

√
(2n − 1)!

×F2n(s) sin(E2nt ). (30)

Of course, similar cat states could be initialized with different
polarizations, by replacing G (1)

n by G (2,3,4)
n into Eq. (19).

Just to sum up, although the above quantum states were ob-
tained in terms of an infinite sum composition, normalization
and purity conditions shall impose additional constraints that
simplify the algebraic manipulations involving them. Addi-
tionally, in contrast to the previous Gaussian wave functions,
which are usually regarded as the closest classical realizations
of particles, cat states have an explicit entanglement profile
[52,53]. Hence, their intrinsic information profile, and how it
is affected by the quantum superposition evolution, shall be
evaluated with the support of the Wigner phase-space frame-
work.
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III. TIME-DEPENDENT INFORMATION PROFILE OF
COHERENT SUPERPOSITIONS IN PHASE SPACE

The description of localization under confining potentials
is akin to the Wigner approach for both nonrelativistic and
relativistic quantum mechanics. The covariant matrix-valued
Wigner function mapped by the covariant Dirac equation
structure [30,34–36] indeed supports a decomposition in
terms of the 16 generators of the Clifford algebra, {γμ, γν} =
2gμν . However, the covariance is lost due to the presence
of the magnetic field which, however, is accommodated by
the definition of the equal-time Wigner function for a fixed
reference frame [30]. Recalling the Dirac representation, for
which the gamma matrices are given by γ0 = β, γ j = βα j ,
{γμ, γ5} = 0, and σμν = (i/2)[γμ, γν], the Wigner function
can be decomposed as [54]

ω({q}) ≡ S ({q}) + i γ5 ({q}) + γμ Vμ({q}) + γμγ5 Aμ({q})

+ 1
2σμνT μν ({q}), (31)

with {q} ≡ {x, k; t}. Multiplying the left-hand side by the
corresponding generator that appears in front of each term and
tracing over spinorial indices, the scalar, pseudoscalar, vector,
axial-vector, and antisymmetric tensor contributions are all
correspondingly identified [34–36].

Moving to the computation of the Wigner function from
a particular spinor configuration, the Weyl transform can be
applied to the relevant density operator. Thus, the phase-
space dynamics can be described by the equal-time Dirac-like
Wigner function [55,56] that supports the aforementioned
decomposition.3 A superposition of stationary states can be
generally put into the following form:

φλ(x + u) =
∑

j

ψλ, j (x + u) exp[−ik0, j (t + τ )], (32)

with t , τ , and k0 the timelike components of x, u, and k, where
the index j simply labels the jth spinor in the superposition
for a particular orthonormalized basis. Then, the Wigner func-
tion can be computed as

ωξλ(x, k; t ) =
∫ +∞

−∞
dE Wλξ (x, k)

= π−1
∑
j,m

exp[i(k0, j − k0,m)t]
∫

dτ

∫ +∞

−∞
dE exp[−i(2E − k0, j − k0,m)τ ]

×π−3
∫

d3u exp[2ik · u]ψ̄λ, j (x − u)ψξ,m(x + u)

= π−3
∑
j,m

exp[i(k0, j − k0,m)t]
∫

d3u exp[2ik · u]ψ̄λ, j (x − u)ψξ,m(x + u), (33)

where the last row is obtained by evaluating the integrals
over τ and then E . The above definition is understood as
an energy-averaged Wigner function for a fixed frame; fur-
thermore, it does not equal the sum of the Wigner functions
corresponding to stationary states, given that the linearity of
the Dirac equation is lost when moving to the phase space.

The normalization of the probability distribution is ob-
tained by setting λ = ξ and integrating over phase space, i.e.,∫

d3x
∫

d3k Tr[γ0 ωξλ(x, k; t )] = N , (34)

where the trace operation is over spinorial indices, and N only
depends on the coefficients of the superposition if the quantum
states are orthonormalized; if there is a single (stationary)
state, it follows that N = 1. This is a generalization of the
Schrödinger-like Wigner function [31] that incorporates the
SU(2) ⊗ SU(2) group structure associated to Dirac spinors
into the Weyl-Wigner phase-space formalism. From the
same perspective, an extension to statistical mixtures is also
possible, with the quantum purity for Dirac spinors simply

3From now on, the Wigner function employed refers to the equal-
time expression, instead of the covariant one.

generalized to [30]

P = 8π3
∫

d3x
∫

d3k Tr{[γ 0ω(x, k; t )]2}

= 8π3
∫

d3x
∫

d3k Tr[ω(x, k; t ) ω†(x, k; t )], (35)

where the extra factor of 8π3 ensures the pure-state constraint
as P = 1. Of course, this is a straightforward extension of
the purity expression for nonrelativistic quantum mechanics,
Tr[ρ̂2], once the density matrix is identified with the Wigner
function via the Weyl transform of quantum operators
[30,57]. In both cases, the quantum purity quantifies the
loss of information that can be usually associated to
system-environment interactions such as thermalization
effects on quantum fluctuations [58].

Information quantifiers associated to continuous and dis-
crete degrees of freedom are calculated by means of the purity
expression applied to the corresponding Hilbert space. To
clear up this assertion, the relative linear entropies related to
spin-parity and phase-space coordinates are

ISP = 1 − Tr[(〈ωξλ〉γ0)2] (36)
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and

I{x, k} = 1 − (2π )3
∫

d3x
∫

d3k {Tr[ωξλ(x, k; t )γ0]}2,

(37)

respectively. The brackets in the first expression indicate
phase-space averaging, in a correspondence to a trace oper-
ation over continuous degrees of freedom. Conversely, Tr[...]
is always understood as a trace over discrete indices, which
averages out the spin-parity subspace.

As in standard information theory, the mutual information
between spin-parity and phase-space degrees of freedom can
be calculated from the entropies above and amount to the
total correlation between discrete and continuous degrees of
freedom,

MSP
x,kx

= I{x,kx} + ISP + P − 1, (38)

which can be both classical- and quantumlike. If the cor-
responding Hilbert spaces coexist independently, mutual
information vanishes and, eventually, classical and quantum
mutual correlations are distinguished.

For more engendered configurations involving, for in-
stance, electron correlation effects in molecular structures

where quantum mutual information between orbitals is eval-
uated [59–62], mutual information follows from the strict
seminal connection with von Neumann (vN) entropies, S (vN ),
which replace the linear entropies at Eq. (38), so as to return

MSP(vN )
x,kx

= S (vN )
{x,kx} + S (vN )

SP − S (vN )
tot . (39)

In fact, for peaked phase-space distributions as Gaussian
states, it can be demonstrated that S (vN ) ≈ 1 − P with highly
sufficient confidence level.4 In this case, according to Eq. (36),
a straightforward connection of the Wigner quasi-probability
distribution correspondence with the density matrix interpre-
tation is enabled.

The above introduced tools will be applied to give a
broader understanding of the information carried by the Dirac
Gaussian and cat states previously obtained. In particular,
time-dependent mutual information and quantum entangle-
ment will be analytically given in terms of the external
field, B.

A. Fermionic Gaussian state dynamics under a magnetic field

For the Gaussian state, G (1)

n [see Eq. (14)], the corre-
sponding Wigner function can be computed from the matrix
multiplication G (1)

n (G (1)

n )†γ0,

ωn,1(s, kx; t ) =

⎛⎜⎜⎝
a11(t )Ln−1(s, kx ) 0 a13(t )Ln−1(s, kx ) a14(t )Mn(s, kx )

0 0 0 0
a31(t )Ln−1(s, kx ) 0 a33(t )Ln−1(s, kx ) a34(t )Mn(s, kx )
a41(t )Mn(s, kx ) 0 a43(t )Mn(s, kx ) a44(t )Ln(s, kx )

⎞⎟⎟⎠, (41)

with the time-dependent coefficients given by

a11(t ) = 1 − 4
(
A2

n + B2
n

)
η2 sin2(Ent ), (42)

a33(t ) = −4A2
nη

2 sin2(Ent ), (43)

a44(t ) = −4B2
nη

2 sin2(Ent ), (44)

a34(t ) = a43(t ) = −4AnBnη
2 sin2(Ent ), (45)

a13(t ) = −a∗
31(t ) = −2iη sin(Ent )An

× [cos(Ent ) + i sin(Ent )(1 − 2η)], (46)

a14(t ) = −a∗
41(t ) = 2iη sin(Ent )Bn

× [cos(Ent ) + i sin(Ent )(1 − 2η)]. (47)

4The simplest approach for computing the quantum entropy content
of the Wigner function can be achieved introducing an additional
contribution to S (vN ) given by − ln(2π ), that is,

S (vN ) = − ln(2π ) −
∫

V
dV W ln(W ) = −

∫
V

dV W ln(2π W )

=
∫

V
dV W − 2π

∫
V

dV W 2 + . . .

= 1 − P + (higher-order terms). (40)

The phase-space content of the Wigner function is governed
by the functions Ln(s, kx ) and Mn(s, kx ), given by

Ln(s, kx ) = (−1)n

√
eB
π

exp
[−(s2 + k2

x

)]
Ln
[
2
(
s2 + k2

x

)]
(48)

and

Mn(s, kx ) = (−1)n

2π

√
eB
n

exp
[−(s2 + k2

x

)]
×
(

d

ds
Ln
[
2
(
s2 + k2

x

)])
, (49)

where Ln(z) is the nth Laguerre polynomial. These functions
form an orthonormal basis with respect to phase-space inte-
grations [51]: ∫

dx
∫

dkx Ln(s, kx ) = 1, (50)∫
dx
∫

dkx Mn(s, kx ) = 0, (51)∫
dx
∫

dkx Ln(s, kx )Lm(s, kx )

=
∫

dx
∫

dkx Mn(s, kx )Mm(s, kx )

= δmn

√
eB

2π
. (52)
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FIG. 1. Time evolution of 1√
eB Tr[ωn=1,iγ

0] in phase space (s, kx ) for i = 1 (bottom row) and i = 2 (top row). States are calculated at t = 0
(left) and t = π

2E1
(right). The phenomenological parameters have been set to unity, i.e., kz = eB = m = 1.

These relations suffice to all calculations involving up to the
product of two elements of the Wigner matrix. For instance,
the normalization is immediately verified:∫

dx
∫

dkx Tr[ωn,1γ0] = a11 − a33 − a44 = 1, (53)

where the integrand can be regarded as a real, but not neces-
sarily positive, quasiprobability distribution in phase space.
Therefore, Eq. (53) ensures unitarity of the theory and ap-
plies to all acceptable Wigner matrices in the framework of
the phase-space quantum mechanics, since it is simply the
expression for the conservation of probability.

Likewise, the averaged behavior in phase space for an
initial Gaussian state can be fully described by the Wigner
matrix ωn,1(s, kx; t ). However, the particular choice of su-
perposition coefficients and eigenstates that contribute to G (i)

n
fixes not only the initial-state polarization, but also the lo-
cal evolution in phase space [see Eq. (14)]. More precisely,
one could compare the time evolution of the quasiprobability
density as defined by Tr[ωn,iγ

0] for G (1)

n and G (2)

n . The nu-
merical results are shown in Fig. 1, from which one notices
that only ωn,1(s, kx; t ) corresponds to a Gaussian distribu-
tion in phase space for t = 0 and n = 1, since L0(s, kx ) ∝
exp[−(s2 + k2

x )]. As expected, there exists a local spin-parity

informational structure within the Wigner function, which co-
exists with a global (or integrated) one. The correlation profile
between these states is indistinguishable upon phase-space
averaging, given that the functions Ln(s, kx ) are orthonor-
malized. Thus, calculations for averaged properties will be
implemented through ωn,1(s, kx; t ) for convenience.

From the quantum purity expression, it is straightforward
to check that

P = 2π√
eB

∫
dx
∫

dkx Tr[(ωn,1γ0)2]

= a2
11 + a2

33 + a2
44 + 2|a13|2 + 2|a34|2 + 2|a14|2, (54)

for

|a13|2 = −a11a33, (55)

a2
34 = a33a44, (56)

|a14|2 = −a11a44, (57)

where the set of orthogonality relations from Eq. (52) was
used. One can recast the purity expression into the form of

P = (a11 − a33 − a44)2 = 1, (58)
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FIG. 2. Quantum purity (1/eB)Tr[(ωn,1γ0)2] in phase space (s, kx ), evaluated for a Gaussian state (n = 1). Again, results are for kz =
eB = m = 1, and the color scheme indicates the regions where the state is maximally mixed [blue (dark gray) region]. From left to right,
t = ( π

4E1
) j, for j = 0, 1, 2. The initialized state has a Gaussian quantum purity profile, which spreads along the s direction.

the pure-state constraint. Interestingly, the nonintegrated
quantum purity spreads preferentially along the kx = 0 due
to the contribution from M2

n(s, kx ) for t = 0. Also, from
Fig. 2, it is possible to see pockets of mixedness [blue (dark
gray) regions] surrounded by locally pure regions (white and
red regions) as the Wigner function evolves. Nevertheless, it is
worth noticing that the phase-space quantum purity is always
a non-negative quantity.

Classical and quantum correlations

From the above result, the mutual information between
spin-parity and phase-space degrees of freedom can be as-
sessed for a Gaussian state. It corresponds to the averaged
information in phase space that can be inferred from the
spin-parity Hilbert space and vice versa. The linear entropies
related to spin-parity and phase-space degrees of freedom are

ISP = 1 − Tr[(γ0〈ωn,1〉)2]

= 8 sin2(Ent )η2
nB2

n

[
1 − 4B2

nη
2
n sin2(Ent )

]
(59)

and

I{x,kx} = 1 − 2π√
eB

∫
dx
∫

dkx (Tr[ωn,1γ0])2

= 8 sin2(Ent )η2
nB2

n

[
1 − 4B2

nη
2
n sin2(Ent )

]
, (60)

respectively. One notices that the linear entropy expressions
depend on the quantum number n only through 2neB. There-
fore, the Gaussian state (n = 1) exhibits the same averaged
information profile as a quantum state with arbitrary n, given
that the factor 2neB is chosen accordingly. The spin-parity

phase-space mutual information [see Eq. (38)] reads

MSP
x,kx

= 16 sin2(Ent )η2
nB2

n [1 − 4B2
nη

2
n sin2(Ent )

]
, (61)

which is depicted in Fig. 3. For t = 0, the phase-space de-
pendence of the Wigner function is factorized out. Therefore,
spin-parity and phase spaces become uncorrelated. The same
figure shows that the mutual information oscillates between
unity and zero as long as the magnetic-field contribution is
not suppressed by the A1 = kz/(E1 + m) coefficient (3).

It was emphasized that the information measure obtained
above amounts to the correlations between spin-parity and
phase-space coordinates. It is worth noticing, however, that
such correlations are not exclusively of quantum nature. In-
deed, a quantum state can generally exhibit both, quantum
and classical, types of correlation [2]. This assertion can be
cleared up in terms of quantum decoherence for two-qubit
systems, for which a set of orthogonal projectors is introduced
for both contributions related to spin and parity Hilbert spaces
so as to be associated to all possible measurements. Then, it is
straightforward to check that after any measurement the off-
diagonal elements of the density matrix will unavoidably be
damped off in that particular basis [1,63,64]. Therefore, one
can simply consider a stochastic matrix with the probability
distribution of the possible outcomes in the standard basis.
Thus, considering the localization of the quantum particle,
in the basis implied by the Dirac representation, the Wigner
function obtained in Eq. (41) decoheres to a classical-like
stochastic matrix, in which the remaining diagonal elements
are proportional to probabilities in phase space. Defining such
matrix as ω

(cl)
n,1 = diag [a11Ln−1 0 a33Ln a44Ln−1], it is

FIG. 3. Mutual information between phase space and spin-parity space for a Gaussian state (gray lines) and spin-parity quantum
concurrence (black lines). For all plots, m = 1 and, from left to right, k2

z = 0, 10, 100; one also has eB = 1/10, 1, 10 for dashed, dot-dashed,
and solid lines, respectively.
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possible to observe that, apart from the phase-space coordi-
nate dependence, the elements of the matrix multiplied by γ0

are always non-negative.
In order to quantify the classical contribution to the corre-

lations, the purity computation for ω
(cl)
n,1 yields

P (cl) = a2
11 + a2

33 + a2
44 � 1, (62)

where the equality holds only for t = 0 and thus confirms that
the decohered state is not a pure state, reflecting the loss of
information upon measurement. The relative linear entropies
are also calculated,

I (cl)
SP = 1 − a2

11 − a2
33 − a2

44 (63)

and

I (cl)
{x,kx} = 1 − a2

11 − a2
33 − a2

44 + 2a11a33, (64)

which explicitly yields the mutual information (38) between
spin-parity and phase spaces for the decohered Wigner func-
tion ω

(cl)
n,1 :

MSP
x,kx

= −32B4
nη

4
n sin4(Ent ) + 8B2

nη
2
n sin2(Ent )

+ 32B2
nA2

nη
4
n sin4(Ent ). (65)

This result shows that there is indeed a certain amount of
correlation between the continuous and discrete degrees of
freedom that is of classical-like nature. Therefore, the dif-
ference between the total mutual information and the above
expression results in a correlation of quantum nature. For pure
states, quantum correlation implies into entanglement [63],
which is quantified by the so-called quantum concurrence.
As a matter of fact, by computing the quantum concurrence
for the Wigner function, it will be shown that indeed the
spin-parity nonseparability codified by the Wigner function is
regarded as the quantumlike information on the Hilbert space
associated to the continuous degrees of freedom that can be
inferred from the spin-parity space.

For a pair of qubits, concurrence is a well-defined en-
tanglement measure, which in turn is related to the more
physically appealing entanglement of formation (EoF). More
precisely, for pure states,5 EoF is monotonically increasing for
0 � C � 1, which is always the case. It is defined by [3]

EEoF[�] = E
[

1 −
√

1 − C2[�]

2

]
, (66)

with E[λ] = −λ log2 λ − (1 − λ) log2(1 − λ) and the quan-
tum concurrence defined as

C[�] =
√

〈w|̃ρ|w〉 = |〈w|w̃〉| =
√

Tr[��̃], (67)

for a pure state � = |w〉〈w|, where |w̃〉 is the spin-flipped
state:

|w̃〉 = σ (1)
y ⊗ σ (2)

y |w∗〉, (68)

with “∗” denoting the complex conjugation operator.

5Otherwise, it is defined as the average entanglement of the pure
states that realize the given density matrix, minimized over all de-
compositions on pure states.

Once the identification of the density matrix for a pair
of qubits with the matrix-valued Wigner function is made,
quantum concurrence can be computed in a straightforward
fashion. In order to describe the phase-space pattern of the
quantum concurrence, the density matrix is identified as � ≡
γ 0 ωn,1 and from the SU(2) ⊗ SU(2) decomposition of γ 2 =
iσ (1)

y ⊗ σ (2)
y [30] it follows that the spin-flipped density matrix

is identified as �̃ ≡ (−iγ 2)γ 0 ω∗
n,1 (−iγ 2) for any Wigner

function under consideration (41). Then, the local quantum
concurrence reads

C2[ωn,1](s, kx )

= (−1)Tr[ωn,1 γ 2γ 0 ω∗
n,1 γ 2γ 0]

= 8η2
n sin2(Ent )B2

n

[
1 − 4

(
A2

n + B2
n

)
η2

n sin2(Ent )
]

× [Ln(s, kx )Ln−1(s, kx ) + M2
n(s, kx )

]
. (69)

The product Ln(s, kx )Ln−1(s, kx ) implies that the phase-space
profile can exhibit regions of negativity due to the correla-
tion between spin-parity and phase-space degrees of freedom,
which is depicted in Fig. 4. After averaging over phase-space
coordinates, the above expression yields the spin-parity non-
separability as

C2
SP = 8η4

n sin2(Ent )B2
n

(
1

η2
n

− 4 sin2(Ent )
(
A2

n + B2
n

))
, (70)

which is the proper quantum concurrence measure for a Gaus-
sian state. The same expression would have been obtained had
one considered � ≡ γ 0 〈ωn,1〉, that is, when the phase-space
degrees of freedom are averaged out before the computation of
the quantum concurrence. Therefore, only the discrete degrees
of freedom are relevant in this computation.

What stands out in this result is that the quantum concur-
rence squared indeed corresponds to the difference between
the (total) correlations between spin-parity and phase-space
degrees of freedom from Eq. (61) and the classical correla-
tions from Eq. (65), as it was previously advertised in Fig. 3.
Therefore, quantum concurrence is then regarded as a strictly
quantum correlation measure such that separable states are
easily identified from a particular choice of parameters. For
t = (lπ )/En, with l integer, there corresponds the initial
state which is indeed separable. In the massless limit, i.e.,
A2

n + B2
n = 1 (3), concurrence vanishes for t = π (l + 1/2)/En

(l integer).
Just for completeness, concurrence can also be related to

the phenomenon of chiral oscillation [16]. It has been shown
that the averaged values of the chiral operator γ̂5 coincide
with the critical points of the concurrence for constant external
potentials [17]. Here, chiral projections are obtained from the
Wigner matrix itself, ωL,R = PL,R ω, with the usual left and
right projectors, PL = (1 − γ̂5)/2 and PR = (1 + γ̂5)/2. Since
PL,RPL,R = PL,R and PL,RPR,L = 0, a chiral projection exhibits
no quantum concurrence. This suggests that concurrence can
be affected by the interference between chiral projections. To
check this, one can evaluate the average chirality with

〈γ5〉 =
∫

dx
∫

dkx Tr[ωn,1γ0γ5]

= 4ηAnm

En
sin2(Ent ), (71)
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FIG. 4. Time evolution of the phase-space dependent spin-parity quantum concurrence (1/eB)C2[ωn,1](s, kx ) for a departing Gaussian
state (top row), with n = 1, and for n = 5 (bottom row). From left to right, t = (π/ j)/En for j = 8, 4, 2. Additional parameters follow Fig. 2.
It is possible to see that the local profile of the quantum concurrence is not positively defined due to the intrinsic correlation with the continuous
degrees of freedom themselves.

which is constrained to 0 � 〈γ5〉 � 1, a non-negative chirality
due to the choice of the particular polarization of G (1)

n (s, t ).
More relevantly, since the amplitude of the averaged chiral
oscillation is proportional to 2kzm/E2

n , it is suppressed for
stronger magnetic fields, whereas the concurrence oscillation
grows. For instance, the greatest value of |〈γ5〉| = 1 would
only be obtained for Bn = √

2neB/(En + m) = 0, for which
the state is separable. Moreover, when |〈γ5〉| is at a local
maximum, quantum concurrence is at a local minimum. This
behavior is depicted in terms of the EoF in Fig. 5.

To partially summarize, the dynamics of the local and
global information profile has been analyzed for a quantum
fermion prepared as a Gaussian state. It was shown that the
mutual information between discrete and continuous degrees
of freedom encompasses both classical and quantum corre-
lations; moreover, the latter exhibits a close connection to
chiral oscillation, due to the fact that chiral projections are
spin-parity separable Wigner functions.

In the next subsection, the theoretical tools for calculat-
ing the phase-space averaged information profile shall be
extended to the cat state configurations introduced by Eq. (22).
In order to do so, the phase-space dependence of the Wigner
matrix, previously given by Laguerre polynomials (and their
first derivatives), will be described in terms of the generalized
Laguerre polynomials, since the Dirac cat states in phase
space involve two arbitrary principal quantum numbers.

B. Wigner matrix for Dirac cat states

Considering the information profile for a Gaussian state
centered at the origin discussed previously, one should inquire
on possible generalizations, namely, how correlations be-
tween spin-parity and phase spaces are affected by superpos-
ing two Gaussian states at arbitrary distances from the origin.

A symmetric superposition of Gaussian states will be con-
sidered, for which the matrix obtained with the standard

FIG. 5. EoF (dashed lines) and chiral oscillation in terms of 〈γ5〉(t ) for a Gaussian state. One has eB = 1, 3 from left to right and k2
z =

1/100, 10 for gray and black lines, respectively, for unity mass.
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matrix multiplication is φSφ̄S [see Eq. (22)]. In order to com-
pute the correspondent Wigner function for φSφ̄S , the one-dim
spatial intrinsic integral from the Weyl transform will be ex-
pressed by terms such as

π−1
∫

du e2ikue−(s+u)2/2e−(s−u)2/2Hn(s − u)Hm(s + u) (72)

for n, m = 0, 1, 2 . . . accounting for all terms in the infinite
series from Eqs. (23)–(25). One then needs to consider n � m
and n � m separately [51], which leads to

(−2)nπ−1/2(m!) exp[−(s2 + k2)](−s + ik)n−m

× Ln−m
m [2(k2 + s2)] (73)

for n � m, and to

(−2)nπ−1/2(n!) exp[−(s2 + k2)](+s + ik)m−n

× Lm−n
n [2(k2 + s2)] (74)

for m � n. The functions Ll1
l2

(z2) are the generalized Laguerre
polynomials at the phase-space radius z2 = 2(k2 + s2) and
only occur here with natural indices [47]. Of course, for
n = m, both expressions concur.

When these expressions appear in summations, it will be
helpful to implement orthogonality relations in phase space.
By collecting the factors from the normalized function Fn(s),
one defines

Lmn =
{(

L(n−m)

m

)∗ =
√

eB
π

(
m!
n!

)1/2
(−1)me−(s2+k2

x )[21/2(s − ikx )]n−mL
(n−m)

m

[
2
(
k2

x + s2
)]

, n � m,

L(m−n)

n =
√

eB
π

(
n!
m!

)1/2
(−1)ne−(s2+k2

x )[21/2(s + ikx )]m−nL
(m−n)

n

[
2
(
k2

x + s2
)]

, m � n,
(75)

where the phase-space dependence was omitted on the left-
hand side for clarity of notation. The notation (...)∗ was
introduced to indicate complex conjugation followed by a
swapping of indices. The function components Lmn satisfy
[47,51] ∫

dx
∫

dkx Lmn = δmn (76)

and ∫
dx
∫

dkx LmnLm′n′ =
√

eB
2π

δmn′δnm′ , (77)

which compose the relations associated to normalization and
purity conditions of the Wigner matrix. The double integrals
in Eqs. (76) and (77) are evaluated as in standard integration of
Laguerre-type functions in polar coordinates and going to the
complex plane in the kx variable [51]. Fortunately, they suffice
to calculate all quantities related to the averaged correlation
profile between spin and parity Hilbert spaces.

Once the phase-space structure is settled, all elements of
the Wigner matrix for cat states can be readily obtained. For
instance,

W11(s, kx; t ) = Na

∑
{m,n}odd

[
eiEnt + (A2

n + B2
n

)
e−iEnt

]
1 + A2

n + B2
n

×
[
e−iEmt + (A2

m + B2
m

)
eiEmt

]
1 + A2

m + B2
m

× (a/
√

2)n+m−2

√
�(n)�(m)

L(m−1)(n−1) (s, kx ), (78)

where the S-cat index has been omitted, �(n) = (n − 1)! is
the gamma function, Na is the normalization constant to be
determined, and, for convenience, the indices run over odd
numbers. The time-dependent factor of the nth term comes
from φ†(s, t ) [see Eq. (22)], whereas the mth term comes

from φ(s, t ). The remaining diagonal terms of the Wigner
matrix are thus

W33(s, kx; t ) = −4Na

∑
{m,n}odd

sin(Ent )An

1 + A2
n + B2

n

sin(Emt )Am

1 + A2
m + B2

m

× (a/
√

2)n+m−2

√
�(n)�(m)

L(m−1)(n−1) (s, kx ), (79)

W44(s, kx; t ) = −4Na

∑
{m,n}odd

sin(Ent )Bn

1 + A2
n + B2

n

sin(Emt )Bm

1 + A2
m + B2

m

× (a/
√

2)n+m−2

√
�(n)�(m)

Lmn(s, kx ). (80)

All diagonal terms are real-valued, as it should be, and the
nondiagonal elements are given by

W31(s, kx; t ) = −2iNa

∑
{m,n}odd

[
eiEnt + (A2

n + B2
n

)
e−iEnt

]
1 + A2

n + B2
n

× sin(Emt )Am

1 + A2
m + B2

m

(a/
√

2)n+m−2

√
�(n)�(m)

L(m−1)(n−1) (s, kx )

= −W∗
13(s, kx; t ), (81)

W41(s, kx; t ) = 2iNa

∑
{m,n}odd

[
eiEnt + (A2

n + B2
n

)
e−iEnt

]
1 + A2

n + B2
n

× sin(Emt )Bm

1 + A2
m + B2

m

(a/
√

2)n+m−2

√
�(n)�(m)

L(m)(n−1) (s, kx )

= −W∗
14(s, kx; t ), (82)

W34(s, kx; t ) = −4Na

∑
{m,n}odd

sin(Ent )An

1 + A2
n + B2

n

sin(Emt )Bm

1 + A2
m + B2

m

× (a/
√

2)n+m−2

√
�(n)�(m)

L(m)(n−1) (s, kx )

= W∗
43(s, kx; t ). (83)
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From the orthogonality relations of Lmn(s, kx ), the ele-
ments Wμν with μ + ν odd always integrate out to zero in
phase space, since they contain terms in the form L(m)(n−1) , i.e.,
an even-odd combination. Nevertheless, quadratic terms gen-
erally do not average out to zero; thus, they can be regarded
as a generalization of the functions for a definite quantum
number found in the previous subsection. To clear up this
assertion, one considers, for instance, the sum of functions
Lmn(s, kx ) the indices of which differ by unity, L(l )(l+1) +
L(l+1)(l ):(

L(1)

l

)∗ + L(1)

l = 23/2(l + 1)−1/2

π
s exp[−(s2 + k2)]

× L
(1)

l [2(k2 + s2)]

= 2Ml+1(s, kx ), (84)

where Ml+1(s, kx ) was obtained previously in Eq. (49). On
the other hand, for n = m,

L(0)

n = (
L(0)

n

)∗ = (−1)n

√
eB
π

× exp
[−(s2 + k2

x

)]
Ln
[
2
(
s2 + k2

x

)]
, (85)

which is the function Ln(s, kx ) from Eq. (48). Therefore,
given that cat states are a superposition of Gaussian states in
configuration space, it is possible to identify the correspond-
ing superposition law in phase space as well.

Even though the Wigner matrix is expressed by several
combinations of infinite series expansions, many properties
can be analytically replicated. For instance, the normalization
is calculated with

∫
dx
∫

dkx Tr[W (s, kx; t ) γ0] =
∫

dx
∫

dkx (W11 − W33 − W44)

= Na

∑
n odd

η2
n

{
1 + (A2

n + B2
n

)2 + 2
(
A2

n + B2
n

)
cos(2Ent ) − 4 sin2(Ent )

(
A2

n + B2
n

)} (a2/2)n−1

(n − 1)!

= Na cosh(a2/2) = 1, (86)

where the integrals are evaluated in terms of the orthonormalization conditions from (76).
Even if the above results were concerned with the S-state superposition, A-state superposition can be equivalently evaluated.

In this case, the series expansions from Eqs. (78)–(83) shall have their indices running over even (replacing odd) numbers only.
This is in agreement with the fact that for t = 0 the only nonvanishing element of the Wigner function has phase-space functions
L(m−1)(n−1) with m − 1 and n − 1 odd, so all algebraic manipulations remain valid, except for the normalization constant Na =
cosh(a2/2)−1 [see Eq. (86)] which is replaced by Na = sinh(a2/2)−1. If t = 0, the phase-space pattern of Eq. (86) can be
indirectly obtained by the computation of the more straightforward Wigner function from Eq. (21), that is, the cat state in
configuration space. Similarly, the A state is also depicted in Fig. 6.

From now on, the normalized Wigner function is implied by multiplying Wμν either by cosh−1(a2/2) (for the symmetric state)
or by sinh−1(a2/2) (for the antisymmetric state) in order to have the unitarity preserved. In this way, the quantum informational
aspects of cat states can be finally assessed.

Moving to the computation of the relative linear entropies and quantum purity, one notices that the manipulation of the
infinite series can be quite intricate; nevertheless, mathematical identities often dispense with the actual computation of the
whole expression. To see this, with Wμν (s, kx; t ) ≡ Wμν for compactness of notation, one then has

P = 2π√
eB
(〈
W2

11

〉+ 〈W2
33

〉+ 〈W2
44

〉− 2〈W13W31〉 + 2〈W34W43〉 − 2〈W14W41〉
)
, (87)

for the purity expression. Although it might seem intractable, each term can be rewritten as

〈W11〉2 = cosh(a2/2)−2

(∑
n odd

η2
n

∣∣e−iEnt + (A2
n + B2

n

)
eiEnt

∣∣2 (a/
√

2)2n−2

�(n)

)2

= cosh(a2/2)−2

(
cosh(a2/2) − 4

∑
n odd

η2
n sin2(Ent )

(
A2

n + B2
n

) (a2/2)n−1

�(n)

)2

=
(

1 − 4

cosh(a2/2)

∑
n odd

η2
n sin2(Ent )

(
A2

n + B2
n

) (a2/2)n−1

�(n)

)2

= 2π√
eB
〈
W2

11

〉
, (88)

where the last equality is obtained by noticing that, upon integration of W2
11, one can use the set of relations from Eqs. (76) and

(77). The explicit calculation is presented in the Appendix. Similarly,

〈W33〉2 = 2π√
eB
〈
W2

33

〉 = 16 cosh(a2/2)−2

(∑
n odd

η2
n sin2(Ent )A2

n

(a2/2)n−1

�(n)

)2

, (89)
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FIG. 6. Phase-space (s, kx ) quasiprobability density for Dirac cat states, 1√
eB Tr[W (s, kx; t ) γ0], centered at a = ±1 (left column) and

a = ±5 (right column). Both symmetrical (top) and antisymmetric (bottom) superpositions are displayed with corresponding parameters
k2

z = eB = 1. For increasing values of a, their phase-space profile becomes barely distinguishable, whereas the overlapping of Gaussian states
as a → 0 shows that the amplitude for the A state is suppressed.

〈W44〉2 = 2π√
eB
〈
W2

44

〉 = 16 cosh(a2/2)−2

(∑
n odd

η2
n sin2(Ent )B2

n

(a2/2)n−1

�(n)

)2

, (90)

〈W13W31〉 = 〈
W2

11

〉1/2〈W2
33

〉1/2
, (91)

〈W34W43〉 = 〈
W2

33

〉1/2〈W2
44

〉1/2
, (92)

〈W14W41〉 = 〈
W2

11

〉1/2〈W2
44

〉1/2
. (93)

The purity expression finally results in

P = (〈W11〉 − 〈W33〉 − 〈W44〉)2

= 1, (94)

where the expression inside the brackets yields the normaliza-
tion condition as calculated in Eq. (86). Thus, the cat states
indeed correspond to a pure state.

The spin-parity relative entropy is similarly calculated with

ISP = 1 − 〈W11〉2 − 〈W33〉2 − 〈W44〉2 + 2〈W13〉〈W31〉,
(95)

of which only the last term needs to be evaluated. W13 is the
only nondiagonal element that does not average out to zero.

Instead, one can easily verify that

〈W31〉 = −2i cosh(a2/2)−1
∑
n odd

η2
n

[
e−iEnt + (A2

n + B2
n

)
eiEnt

]
× sin(Ent )An

(a2/2)n−1

�(n)
, (96)

a complex-valued expression. However, as expected,

〈W31〉〈W13〉 = 4

∣∣∣∣∣ cosh(a2/2)−1
∑
n odd

η2
n

[
e−iEnt

+(A2
n+B2

n

)
eiEnt

]
sin(Ent )An

(a2/2)n−1

�(n)

∣∣∣∣∣
2

(97)
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FIG. 7. Phase-space and spin-parity mutual information with parameters m = 1, κ = k2
z , ε = eB = 1/10 and 1 [blue (dark gray) and

green (light gray) lines, respectively] for symmetrical (solid lines) and antisymmetric (dashed) cat states. In the first row, the most significant
contributions come from the lowest Landau levels with a definite oscillation period, which resembles the quantum information pattern found
in the previous section. In the second row, correlations stagnate near their maximum value and drop off rapidly to zero when the system returns
to its initial state. Such a behavior is slightly affected by increasing the magnetic field.

is real. For the position-momentum relative entropy, one has

I{x,kx} = 1 − 2π√
eB
(〈
W2

11

〉− 〈W2
33

〉− 〈W2
44

〉+ 2〈W11W33〉
)
,

(98)
where it has been used that 〈W11W44〉 = 〈W33W44〉 = 0.6

Only the rightmost term was not calculated yet, and the com-
putation follows along the same lines of the previous identities
(see the Appendix). Then,

2π√
eB

〈W11W33〉 = 〈W31〉〈W13〉, (99)

and thus the relative linear entropies coincide.
The numerical results for the mutual information (38) are

plotted in Fig. 7 for a varying distance parameter, a. It can be
kept analytical for a � 1, in which case only the first term of
the series, which is ∝ (a2)n, is relevant. Otherwise, the series
found in Eqs. (88)–(90) must be truncated.7 The contribution

6Since one needs to evaluate integrals of products such as
L(m−1)(n−1)(s, kx )Lm′n′ (s, kx ) with dummy indices being odd.

7A simple algorithm to estimate the error of truncating the series
is given as follows. The series under consideration here can be
generally put into the form

l∑
n=0

(...)
(a2/2)2n

(2n)!
+

∞∑
n=l+1

(...)
(a2/2)2n

(2n)!
=

∞∑
n=0

(...)
(a2/2)2n

(2n)!
, (100)

where (...) is smaller than unity, so let (...) = 1 as an upper bound.
While the right-hand side is simply cosh(a2/2), the left-hand side

from the more excited states is to be contrasted with the
results obtained for the Gaussian state preliminarily discussed.
For smaller a, the Gaussian states interfere near the origin
(see Fig. 6), given that only the lowest odd (even) Landau
level contributes in the symmetric (antisymmetric) case in the
limit of a � 1. In this case, the averaged mutual information
between spin parity and phase space vanishes in the weak
magnetic-field limit, as expected from the previous results.
On the other hand, for a → ∞, i.e., an ideal superposition
of Gaussian states, the contributions from increasing quantum
numbers can be seen in the second row of Fig. 7. What stands
out is that mutual information can be actually greater than
unity for cat states, which confirms that spin-parity corre-
lations indeed increase by superposing two Gaussian states.
Even for a decreasing magnetic field, this behavior should
be compared with the Gaussian state correlation profile, the
maximal mutual information of which is unity.

is regarded as the series expansion of this function. The normalized
error can be given as

Er(a, l ) = 1 − S (l )

cosh(a2/2)
, (101)

where the numerator is the finite sum truncated at n = l . It follows
that Er(a, l ) = 0 is only obtained with infinite terms; thus, a reason-
able error, for instance, is Er(a, l = 0) ≈ 0.1 for a = 1 and Er(a, l =
8) ≈ 0.1 for a = 5. A similar strategy applies when dealing with
antisymmetric states.
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FIG. 8. EoF with the same color scheme and parameters from Fig. 7. Quantum correlations are nearly identical between symmetrical and
antisymmetric states for increasing a, in which case the Dirac bispinor is separable only for the initial state. On the other hand, for smaller
values of a, the oscillation pattern corresponds to the lowest Landau Levels.

There remains the question whether this behavior is also
observed for quantum correlations. The phase-space averaged
quantum concurrence is computed in terms of the Wigner
matrix elements; it is obtained by applying Eq. (67) to the cat
states discussed previously, which reads

〈C2〉{x,kx} = −
(

2π√
eB

)
2〈W11〉〈W44〉

= 8
∑

{n,m} odd

cosh(a2/2)−2

{
η2

nη
2
m sin2(Emt )B2

m

× [η−2
n − 4

(
A2

n + B2
n

)
sin2(Ent )

]
× (a2/2)n+m−2

�(n)�(m)

}
, (102)

over which the approximation scheme previously discussed
can be applied. In particular, it holds a strong resemblance to
the Gaussian state results. In fact, the n = m terms correspond
to the quantum concurrence for the Gaussian state computed
from Eq. (70), once weighted by appropriate factors.

The numerical results are shown in Fig. 8, in terms of
the EoF. Due to the interference between the first Landau
levels discussed above, the quantum state oscillates between
nonseparable and approximately separable states if a is small
enough. However, this oscillation is partially suppressed when
there is significant contribution from states with increasing
quantum number. On the one hand, EoF peaks for small values
of An = kz/(En + m) at its maximum value, given that its am-
plitude goes with B2

n = 2neB/(En + m)2 [see Eq. (3)]. On the
other hand, a relevant aspect concerns the weak magnetic-field
limit, which is observed by comparing the bottom-right plots
of Figs. 7 and 8. There is an inverse trend between mutual

information and EoF, which means that spin-parity classical
correlations are maximized for ideal cat states if eB/k2

z � 1.

IV. CONCLUSIONS

Reporting about some previous results involving the
SU(2) ⊗ SU(2) correlation profile carried by Dirac spinors
[16–21,30], Gaussian quantum superpositions for fermions
trapped by magnetic fields were mapped into Dirac-like struc-
tures and their spin-parity correlation properties driven by
associated phase-space variables were computed.

Considering the advantages of their mathematical ma-
nipulability, Gaussian states embedded into the Wigner-
Dirac framework had their phase-space dependent quantum-
information structure examined. As noticed, due to a straight-
forward consequence of the Dirac equation, these states
evolved into non-Gaussian phase-space configurations de-
scribed in terms of Laguerre polynomials. Thus, precisely
when the Wigner function could not be factorized into a
product of spinorial and phase-space functions, the correla-
tions emerged. Our results have shown that the total mutual
information between phase-space and spin-parity degrees of
freedom amounts to both types of SU(2) ⊗ SU(2) correla-
tions, be they of classical or quantum nature, the latter being
quantified by the quantum concurrence and the former being
obtained via the spin-parity mutual information for the time-
evolved Wigner function. As obtained, the overall quantum
correlations depend explicitly on the magnetic field, vanishing
more quickly for weak fields.

Lastly, symmetric and antisymmetric superpositions of
Gaussian states were also investigated. Although the corre-
sponding Wigner function inherits the intricacies related to
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the manageability of the quantum state itself (due to in-
finite series contributions), it still corresponds to a robust
framework that can be implemented to compute quantum and
classical correlations. For instance, Dirac cat Wigner func-
tions were described by generalized Laguerre polynomials,
which equivalently simplify to the Gaussian case described by
Laguerre polynomials, as long as the Gaussian states are close
enough in the s coordinate. If the cat distance parameter, a,
increases, the mutual information between continuous and
discrete degrees of freedom can reach values greater than
unity, which is unattainable for Gaussian states. In particu-
lar, even if B1 = √

2eB/(E1 + m) � 1, that is, for small but
nonzero magnetic fields (3), classical spin-parity correlations
have been noticed, whereas the EoF depicted by the quantum
concurrence was strongly suppressed. In the opposite limit,
however, EoF reached a maximum value for the state under
consideration and classical and quantum correlations became
equally relevant. This behavior is qualitatively preserved for
large fluctuations of the magnetic field, with a surprising stag-
nation of the spin-parity correlation profile, thus indicating a
stability for long periods of time as the parameter a increases.
Our results suggest that correlations can be manipulated not
only by including external potentials on the Dirac Hamilto-
nian, but also by interfering stationary states through Gaussian
wave-packet configurations.

To conclude, given that some previous results involving
quantum information issues on Dirac-like systems [10,16–26]
have been mainly concerned with nonlocalized density ma-
trices, the Wigner formalism for systems that support a
Dirac-like Hamiltonian opens up a suitable scenario for study-
ing the quantum information structure of confined fermions.
For instance, it can map low-energy dispersion relation plat-
forms for both mono- and bilayer graphene which correspond
to Dirac fermions that form Landau levels when undergoing a
perpendicular magnetic field [27–29,65]. As feasible exten-
sions, the Wigner-Dirac formalism can also be generalized
so as to include thermalization effects, or even curved metric
patterns, which may affect the confined Dirac spinors correla-
tions [66], and hence deserves more investigation.
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APPENDIX: PHASE-SPACE AVERAGING
OF THE WIGNER MATRIX ELEMENTS

The phase-space average of squared elements of the
Wigner matrix is computed by manipulating the orthonormal-
ization relations. An application is given by

〈
W2

11(s, kx; t )
〉 = (∫

dx
∫

dkx W2
11(s, kx; t )

)
, (A1)

where

W11(s, kx; t ) =
∑

{m,n}odd

[
eiEnt + (A2

n + B2
n

)
e−iEnt

]
1 + A2

n + B2
n

×
[
e−iEmt + (A2

m + B2
m

)
eiEmt

]
1 + A2

m + B2
m

× (a/
√

2)n+m−2

√
�(n)�(m)

L(m−1)(n−1) (s, kx ).

A change of notation turns out to useful:

W11(s, kx; t ) =
∑

{m,n}odd

CnC
∗
mL(m−1)(n−1) (s, kx ), (A2)

where Cn(t ) ≡ Cn depends on time but not on phase-space
coordinates. Then, squaring the expression above and integrat-
ing, ∑

{m,n}odd

∑
{m′,n′}odd

CnC
∗
mCn′C∗

m′

∫
dx
∫

dkx L(m−1)(n−1) (s, kx )

× L
(m′−1)(n′−1)

(s, kx ). (A3)

The orthogonality relations from Eq. (77) suffice to evaluate
this integral; it is simply∫

dx
∫

dkx L(m−1)(n−1) (s, kx )L
(m′−1)(n′−1)

(s, kx ) =
√

eB
2π

δnm′δmn′ ,

(A4)

which yields, by plugging it into Eq. (A3),
√

eB
2π

∑
{n,m}odd

|Cn|2|Cm|2. (A5)

Therefore, the double sum can be written as a sum squared:

〈
W2

11(s, kx; t )
〉 = √

eB
2π

(∑
{n}odd

|Cn|2
)2

. (A6)

Now, by integrating W11(s, kx; t ),

〈W11(s, kx; t )〉 =
∑

{m,n}odd

CnC
∗
m

∫
dx
∫

dkx L(m−1)(n−1) (s, kx ),

(A7)
where ∫

dx
∫

dkx L(m−1)(n−1) (s, kx ) = δmn. (A8)

Then

〈W11(s, kx; t )〉 =
∑

{n}odd

|Cn|2. (A9)

Finally, one has

〈
W2

11(s, kx; t )
〉 = √

eB
2π

〈W11(s, kx; t )〉2, (A10)

as desired. All other identities follow from the same argu-
ments.
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