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Achieving fast high-fidelity optimal control of many-body quantum dynamics
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We demonstrate the efficiency of a recent exact-gradient optimal control methodology by applying it to a
challenging many-body problem, crossing the superfluid to Mott-insulator phase transition in the Bose-Hubbard
model. The system size necessitates a matrix product state representation and this seamlessly integrates with the
requirements of the algorithm. We observe fidelities in the range 0.99–0.9999 with associated minimal process
duration estimates displaying an exponential fidelity-duration trade-off across several orders of magnitude.
The corresponding optimal solutions are characterized in terms of a predominantly linear sweep across the
critical point followed by bang-bang-like structure. This is quite different from the smooth and monotonic
solutions identified by earlier gradient-free optimizations which are hampered in locating the higher complexity
protocols in the regime of high fidelities at low process durations. Overall, the comparison suggests significant
methodological improvements also for many-body systems in the ideal open-loop setting. Acknowledging that
idealized open-loop control may deteriorate in actual experiments, we discuss the merits of using such an
approach in combination with closed-loop control—in particular, high-fidelity physical insights extracted with
the former can be used to formulate practical, low-dimensional search spaces for the latter.
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I. INTRODUCTION

With experimental and theoretical advances in the prepara-
tion and engineering of quantum mechanical systems, precise
manipulation of fragile quantum systems has become increas-
ingly important [1]. To this end, quantum optimal control [2]
is a particularly successful tool for designing controls that
implement desired physical transformations with wide appli-
cations in numerous research areas, such as superconducting
qubits [3–7], nuclear magnetic resonance systems [8–12],
nitrogen vacancy centers [13–16], cold molecules [17–20],
and cold atoms [21–28], to name a few. On the theoretical
side, open-loop optimal control design can be considered the
union of numerical simulation and optimization methodolo-
gies. Therefore, with growing Hilbert space sizes such as
in many-body contexts [29–39], the performance capacity of
both these components must be streamlined to succeed in
finite time within this paradigm.

Simulating very high-dimensional many-body systems
exactly requires an exponential amount of memory and com-
putation time [40]. Current techniques for breaking this curse
of dimensionality finds recourse in tensor networks ansätze
and, in the case of 1D systems, the appropriate structures are
matrix product states (MPS). The entanglement entropy for
these systems exhibits a constant area scaling law with the
number of particles and can therefore be effectively simulated
classically with subexponential resources [6,40–43].

Among the significant number of nonlinear optimiza-
tion methodologies [9,12,21,22,44–55], it is conventional
understanding [49,50,56] that derivative-based local search
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techniques is the best way to identify local optima for any
given optimization objective J . Coupled with an appropriate
multistarting scheme [57], global optima may be uncovered.
In addition to the local gradient ∇J , it is well-known that
also incorporating curvature information through the local
Hessian ∇2J is essential for the convergence rates of local
optimization. The theoretical ideal is to include both exactly,
but in practice the full Hessian is often prohibitively ex-
pensive to calculate. It is instead standard practice to apply,
e.g., Broyden-Fletcher-Goldfarb-Shanno (BFGS) schemes to
progressively construct a Hessian approximation from suc-
cessive gradients [56]. If the individual gradients are inexact,
these errors will accumulate in each iteration and make
the Hessian approximation unreliable as the optimization
progresses. This will in turn manifest as increasingly poor
update directions that ultimately lead the optimization ir-
reparably astray and significantly hamper the discovery of
local optima as discussed in, e.g., Refs. [44,58]. Hence, ex-
act gradients are central to local search paradigms. Applying
these in very high-dimensional Hilbert spaces, however, has
been a major obstacle because the currently known exact
gradient element calculations become “extremely resource
consuming, if not impossible” [21] due to their unfavorable
scaling with the Hilbert space dimensionality DH. Specifi-
cally, their evaluation requires either full diagonalization [59]
or exponentiation [48] of matrices that are at least of size
DH × DH potentially followed by a recursive commutator
series summation [44,58]. Therefore, control problems in,
e.g., the many-body limit have either been approached us-
ing derivative-free methods [21,22] or, contemporarily to this
work, inexact first-order gradients [60] which are prone to the
reduced overall optimization capabilities described above.

In this paper, we apply a new exact derivative methodology,
introduced in our recent parallel work [58] and reviewed in
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Sec. II, to a paradigmatic problem in the complex many-body
regime. Briefly, the methodology circumvents the compu-
tational bottlenecks mentioned above. This is achieved by
(1) applying Trotterization schemes and (2) representing the
problem in a diagonal basis for the control Hamiltonian. Ex-
plicitly including these effects in the analytical derivations
leads to very simple forms for the gradient depending on the
specific Trotter scheme. The expressions are exact with only a
first-order term as all higher-order correction terms vanish and
the only computational effort lies in time evolving an auxiliary
state in addition to the usual quantum state. That is, these exact
gradient calculations scale only with the time it takes to solve
the quantum dynamics which is the fundamental operation of
any numerical optimal control algorithm. It is of particular
convenience that both (1) and (2) are by themselves common
and independently implemented in the general context of nu-
merical simulations. For example, a large family of algorithms
for performing time evolution of the MPS considered here rely
on Trotterization [61]. Our exact derivative methodology thus
meshes quite naturally with established standard numerical
techniques.

The central ideas and derivations in Ref. [58] are valid for
all unitary control tasks. For concreteness, the special case of
maximizing state transfer fidelity in Hilbert spaces of dimen-
sion DH = 2 − 100 was considered there. For fixed DH, we
demonstrated orders of magnitude improvement in terms of
computational speedup relative to similar exact gradients and
that the gained relative speedup is exponential as a function
of DH. It was also demonstrated that inexact gradients lead to
the expected poor performance in terms of achievable fidelity.

Here we demonstrate that the techniques remain viable
for fidelity requirements above 0.99 for many-body systems
with DH ∼ 1011 where other currently known exact gradient
approaches are computationally prohibited. This evidences
the possibility for significantly enhanced optimal open-loop
control also over very high-dimensional Hilbert spaces oper-
ating in the fast high-fidelity regime.

Having showcased an advance in open-loop control ca-
pabilities, we finally turn to the broader context of quantum
optimal control. Outlining first the benefits of open- and
closed-loop methodologies separately, we give our perspec-
tive on how the role played by the open-loop component in a
unified-loop may remain useful in the future.

II. MANY-BODY STATE TRANSFER

A. Bose-Hubbard model

As a challenging representative example from the class of
many-body problems, we examine the superfluid-Mott insu-
lator phase transition in the one-dimensional Bose-Hubbard
model. This model describes the physics of Np interacting
spinless bosons in a lattice with Ns sites by the Hamilto-
nian [29,62,63]

ĤSI = ĤJx + ĤU = Jx

Ns−1∑
i=1

ĥJx
[i,i+1] + U

2

Ns∑
i=1

ĥU
[i], (1)

ĥJx
[i,i+1] = −(â†

i+1âi + H.c.), ĥU
[i] = n̂i(n̂i − 1). (2)

The operators â†
i and âi are the bosonic creation and

annihilation operators for site i, respectively, while

n̂i = â†
i âi counts the number of particles occupying the

site, n̂i |n1, . . . , ni, . . . , nNs〉 = ni |n1, . . . , ni, . . . , nNs〉. We
assume a fixed number of particles Np = ∑Ns

i=1 ni and unit
filling Ns/Np = 1.

The energy Jx is associated with the hopping (tunneling)
operator ĥJx

[i,i+1] along the x direction, and U is the energy

associated with the on-site interaction operator ĥU
[i]. The ratio

U/Jx characterizes the quantum phase of the system. We as-
sociate with Jx � U the superfluid phase in which the ground
state |SF〉 is a delocalized particle distribution across the lat-
tice with sizable site occupation variance. The Mott insulator
phase is conversely associated with U � Jx and the ground
state |Mott〉 = |1, 1, . . . , 1〉 is a single Fock state component
with unit occupancy on each site in the thermodynamic limit.

We seek to dynamically connect the ground states, |SF〉 →
|Mott〉, on opposing sides of the critical point by controlling
the time-dependent ratio of on-site interaction- and tunneling
energies u(t ) = U (t )/Jx(t ). In particular, we are interested in
estimating the lowest possible transfer duration T consistent
with high-fidelity requirements, e.g., F (T ) � 0.99, yielding
empirical estimates for the minimal process duration T F

min.
To this end, we turn to numerical quantum optimal control
techniques as described in Sec. II B. A particular difficulty in
driving the transition is that the energy excitation spectrum
becomes approximately gapless (exactly gapless in the ther-
modynamic limit) in the superfluid limit. This implies very
long (diverging) adiabatic timescales for crossing the critical
point of the phase transition. Thus, residual population defects
may become pinned, which can be estimated either by Kibble-
Zurek theory or as a cascade of independent Landau-Zener
avoided crossing transitions [64–67].

One possible physical context for desiring such a fast and
precise transfer lies in neutral atoms trapped with a cubic op-
tical lattice. There the |Mott〉 state is a candidate for quantum
information processing [68] tasks and quantum simulation of
spin systems [69], but experimental protocols for the initial
lattice loading leaves the system in the |SF〉 state. Within
this physical implementation of the Bose-Hubbard model, the
occupation number ni is associated with the lowest band Wan-
nier function maximally localized on site i, see Appendix A
for a more detailed discussion. The characteristic energies
Jx(vx ) and U (vx, vy, vz ) are then implicitly related to the lat-
tice trapping depths vx, vy, vz as denoted and for fixed vy, vz

this translates into a functional dependence vx(U/Jx ). These
monotonic mappings are calculated numerically for a set of
experimentally relevant lattice parameters in Appendix A (Jx

is exponentially decreasing with vx and vx is exponentially
increasing with U/Jx).

Matrix product states turn out to be an effective description
for one-dimensional many-body systems. The price paid for
such extended simulatory treatments is a significant increase
in analytical and numerical code logistics. See Appendix B
for a more detailed discussion of MPS.

B. Exact gradient optimization

Here we briefly review derivative-based optimal control
and the main results of Ref. [58] in the context of the present
paper.
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In quantum optimal control, we seek to dynamically steer
a quantum mechanical process in a controlled way such as
to maximize a desired physical yield. For unitary evolution,
any such task can be encoded as a minimization over an
appropriate cost functional J[Û (T ; 0)], where

Û (T ; 0) = T exp

(
− i

∫ T

0
Ĥ (t )dt

)
, (3)

is the time evolution operator in units where h̄ = 1 from time
t = 0 → T , T denotes time ordering, and Ĥ is the system
Hamiltonian carrying some generic time dependence. The
Hamiltonian can be generically decomposed as

Ĥ = Ĥ (t, u(t )) = Ĥd (t ) + Ĥc(t, u(t )), (4)

where Ĥd is the uncontrollable drift Hamiltonian and Ĥc

is the control Hamiltonian parametrized by the control u(t )
which allows manipulation of the unitary time evolution. The
extension to more than one control parameter is discussed in
Ref. [58]. Discretizing time on a regular grid of length Nt

spaced by δt , we obtain

t ∈ [t1, t2, . . . , tNt ] = [0, δt, . . . , T ], t j = ( j − 1)δt, (5a)

Û (T ; 0) ≈
Nt −1∏
j=1

Û j = ÛNt −1 . . . Û2Û1, (5b)

with time indices denoted as subscripts and Ûn the prop-
agator across the time interval [tn, tn+1] = [tn, tn + δt]. The
propagators Ûn depend on the discretized control vector
u = (u1, . . . , uNt ) in some manner depending on the chosen
discretization scheme. We can then numerically minimize
J (u) = J (ÛNt −1 . . . Û2Û1) through iterative local updates of
the control vector

u(k+1) = u(k) + α(k) p(k), (6)

such that J (u(k+1)) � J (u(k) ). The step size α(k) > 0 at itera-
tion k is found by line searching and there are several choices
for the search direction p(k) which all depend on the local
gradient ∇J (u(k) ). This includes, e.g., the steepest descent,
BFGS, and Newton direction [56].

A local minimizer u∗ of J is called an optimal control. The
cost typically contains several contributions, J = ∑

i Ji, where
each term encodes a desired feature that prospective optimal
controls strives to fulfill. This always includes a term explic-
itly related to the quantum dynamics, Jdyn(ÛNt −1 . . . Û1), and
potentially various control constraints, Jcon(u), that do not (see
Appendix C). The total gradient is then given by the sum of
the individual gradients, ∇J = ∑

i ∇Ji. The functional form
of the cost Jdyn depends on the particular unitary task [53],
yet the associated gradient elements can always be reduced to
evaluating expressions on the form

∂Jdyn

∂un
∼ ∂

∂un

(
ÛNt −1 . . . Û2Û1

)
. (7)

Evaluating the right-hand side of (7) constitutes the most
numerically expensive computation in this optimization
paradigm and is what leads to the typical computational
bottlenecks mentioned in the Introduction. Once calculated,
however, it is straightforward to assemble the gradient for

any J[Û ]. A main result of Ref. [58] is that Eq. (7) can be
efficiently evaluated by

∂

∂un

(
Nt −1∏
j=1

Û j

)
=

(
Nt −1∏
j=n

Û j

)(
−iδt

∂Hc
n

∂un

)(
n−1∏
j=1

Û j

)
, (8a)

given that the system is described in a basis where Ĥc
n =

Ĥc(tn, un) is diagonal and simultaneously employing a spe-
cific [70] Trotterized propagator,

Ûn = ÛST
n ≡ Û c/2

n+1Ûd
n Û c/2

n , (8b)

where we defined the control and drift propagators

Û c/2
n ≡ exp

(−iĤ c
n δt

/
2
)
, Ûd

n ≡ exp
(−iĤn

dδt
)
, (8c)

and Ĥn
d = 1

2 (Ĥd
n+1 + Ĥd

n ), where Ĥd
n = Ĥd (tn).

The |SF〉 → |Mott〉 state transfer described in Sec. II A
is conveniently encoded as a maximization of the fidelity or
minimization of an associated Jdyn cost, respectively, given
by [58]

F = |〈ψtgt|ψ (T )〉|2 = |〈ψtgt|Û (T ; 0)|ψini〉|2, (9a)

JF = 1
2 (1 − F ), (9b)

where |ψtgt〉 = |Mott〉 is the target state, |ψini〉 = |SF〉 is the
initial state, and |ψNt 〉 = |ψ (T )〉 = Û (T ; 0) |ψini〉 is the time-
evolved state at final time T . Using Eqs. (8), the analytically
exact gradient elements [71] of the fidelity cost can then be
written as

∂JF

∂un
= Re

(
io∗

〈
χn

∣∣∣∣ ∂Ĥc
n

∂un

∣∣∣∣ψn

〉)
δt, (10a)

where |ψn+1〉 = Ûn |ψn〉 is the forward propagated initial state
|ψ1〉 = |ψini〉 while |χn〉 = Û†

n |χn+1〉 is the backward prop-
agated target state |χNt 〉 = |ψtgt〉 with the transfer amplitude
o = 〈χNt | ψNt 〉. The exact gradient computation is only dom-
inated by the time it takes to solve the dynamics—once
forward and once backward. Any optimal control algorithm,
including derivative-free ones, is in each iteration bounded
from below by this propagation time. This gradient thus satu-
rates this bound up to a small constant scaling (as opposed to
other known exact gradients).

It is noted that a variational treatment of the cost functional
prior to temporal discretization leads to a gradient expres-
sion that is superficially similar to Eq. (10a), but such an
approach assumes an infinitesimal time step. Time steps are,
however, always finite in numerical practice. This subtlety
means that the details of the chosen propagator are important
and that the well-known variationally obtained gradient is
only a first-order approximation. It is then only under the
conditions surrounding Eqs. (8) that the corrections vanish
and Eq. (10a) is exact, which by happenstance coincides with
the approximate variational calculation. See Ref. [58] for an
expanded discussion.

The control may also be decomposed on a set of
parametrized functions { fl (t ; θ)}L

l=1,

u(t ; θ) = f0(t ) +
L∑

l=1

fl (t ; θ), (10b)
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where f0(t ) is a fixed reference function and θ ∈ RM are now
the optimization parameters. This is widely referred to [72]
as the chopped random basis (CRAB) technique [54,73],
and a typical choice of functional basis consists of random-
ized Fourier components. By choosing an appropriate set of
functions, the search space can be both significantly reduced
and focused on certain realistic control shapes, depending
on the application. Exact gradient optimization in a CRAB
parametrization is also admitted by Eqs. (8) through the chain
rule:

∂J (u(θ))
∂θi

=
Nt∑

n=1

∂J

∂un

∂un

∂θi
=

Nt∑
j=1

L∑
l=1

∂J

∂un

∂ fl (tn; θ)

∂θi
. (10c)

The gradient element with respect to the parameter (θ)i =
θi therefore still depends on the nonparametrized gradient
elements ∂J/∂un described above with negligible further com-
putational overhead.

In applying the exact gradient methodology here, it is
convenient to rescale Eq. (1) at time tn by the instantaneous
tunneling rate:

Ĥn = ĤSI(tn)

Jx(tn)
=

Ns−1∑
i=1

ĥJx
[i,i+1] + 1

2

(
U (tn)

Jx(tn)

) Ns∑
i=1

ĥU
[i]. (11a)

We identify the drift and control Hamiltonian as, respectively,

Ĥd =
Ns−1∑
i=1

ĥJx
[i,i+1], Ĥc

n = un

2

Ns∑
i=1

ĥU
[i], (11b)

where un = U (tn)/Jx(tn) is the control parameter. The control
Hamiltonian is thus diagonal, as required for the validity of
Eqs. (8a) and (10a), when represented in the site-occupation
basis. As an additional numerical benefit, the drift Hamil-
tonian is time independent, Ĥn

d = Ĥd , and so is the control
Hamiltonian derivative needed in Eq. (10a):

∂Ĥc
n

∂un
= 1

2

Ns∑
l=1

ĥU
[i]. (11c)

This structure of Eq. (11a) can be exploited to significantly
accelerate the time evolution of the MPS as described in
Appendix B.

The control vector u = (. . . , un, . . . ) = (. . . ,U (tn)/
Jx(tn), . . . ) is in our simulations independent of the
physical implementation of the Bose-Hubbard model. It
can be translated into a corresponding time sequence of
laboratory parameters such as, e.g., optical lattice depth
vx(u) = (. . . , vx(un), . . . ) by specifying the relationship
between vx and U/Jx as discussed in the Appendixes. The
value vx(un) must be applied for a duration proportional
to h̄/Jx(un), and the total duration measured in SI units
therefore depends on the control TSI(u). The translated vx

is therefore qualitatively speaking a scaled version of the
corresponding u.

In the following, we denote durations by the format T =
Tsim (TSI ), where T = Tsim is the process duration entering in
Eqs. (5). The presented SI numbers are based on the set of

FIG. 1. Optimization results for Ns = Np = 20 showing infi-
delity 1 − F (lower is better) for each seed before (blue) and after
(green) optimization. (a) Each dot represents a control and the
translucency informs about the distribution density. In this batch, we
find T F=0.99

min = 11 (22.5 ms) indicated with the dashed line. (b) His-
togram (left is better) prior to and after optimization with the same
color scheme. (c), (d) As (a) and (b), but at higher durations and
finding T F=0.9999

min = 22 (47.7 ms).

experimental lattice parameters described in Ref. [22], see
Appendix A.

C. Results

We now present exact gradient optimization results for
the |SF〉 → |Mott〉 many-body transfer at unit filling Np =
Ns = 20 using MPS. A numerical exact diagonalization treat-
ment [74] is prohibitively resource intensive at these numbers
as the Hilbert space has dimensionality DH ∼ 1011 and
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FIG. 2. Sample duration-normalized control ramps (multicol-
ored faded lines) u(t/T ) for solutions with F � 0.99. The cor-
responding seeds are shown in the inset, the black dotted line
indicates the adiabatically inspired reference control, the horizontal
line denotes the critical point value for the phase transition (see
Appendixes), and the black solid line highlights the optimal control
with duration T F=0.99

min = 11 (22.5 ms). The optimized controls are
characterized by two distinct segments denoted by the shaded areas.

requires ∼1 TB memory just to store a single generic state.
The initial starting points (seeds) for the optimization were
generated by adding a sum of randomized Fourier components
to an adiabatically inspired reference control, i.e., an expo-
nential function that slowly crosses the critical point before
ramping up. After generating a seed, it is optimized using
Eq. (10a)—it is not bound by a parametrization and each
un = u(tn) is independently adjustable. Appendix C gives an
overview of further optimization details.

Figure 1 shows the empirically achieved fidelity through
numerical optimization as a function of process duration T .
From these, we find minimal duration estimates T F=0.99

min =
11 (22.5 ms) and T F=0.9999

min = 22 (47.7 ms). The highest fi-
delities as a function of T are found to approximately follow
an exponential law. The effect of the optimization is seen
to be significant as solutions are typically improved by sev-
eral orders of magnitude. Sample optimization trajectories are
shown in Appendix C.

This successful application of exact-gradient optimal con-
trol techniques in the many-body limit constitutes the first
main result of this paper.

Figure 2 shows a subset of the optimized control ramps
from Fig. 1(a) and we observe two control segments with very
distinct behaviors.
Segment 1—“linear”: t/T∈[0, 2

3 ].
With nearly vanishing variance and following an initial per-

turbation, this predominantly linear segment slowly crosses
the critical point with high-frequency, low-amplitude oscilla-
tions.
Segment 2—“bang-bang”: t/T∈[ 2

3 , 1].
With large variance, this segment ramps to the final control

value and consists of several low-frequency, high-amplitude
oscillations. These oscillations turn out to be smoothed ap-
proximations to a bang-bang structure.

FIG. 3. Distinct optimal control strategies characterized by a
different number of peaks (bangs) in segment 2 that are active at
different T (rows). The left panels show n found high-fidelity con-
trols (translucent lines) and their (25,50,75)% quantiles (black lines)
(the linear contribution has been subtracted). The right panels show
the relative distribution of the n solutions into the three identified
strategies at these T .

Focusing on segment 2, subtracting the linear contribution
there and resolving the optimized solutions according to their
duration T , we obtain a clearer picture in Fig. 3, namely, there
are several optimal control strategies [75] that are individu-
ally characterized by an integer number of peaks (“bangs”)
Npeak = 5, 6, 7. The best and most prominent strategy depends
on T where higher T leads to a higher optimal number of
peaks. This trend is verified to continue outside of this par-
ticular range of durations where different Npeak are prevalent.
At lower T the peaks are increasingly bang-bang-like while at
higher T the peak shapes are smoother and less extreme [76].
Since the effect on the dynamics is largely the same, however,
we will for simplicity refer to these peaks collectively as
bangs although they may not always meet the strictest defi-
nition. Translating u(t ) = U (t )/Jx(t ) into, e.g., optical lattice
depths vx(t ) scale the shape but leave the overall structure
intact—the peaks then appear to have roughly the same width
≈1.3 ms and center distance ≈2 − 2.5 ms independently of
T . The recoil energy time scale is roughly h/ER ≈ 0.5 ms for
comparison.

The discovery of this family of optimal solutions for the
|SF〉 → |Mott〉 transfer constitutes the second main result
of this paper. The existence of other types of optimal solu-
tion shapes cannot be excluded and we leave these types of
searches for future work.

To understand the physical mechanisms at play in the
problem, we inspect the quantum dynamics induced by these
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FIG. 4. (a)–(c) Time evolution along sample optimized controls at three different durations. Each upper panel shows the site occupations
〈n̂i〉ψ (t ) (sensitive near unit occupancy and note 〈n̂1〉ψ (0) = 0.67) while each lower panel shows the corresponding control (solid purple line,
left axis) and critical value (U/J )crit (dashed purple line, left axis) and infidelity (solid teal line, right axis). The t axis is slightly extended to
better display the behavior at t/T = 0, 1.

fidelity-optimized controls at different durations in Fig. 4.
From 〈n̂i〉ψ (t ) = 〈ψ (t ) | n̂i | ψ (t )〉 in Fig. 4, we find that a light-
cone-like homogenization of site population takes place when
crossing the critical point in segment 1. The population is oth-

erwise initially concentrated in the bulk (roughly sites 4–17)
due to finite edge effects. This process is clearly limited by the
propagation velocity ∂〈n̂i〉ψ (t )/∂t and thus also influences the
minimal duration T F

min for high-fidelity transfers. The tardiness
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TABLE I. Summary of problem specifications in this paper and Refs. [21,22]. The optimization in this paper does not rely on explicit
lattice parameters as discussed in Appendix A. References [21,22] do not report the concrete details of the control parametrization and certain
other parameters for the optimization.

This paper Ref. [21] Ref. [22]

Physical system
Sites and particles Ns = Np = 20 Ns = Np = 20 (and others) Ns = 32, Np = 16
Harmonic trapping No No and yes (weak) Yes (weak)

Lattice parameters
λ = 1064 nm,

vy = vz = 20 ER

λ = 826 nm,

vy = vz = 30 ER

λ = 1064 nm,

vy = vz = 20 ER

Optimization details
Objective JF + Jα + Jγ Eq. (C1) Energy minimization halting η Eq. (14)

below ρ = 10−3 Eq. (13)
Update rule Exact gradients (BFGS) Gradient-free (Nelder-Mead) Gradient-free (Nelder-Mead)
Control U/Jx vx vx

Parametrization None Fourier CRAB Eq. (10b) Fourier CRAB Eq. (10b)
Bandwidth limited by Jγ cost Parametrization Parametrization
Timescale h̄/Jx h̄/ER h̄/ER

Initial and target depths 3ER → 13ER 2ER → 22ER 3ER → 14ER

MPS parameters D = 200, smax = 10−12, d = 5 D � 100 D � 24, smax = 10−5

δt for simulation 0.025 0.01 − 0.001 0.01

hereof is somewhat expected because we are crossing a phase
transition and the adiabatic timescales approach infinity, as
discussed earlier. Even upon reaching a largely homogenized
site population after segment 1, however, the fidelity remains
very small. The following bang-bang process in segment 2
corresponds to alternating between tunneling events and site-
locking—during the latter, individual c phases are imprinted
on the individual Fock components

Ûn

∣∣n1, . . . , nNs

〉
≈ ∣∣n1, . . . , nNs

〉 × exp

(
− iuδt

2

Ns∑
i=1

ni(ni − 1)

)
, (12)

since tunneling is approximately negligible in the deep lattice
limit, u � umax, see Appendix A. This leads to a nontrivial
interplay [F (t ) is nonmonotonic] between the canonically
conjugate population and phase variables that evidently pro-
duces the correct interferences finally leading to the target
|Mott〉 state.

It is interesting to note that a recent work [77] argues that
optimal controls should exhibit a bang-smooth-bang structure
for a certain class of problems. Said problems are equivalent
to special cases of the state transfer formulation where the
total Hamiltonian, Ĥ (u(t )) = u(t )Ĥ1 + (1 − u(t ))Ĥ2, is a lin-
ear interpolation with 0 � u(t ) � 1 between Hamiltonians Ĥ1

and Ĥ2, and |ψini〉 = |GS; u = 1〉 and |ψtgt〉 = |GS; u = 0〉
are the ground states for Ĥ1 and Ĥ2. The problem studied here
is approximately on this form and it appears plausible that
our optimized controls are related to this bang-smooth-bang
prediction.

D. Comparison to previous open-loop efforts

We now discuss our two main results in relation to pre-
vious open-loop efforts [21,22] of optimizing the |SF〉 →
|Mott〉 transition. These explicitly assume an optical lattice
implementation and employed derivative-free Nelder-Mead

methodologies to optimize the expansion coefficients of a
Fourier component CRAB. The respective optimization re-
sults and methodologies are discussed in turn.

Our first result was to show that exact gradients are now a
viable option in the many-body limit, which was previously
considered potentially infeasible [21]. Direct quantitative
comparisons to Refs. [21,22] in terms of fidelity and process
durations are obstructed by the differences in the exact prob-
lem formulations summarized in Table I. Nevertheless, the
conservative quantitative inferences discussed below indicate
that the optimization technique is indeed promising. Strong
comparative conclusions between optimization methodolo-
gies can only be drawn if they are applied in numerical
environments where everything else is equal. We consider
such extended numerical comparisons outside the scope of
this demonstration of exact gradients in the many-body limit.

The optimized observables reported in Refs. [21,22] are not
the |Mott〉 fidelity. Instead they are related only to the site pop-
ulation statistics and are thus insensitive to the relative phases
between Fock state components. They are thus correlated with
the fidelity but not in one-to-one correspondence.

Reference [21] reports on the final density of defects:

ρ = 1

Ns

Ns∑
i=1

| 〈n̂i〉ψ (T ) − 1|. (13)

Vanishing ρ values [78] are indicative of a |Mott〉 state and
optimization of a solution in Ref. [21] was halted if it achieved
ρ � ρc = 10−3. The density of defects should not be affected
by the differences in Table I, and this allows a point of
comparison when evaluating ρ for all our fidelity-optimized
solutions as shown in Fig. 5(a). We are able to verify that a
fixed value of ρ can display a large variance in F and vice
versa. For example, ρ ≈ 3 × 10−3 � ρc can correspond to
both F ≈ 0.75 and F ≈ 0.93 while F ≈ 0.93 can also corre-
spond to ρ = 6 × 10−4 � ρc. Thus ρc is not an ideal stopping
condition for the |Mott〉 state in terms of fidelity and it is not
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FIG. 5. (a) Density of defects Eq. (13) for all the fidelity-
optimized solutions (green dots). The horizontal line denotes ρc =
10−3 from Ref. [21] and the vertical line denotes F = 0.99. The black
crosses highlight solution pairs that have nearly the same ρ but very
different F and vice versa. (b) Optical lattice depths vx (t ) mapped
from u(t ) in Fig. 4(a) and the corresponding signal when removing
Fourier components with a frequency larger than νL = 2πL/T . The
y axis is in units of recoil energies using lattice parameters from
Ref. [22].

possible to know what the fidelity distribution in Ref. [21]
would look like. However, all our solutions with F � 0.99
have less than ρ ≈ 4 × 10−4 and solutions with F ≈ 0.9999
are distributed near ρ ≈ 2 × 10−5.

Our numerical calculation of the relationship vx(U/Jx ) in
Fig. 6—which is used to calculate SI times for a given set
of lattice parameters described in Appendix A—yields values
that are consistent with those stated in Ref. [22]. When we
instead use the tighter lattice parameters in Ref. [21] the SI
durations are reduced by roughly a factor of 2–3. This places
our process durations on the order of ms, which is similar
to the 3.09 ms used in Ref. [21]. There is, however, not a
basis for direct comparison between these since we observe

FIG. 6. (a) Constitutive relations U (vx ), Jx (vx ) for the concrete
optical lattice described in the Appendix (right axis in units of ER).
The dots denoted on the U/Jx curve (left axis) indicate values of note.
Left to right, they are the minimally allowed vx = 2 ER, the vx defin-
ing |SF〉, the critical point of the |SF〉 → |Mott〉 phase transition, the
vx defining |Mott〉, and the maximally allowed vx = 13.5 ER (corre-
sponding to U/J = 40.18). (b) The timescaling is μtime = h̄/Jx (vx )
in units of ms and the transfer duration in SI units Eq. (A6) thus
depends on the control vector u = (. . . , (U/Jx )n, . . . ).

a discrepancy in vx(U/Jx ) at the values reported in Ref. [21].
(The variance between values of F and ρ above suggests
that F � 0.99 requires more than 3.09 ms in the geometry of
Ref. [21]).

The work in Ref. [22] assumes Np = 16, Ns = 32, and
includes a harmonic potential � × ∑Ns

i=1(i − i0)2n̂i, where
i0 = (Ns − 1)/2 and � = 2.4 × 10−3ER, which is weak com-
pared to the on-site interaction U at all lattice depths (see
Fig. 6). Note that Ref. [21] shows optimization results both
with and without a similarly weak harmonic potential and in
that instance there does not seem to be a significant difference
between the quantitative outcomes.

The observable reported and minimized in Ref. [22] is the
rescaled average variance in the center of the trap

η = 1

8

Ns/2+4∑
i=Ns/2−3

�n̂i(T )

�n̂i(0)
, (14)

where �n̂i(t ) = 〈n̂2
i 〉ψ (t ) − 〈n̂i〉2

ψ (t ). The smallest value re-
ported is η ≈ 1 × 10−1 at roughly 15 ms. Similarly to ρ, we
verify in our data that a fixed value of η (where we extend
the sum to all lattice sites) can exhibit a large variances in
F . We observe η = 1 × 10−1 at F = 0.75 while all fideli-
ties F � 0.99 have η � 1.4 × 10−2 and at most reached η ≈
1.2 × 10−2. Since the harmonic potential is quite weak and
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that the reported η more leniently covers only eight sites, these
numbers suggest that it is quite unlikely that the corresponding
states in Ref. [22] are close to F = 0.99 with respect to the
ground state. In terms of process durations, the F = 0.75
control in Fig. 4(c) attains η ≈ 1 × 10−1 at about a third of
the duration in Ref. [22].

These assessments indicate that our exact gradient method-
ology is able to achieve results that are competitive with the
methodologies employed by Refs. [21,22] in terms of solution
quality and transfer times.

Our second main result was that the |SF〉 → |Mott〉 transi-
tion has a family of solutions consisting of distinct segments
consisting of a predominantly linear sweep followed by bangs.
This overall control structure is preserved when mapped to
optical lattice depths as seen in Fig. 5(b). From a qualitative
point of view, the optimized controls reported in Refs. [21,22]
are in contrast very smooth and are generally similar to each
other. A more quantitative statement is that our obtained op-
timized controls have a higher information-theoretic control
complexity as initially introduced in Ref. [79] where an opera-
tional definition is given by the number of Fourier components
needed to solve the problem to a given fidelity threshold (these
and associated notions were shortly after treated in more gen-
erality in Ref. [43]). A partial reason for the observed disparity
can be understood as follows.

As mentioned, Refs. [21,22] are based on the CRAB
technique in Eq. (10b) with derivative-free Nelder-Mead
optimization. They utilize Fourier components centered on
low-lying harmonic frequencies, e.g., νl = 2π l (1 + rl )/T
where rl ∈ [0 : 1] are randomized frequency offsets [21].
That is, the basis functions are on the form fl (t, θ) ∝
θ sin

l sin νl t + θ cos
l cos νl t , where the control θ = (θsin, θcos) =

(θ sin
1 , . . . , θ sin

L , θ cos
1 , . . . , θ cos

L ) represents the M = 2L expan-
sion coefficients. The number of components used in
Refs. [21,22] is stated as small but is not explicitly specified.
A low-dimensional Fourier decomposition effectively means
that the control signal is bandwidth, or rate of change, limited.
Our presented optmizations instead incorporate rate of change
limitations through a cost functional, see the Appendixes. The
restrictions imposed in this way are somewhat more difficult
to characterize, but it is observed that the maximal rate of
change due to the approximate bangs in, e.g., Fig. 4 is similar
to the maximal rate of change near t = T in Refs. [21,22].

Regardless of bandwidth considerations, the restriction to
a small M in Refs. [21,22] is necessary because the heuristic
Nelder-Mead methodology does not generally perform well as
M becomes large [56]. Reference [50] reports, for example, on
a similar parametrization for a different control problem, and
the statistically best performance for Nelder-Mead was lim-
ited to F ≈ 0.9 at only M ≈ 20 (the performance deteriorated
for higher M). Results in the same parametrization obtained
by gradient-based means showed statistically, however, that
roughly a factor of 2–3 more components were at minimum
required to resolve F = 0.99 controls. A similar number of
components was needed in Ref. [12]. Assuming that M ≈ 20
is a reasonable general guideline for Nelder-Mead’s maximum
basis size leaves only the lowest L = M/2 ≈ 10 harmonic
frequencies for the expansion in Refs. [21,22]. The spectral
cutoffs [80] in Fig. 5(b) show that this is insufficient to repre-
sent the control structure yielding F = 0.99 from Sec. II C,

and roughly a factor of 5 more frequency components are
needed.

The initial practicality of restricting the search space to a
limited set of basis functions such as Fourier components may
therefore not be ideal because there is no guarantee that the
ultimately best solutions are captured by the parametrization.
A typical extension known as dressed-CRAB (dCRAB) [81]
attempts to remedy this phenomenon by drawing a new set of
basis functions, e.g., by sampling different random frequency
offsets for the Fourier components. This can be expected to
work reasonably well only if the overall parametric structure
can capture the solutions. In this case, however, a signifi-
cant increase in the spectral content is needed to produce
the structure in Sec. II C. This cannot be accounted for by
small perturbations around a limited number of low har-
monic frequencies. The Fourier CRAB can only attain the
required control complexity by increasing the number of com-
ponents L, but this is at odds with Nelder-Mead requiring a
small number of optimization parameters. A derivative-free
Nelder-Mead with a standard Fourier CRAB is thus likely
prohibited in identifying the high-fidelity optimal controls in
Sec. II C.

The discussion above highlights the potential drawbacks
of preemptively choosing a parametrization. It does not im-
ply that parametrization are always detrimental. For a given
parametrization, however, we expect the gradient-based up-
date rule in Eq. (10c) to statistically yield better results than
a gradient-free update rule in the ideal open-loop context [50]
(the opposite may be true in the closed-loop context and this
leads into their potential unification discussed in Sec. III).
It is also straightforward to calculate exact gradients with
and without parametrizations for ρ and η observables in
Eqs. (13) and (14). Since these observables are much more
lenient than fidelity, it is expected that ρ = 10−3 and η =
10−1 solutions can be found at significantly reduced process
durations, but that these will not correspond to high-fidelity
solutions.

Despite the potential issues encountered by Nelder-Mead,
it is quite clear that the optimized solutions in Refs. [21,22]
improve significantly on both the observable metrics and
transfer times compared to adiabatic solutions. This fact
can be interpreted based on the present analyses as follows.
Recall that the control strategies were characterized by a
predominantly linear sweep followed by a number of bangs
where a lower number corresponds to lower durations and
fidelity. Fewer bangs suggest that the full control requires
fewer spectral components for a faithful representation. This
implies a more convenient situation for Nelder-Mead with
a low-dimensional Fourier CRAB. Indeed, the smooth and
monotonic controls in Refs. [21,22] also consist roughly of
a linear sweep followed by a very steep rise that may be inter-
preted as the beginning of a bang. The results of Refs. [21,22]
thus appear consistent with the single bang strategy which is
associated with fidelities on the order of mid tens of percent.
Given the spread in Fig. 5(a), such fidelities could reasonably
well correspond to the optimized observable values ρ and η

reported in Refs. [21,22].
In conclusion, the presented numerical studies indicate that

the exact gradient methodology of Ref. [58] is a promising
tool in the open-loop setting also for many-body systems.
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III. UNIFIED OPTIMAL CONTROL

The results presented in Sec. II focused solely on ideal
open-loop conditions. We now discuss the strengths and
weaknesses of open- and closed-loop optimization, and
how the former can be best utilized in prospective unified
frameworks.

A. Open loop

Model-based open-loop methodologies can draw on very
efficient derivative-based nonlinear optimization machin-
ery [56] and allows a large degree of numerical parallelization.
The produced controls are optimal with respect to the chosen
mathematical optimization objective Jtheory(u) which typically
contains contributions from both the quantum process and the
experimental constraints. An optimal control u∗ numerically
attained through this procedure can therefore only be expected
to be as good as the underlying model of the experimen-
tal reality, Jexperiment (u∗) � Jtheory(u∗), and the acceptance of
this potential performance degradation depends on the given
context. These modeling errors could originate from many
sources, for example, imperfect equipment fabrication, drift-
ing or fluctuating noisy signals, or nondeterministic run-to-run
system preparation. If these errors can be characterized as sta-
tistical uncertainties, one can endow the optimal controls with
robustness towards these by, e.g., ensemble optimization. This
places an increased emphasis on both gradient computation
speed and exactness. The exact gradient optimization applied
here addresses both these points and is therefore particularly
well suited for such extensions; see Ref. [58] for a more
detailed discussion.

Nevertheless, if the error sources are unknown and the
model cannot be sufficiently refined to an acceptable degree
then a u∗ found by open-loop control is inadequate.

B. Closed loop

The primary strength of closed-loop control lies in inte-
grating the experiment itself in the optimization objective.
This model-free approach allows Jexperiment (u) to be opti-
mized directly and robustness toward fluctuations is achieved
more naturally, given that they are not too large. Within this
paradigm, gradients can in principle be calculated by finite
differences but this is typically too impractical [82]. (This
is true regardless of how experimentally accessible the opti-
mized observable is, e.g., fidelity, density of defects or the
rescaled average variance in Sec. II). By instead employ-
ing derivative-free direct search approaches, requiring only
evaluation of Jexperiment itself, the numerical programming
effort is significantly reduced since it can be outsourced to
off-the-shelf black-box optimization implementations. These
approaches are enabled in large by the widely adopted CRAB
technique [54,73] discussed in Sec. II. By choosing an ap-
propriate set of functions, e.g., Fourier components where the
expansion coefficients play the role of optimization parame-
ters, the search space is both significantly reduced and focused
on certain realistic control shapes.

However, as also discussed in Sec. II, derivative-free meth-
ods are practically limited in the number of optimization
parameters, and this potentially obfuscates the ultimately

best implementable solutions. Additionally, parallelization is
greatly prohibited because the optimization relies on evaluat-
ing the cost on (possibly singular) experimental hardware.

C. Unified loop

Open- and closed-loop control thus have distinct and indi-
vidual advantages and disadvantages. The fundamental goal
of either approach is the same and combining these in a
complementary unified-loop approach appears sensible [83].
Such metaiterative techniques can be strengthened further by
also including model calibration [84].

We argue that an open-loop component is valuable even
in the simplest constellation. Derivative-based algorithms and
their parallelizable nature allow large-scale studies and, given
that they are sufficiently efficient and accurate, can lead to
the discovery of optimal control strategies [75]. Identification
of such general solution structures and associated physical
processes reveals a more complete characterization of a given
problem than any singular solution does, and these insights
can be used for choosing appropriate seeds (starting points for
the optimization) and parametrizations for Eq. (10b). Thus, if
the modeling is sufficient for correctly representing the opti-
mal strategy, it is of much less importance if any individual
control degrade in practice because the gap between theory
and experiment can be minimized in subsequent closed-loop
optimizations and calibrations.

As an example, the control strategies found in the Sec. II
structure are not a priori obvious. Like in the open-loop case,
an isolated derivative-free closed-loop effort using a stan-
dard [73] low-dimensional chopped Fourier parametrization
could not simultaneously capture both the linear and bang-
bang-like behavior. However, based on the strategy insights
achieved by the presented gradient open-loop efforts, one
could now, e.g., choose an appropriate reference ramp uref (t )
and { fl (t ; θ)}L

l=1 to be smoothed bangs where the optimiza-
tion parameters θ are the widths, positions, and heights of
these. It was also found that the optimal number of bangs
depended on T and this gives an idea of what L should be.
In addition to subsequent closed-loop optimization in this
refined parametrization, the gradient-based open-loop version
in Eq. (10c) may also prove useful in this paradigm.

This broadens the possibility of alternating between open-
and closed-loops as, e.g., proposed in Refs. [83,84].

IV. CONCLUSION

We applied a recently developed quantum optimal con-
trol methodology [58] to a representative example from the
class of very high-dimensional, many-body state transfer
problems described by MPS where exact diagonalization is
prohibited. Our methodology provides exact gradients by ex-
plicitly including in their analytical derivation the effect of
(1) Trotterizing the dynamics and (2) choosing a basis where
the control Hamiltonian is diagonal. This circumvents detri-
mental scalings with the Hilbert space dimensionality which
prohibit the use of other currently known exact gradients
in high-dimensional, e.g., many-body, systems. The gradient
computation time scales instead only with the time it takes to
solve the quantum dynamics, i.e., the fundamental operation
of any quantum control algorithm.
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The exact gradient optimizations lead to very high-fidelity
results for this class of problems (0.99–0.9999). An alterna-
tive type of solution for the |SF〉 → |Mott〉 transition was
also uncovered, a predominantly linear sweep across the
critical point of the phase transition followed by a vari-
able number of bangs (depending on the process duration).
These solutions remain hidden for the earlier gradient-free
approaches [21,22] since the employed CRAB parametriza-
tion cannot practically include a sufficient number of Fourier
components, i.e., have a high enough bandwidth, to re-
solve these overall shapes. A (small) CRAB parametrization
is a practical computational requirement for gradient-free
methods, but for gradient-based methods—once unencum-
bered from the aforementioned detrimental scalings—it is
a matter of choice which is free of principal basis size
limitations.

Direct quantiative comparisons to Refs. [21,22] were
somewhat hampered by the differences in the specific problem
formulations, e.g., choice of figure of merit, but the afforded
inferences are very encouraging. When the gradient is readily
available, gradient-based approaches are generally considered
favorable over gradient-free in the idealized open-loop setting
when all else is equal (figure of merit, control parametrization,
bandwidth limitation, etc.), and we expect that this would also
apply here given a more extensive investigation in a collated
numerical environment.

The documented efficiency over wide spans of Hilbert
space dimensionality (in Ref. [58] and here) suggests that the
methodology could be useful for future quantum optimization
tasks.

In discussing the role of open-loop methodologies as a
whole, we argued that they are particularly useful both for
initially identifying appropriate control subspaces for a CRAB
parametrization and, in conjunction with subsequent closed-
loop methods, may remain a relevant optimization paradigm
in the future.
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APPENDIX A: BOSE-HUBBARD MODEL IN
OPTICAL LATTICE

The Bose-Hubbard model in Eq. (1) can be realized in
a variety of physical platforms [31] and here we review the
standard treatment for a cubic optical lattice. We first specify
how the energetic parameters in Eq. (1) relate to the optical
trapping depths and the conversion between simulation and
laboratory timescales. These are then numerically calculated
for a set of experimental parameters.

We assume a simple cubic periodic lattice approximated
near the trap center by

V (r) ≈
∑

q=x,y,z

vq sin2 klq = Vx + Vy + Vz, (A1)

with Vq ≡ vq sin2 kq being the potential in q direction with
depth vq. Here, kl = 2π/λl = π/alat is the laser wave number,
λl is the laser wavelength, and alat is the lattice site separa-
tion. Thus, the potential is separable in all directions and we
may decompose arbitrary wave functions as ψ (r) = ψxψyψz.
In particular, we may focus on a single direction for the
single-particle stationary states. Choosing the x direction, we
write Ĥ1p

x φn
k (x) = En

k φn
k (x) where Ĥ1p

x is the single-particle
operator in the x direction, n is the band index, and kl � k �
kl defines the first Brillouin zone of quasimomentum with
intraequidistant spacing �k = 2π/L = 2π/(Nsalat ), where L
is the length of the chain. The Bloch wave expansion reads
φn

k (x) = eikxun
k (x), where un

k inherits the V periodicity. The
Fourier series for both quantities contain only a few terms
and substitution into the eigenproblem yields a particularly
small, simple system of equations for the Fourier expansion
coefficients of un

k [85]. After numerically obtaining φn
k (x) for

a given value of vx, the nth band Wannier state centered on
site i is defined by

wn,x(x − xi ) = 1√
N

first Brillouin∑
k

e−ikxiφn
k (x), (A2)

where xi = ialat and N is a normalization constant. To
progress, we make the standard assumptions that the lattice
has been loaded in the tube of sites defined by ri = (xi, 0, 0)
and that vy and vz are sufficiently deep to suppress all tun-
neling events in their respective directions and that tunneling
along x is nearest neighbor only. Additionally assuming that
only the n = 0 band is occupied in each direction (vi � 2ER)
and dropping the index, the bosonic field operator can be
expanded as �̂(r) ≈ ∑Ns

i=1 âxi,0,0 × wx(x − xi )wy(y)wz(z). In-
serting this expansion in the many-body Hamiltonian for a
dilute bosonic system [86], one obtains Eq. (1) by letting
âi ≡ âxi,0,0 and defining the constitutive relations

Jx(vx ) = −
∫ ∞

−∞
wx(x − xi )Ĥ

1p
x wx(x − xi+1)dx, (A3)

U (vx, vy, vz ) = g3D

∫
|wx(x − xi )wy(y)wz(z)|4dr, (A4)

where g3D = 4π h̄2as/m is the two-body collision coupling
strength, as = 101a0 the s-wave scattering length of Rubid-
ium 87, and a0 is the Bohr radius. Thus, for a cubic optical
lattice loaded with ultracold atoms, the energies are related
to the trapping depths vx, vy, vz through the Wannier states.
Note the integrals over y and z in Jx are equal to one due
to their normalization, and U factors into three independent
one-dimensional integrals. Both Jx and U nontrivially depend
on vx, and although we assume only 1D dynamics along the x
direction, the frozen out transverse y and z directions still im-
plicitly enter in U via the associated Wannier functions wy and
wz. With the constitutive equations in Eqs. (A3) and (A4), we
can map any un = U (tn)/Jx(tn) ramp into the corresponding
trapping depth vx(tn), as shown below.

The natural simulation timescales in Eq. (11a), ĤSI/Jx =
Ĥ , depend on the control. This can be seen by considering the
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nondimensionalized propagator,

Û = exp

(
−i

ĤSIδtSI

h̄

)
= exp

(
−i

ĤSI

Jx

{
Jxμtime

h̄

}
δtsim

)

= exp
(−iĤδtsim

) ⇒ μtime = h̄/Jx, (A5)

where time dependences have been omitted for clarity. These
are working equations corresponding to h̄ = 1 and where
δtSI = μtime × δtsim. Time steps expressed in SI units, δtSI, are
related to (constant) dimensionless simulation numbers δtsim,
through the timescale μtime = h̄/Jx(un) which depends on the
control value. In particular, the total duration of the transfer
process given in SI time is

TSI(u) = h̄δtsim

Nt −1∑
n=1

J−1
x (un), (A6)

i.e., the relevant timescales are given by the specific real-
ization of the physical platform and depends on the control
vector. Elsewhere in the paper, subscripts are dropped and
we write δt = δtsim and all quantities of time are implicitly
given in nondimensional simulation values unless followed by
a unit.

Experimental parameters

To enable a degree of quantitative comparison in the main
text, we consider the experimental lattice parameters given in
Ref. [22] as follows. A summary of our problem specification
compared to Refs. [21,22] is shown in Table I.

The lattice recoil energy is ER = h̄2π2/(2a2
latm) ≈

2.03 kHz × h, where m = 87 amu is the mass of rubidium
87 and alat is the lattice site separation. Additionally, h is
the Planck’s constant, and h̄ the reduced Planck’s constant.
We assume a lattice of wavelength λ = 1064 nm with lattice
spacing alat = λ/2 = 532 nm. The transverse trapping depths
are fixed at vy = vz = 20 ER and the |SF〉 → |Mott〉 transition
is defined for concreteness by

|ψini〉 = |SF〉 ≡ |GS; vx = 3ER〉 , (A7)

|ψtgt〉 = |Mott〉 ≡ |GS; vx = 13ER〉 , (A8)

where GS refers to the ground state at the specified longi-
tudinal depth vx. The phase transition is driven by varying
vx with the requirement that vx � 2 ER at all times to satisfy
the modeling assumptions in Eqs. (A3) and (A4). With this
choice of parameters, the constitutive equations between vx

and the energies U and Jx are calculated numerically and
shown in Fig. 6. The conversion to U/Jx for several relevant
depths vx are shown, e.g., at (vx )crit ≈ 4.5 ER that in Ref. [22]
corresponds to the critical point for the phase transition. At
this depth, we obtain (U/Jx )crit ≈ 3.4, which agrees with the
number stated in Ref. [22], and we consider this a verification
for our numerical calculation of Jx(vx ) and U (vx, vy, vz ).

APPENDIX B: MATRIX PRODUCT STATES

We briefly present the many-body ansatz of MPS, see
Ref. [87] for an excellent and more detailed introduction. We
then discuss a t-DMRG (time-dependent density matrix renor-

malization group) algorithm tailored to the necessary problem
representation to significantly accelerate computations.

The explosive growth of Hilbert space with the number
of constituents is well-known. This exponential scaling, how-
ever, is in a sense a convenient illusion since the majority of
physically relevant states occupy only a small corner of the
full Hilbert space [40]. These are usually characterized by low
entanglement, as measured, e.g., by entanglement entropy,
and includes ground states and reachable states from these
in finite time. Tensor networks and their bespoke algorithms
are capable of targeting this much reduced subspace with
subexponential resources [6,42,43]. The success of such ap-
proaches is owed to the fact that the size of the corner is
governed by favorable so-called area scaling laws [88] for
the entanglement entropy. Matrix product states, also known
as tensor trains, are the appropriate types of tensor networks
for 1D systems and their area scaling law is constant with the
number of constituents.

The general form of an MPS for a finite unclosed chain of
Ns constituents (sites) is

|ψ〉 =
∑

j1, j2,..., jNs

A j1 A j2 · · · A jNs | j1, . . . , jNs〉 , (B1)

where ji ∈ {1, 2, . . . , d} is the physical index (degree of free-
dom) for the ith constituent, d is the size of the local Fock
space, and A ji ∈ Cai−1×ai , where ai is the bond index with the
only requirement that the product of all the matrices yields
a scalar. The ansatz Eq. (B1) is simply a decomposition of
the expansion coefficient c j1, j2,..., jNs

tensor of rank Ns into
Ns rank-three tensors {Aji

ai−1,ai}Ns
i=1, which is always possible

by repeated singular value decomposition (SVD) or similar
and is in principle an exact representation. Properties of,
e.g., the SVD procedure, however, allows significant trunca-
tion of the matrix A ji dimensions associated with the bond
indices for low-entanglement states: singular values of the
SVD correspond to the expansion coefficients in the Schmidt
decomposition across a given bipartitioning of the system,
many of which are close to (or exactly) zero for states in the
small corner. Thus, we can choose to keep only singular values
larger than a given threshold smax and/or impose a maximum
number values D to keep, depending on the desired accuracy.
Even though the MPS is in practice not constructed directly
from the coefficients since it requires exponential amounts
of storage, virtually all basic MPS algorithms such as diag-
onalization (DMRG) and time evolution (t-DMRG) similarly
employ SVD (or QR) decompositions. This enables a natural
way of keeping resource consumption in check, typically by
specifying a given smax and/or D in advance.

In the present case of the Bose-Hubbard model Eq. (11a)
with unit filling, ji is the site occupation number and d =
Np = Ns where Np is the number of particles. The Hilbert
space dimension scales exponentially,

DH = (Ns + Np − 1)!

Np!(Ns − 1)!
, (B2)

which limits the computational feasibility of exact diagonal-
ization approaches to roughly Np = 10 − 13 with increasing
layers of analytical and numerical sophistication needed for
relatively small gains [74]. At such a low number of sites, the
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bulk of the system is constituted by only a relatively small
fraction of sites. Matrix product states, on the other hand, are
associated with polynomial scaling [40,42,87] and can com-
fortably extend this range into the low-to-mid tens of particles
in a time-dependent setting [21,22,89] or low hundreds in a
static setting [90].

t-DMRG for Bose-Hubbard Model

Time evolution is the fundamental operation for quantum
optimal control. For this reason, we present here a t-DMRG
variant similar to that in Ref. [91] tailored to the structure of
Eq. (11a) to speed up our computations.

We start by considering the Suzuki-Trotter expansion [58]
in Eqs. (10). Each term in the diagonal control Hamiltonian
commutes and we may write exactly

Û c/2
n = exp

(
−i

(
un

2

Ns∑
i=1

ĥU
[i]

)
δt

2

)
=

Ns∏
i

ÛU
n,[i], (B3)

where ÛU
n,[i] = exp(−iunĥU

[i]δt/4). For the drift Hamilto-
nian, we can apply the same technique as in standard
t-DMRG [61,87] for nearest-neighbor Hamiltonians to obtain
a first-order Suzuki-Trotter expansion with associated error
O(δt2),

Ûd = e−i(Ĥd
even+Ĥd

odd )δt ≈ e−iĤd
evenδt e−iĤd

oddδt

=
(

Ns−1∏
i even

Û Jx
[i,i+1]

)(
Ns−1∏
i odd

Û Jx
[i,i+1]

)
, (B4)

where Û Jx
[i,i+1] = exp(−iĥJx

[i,i+1]δt ). The enabling step in this
expansion is to group even and odd terms:

Ĥd = Ĥd
even + Ĥd

odd =
Ns−1∑
i even

ĥJx
[i,i+1] +

Ns−1∑
i odd

ĥJx
[i,i+1]. (B5)

Although [Ĥd
even, Ĥd

odd] �= 0 causes the O(δt2) error, each term
has total internal-commutativity, allowing the subsequent ex-
act product form Eq. (B4). Combining the above expressions
and moving each individual even (odd) ĥJx

[i,i+1] to the left
(right) until they meet a noncommutative operator, we obtain
for even Ns

ÛST
n ≈

Ns∏
i

ÛU
n+1,[i]

Ns−1∏
i even

Û Jx
[i,i+1]

Ns−1∏
i odd

Û Jx
[i,i+1]

Ns∏
i

ÛU
n,[i]

= ÛU
n+1,[1]

(
i even∏
Ns−1

ÛU
n+1,[i]ÛU

n+1,[i+1]Û Jx
[i,i+1]

)

× ÛU
n+1,[Ns]

(
Ns−1∏
i odd

Û Jx
[i,i+1]ÛU

n,[i+1]ÛU
n,[i]

)

≡ ÛU
n+1,[1]

(
i even∏
Ns−1

ÛUUJx
n+1,[i,i+1]

)
(B6)

× ÛU
n+1,[Ns]

(
Ns−1∏
i odd

Û JxUU
n,[i,i+1]

)
(B7)

≡ ÛU
n+1,[1] Ûbacksweep ÛU

n+1,[Ns]Ûforwardsweep. (B8)

FIG. 7. Example tensor network diagram [87] showing the full
calculation |ψn+1〉 = ÛST

n |ψn〉 = Û c
n+1Ûd Û c

n |ψn〉 (B8) due to the
Hamiltonian in Eq. (11a) for Ns = 4.

If Ns is odd, replace ÛU
n+1,[Ns] → ÛU

n,[Ns] in the final expres-
sions. In the language of MPS, application of one-site ÛU

n,[i]

gates and two-site gates Û Jx
[i,i+1] can be done very efficiently

when exploiting left- and right-normalization of the site ten-
sors. The one-site gates are particularly cheap to compute
because ĥU

[i] is diagonal. The two-site gates, which would
otherwise entail the most expensive operation, are time-
independent and can be precomputed, stored on the disk,
and be loaded into memory on runtime. Additionally, the
grouping of product triples, e.g., Û JxUU

n,[i,i+1], acting only on
nearest-neighbor pairs of indices [i, i + 1] provides a way of
reducing overhead in the tensor network contraction ÛST

n |ψ〉
by advancing the central site (gauge) of the MPS: apply the
product of triples and contract the site tensors in a forward
sweep over odd i (B7) and then in a backward sweep over
even i (B6) as illustrated in Fig. 7. A more technical detailing
is as follows.

The site tensors (purple nodes) are connected by auxiliary
bond indices (black solid horizontal lines). The one- and two-
site gates (gray nodes, time index suppressed) come in triples
(green boxes) and are applied to physical indices of the site
tensors (black solid vertical lines), in the order indicated by
the thick teal arrowed line according to the sweeping order.
The beginning (end) is marked by a black dot (cross), and
the dashed line separates the forward sweep with un (above
the line) from the backward sweep with un+1 (below the line).
Application of product triple i in the forward sweep entails the
following:

(1) Contract the two site tensors with physical indices i
and i + 1 over their common bond index into a temporary two-
site tensor.

(2) Apply the two one-site gates followed by the two-site
gate.
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(3) Split the temporary two-site tensor by SVD back into
two individual site tensors with the central site (gauge) moved
to i + 1.

(4) Shift the gauge by SVD an additional site to the right
such that the central site is at i + 2.

Each arrow tip demarcates the gauge position during
the sweeps, where sites to the right (left) are right (left)-
normalized, with the exception that the next site intersecting
the teal line is the central site. After applying the first leftover
one-site gate, the backward sweep is similarly performed with
the following modifications: (1) the site indices are i − 1 and
i, (2) the order of gate application reversed, (3) the central
site is placed on i − 1, and (4) the central site is gauged to
i − 2. Finally, the second leftover one-site gate is applied and
this completes the time step. The same procedure with new
control values un+1 and un+2 can subsequently be applied
to obtain |ψn+2〉 = ÛST

n+1 |ψn+1〉. Implementing the backward
propagation |ψn〉 = ÛST†

n |ψn+1〉 is similar, but with reversed
arrow tips and order of application.

APPENDIX C: OPTIMIZATION DETAILS

Our MPS computations are performed using the ITENSOR

library [92]. We use an auxiliary dimension of D = 200, a
singular value threshold of smax = 10−12, and a reduced local
Fock space d = 5 (higher local occupation numbers do not
contribute significantly to the dynamics due to the exponen-
tial on-site energy penalty). For reference, the benchmark
Refs. [21,22] used D � 100 and D � 24, smax = 10−5, re-
spectively, corresponding to less computationally expensive,
more approximate, low-entanglement representations of the
model. We use the DMRG algorithm implemented in ITENSOR

to obtain the initial and target states.
For the given system size of Ns = Np = 20, the durations

required to approach the minimal duration for fidelity F =
0.99, T F=0.99

min , with sufficiently low Trotterization error neces-
sitates about Nt = 350 − 450 time steps for time steps of size
δt = 0.025. To accelerate the optimizations, we take δt to be
a homotopy, or continuation, parameter [58]: we sequentially
optimize on increasingly fine grained time grids, specifically
δt = 0.1 → 0.05 → 0.025. By halving the values, the new
grid points coincide with the old but with doubled resolution
as each newly inserted point is set to the value of old point im-
mediately prior corresponding to Ûn(δt ) ≈ Ûn(δt/2)Ûn(δt/2),
where Ûn is the time evolution operator at time index n. The
benefit is that the coarser optimizations can yield relatively
rapid fidelity improvements since fine grained resolution is
typically not needed for the overall shape of the solution.
Care should be taken not to spend too much time on these,
since they are not fully coincidental with the final optimization
landscape [58]. Note that this technique is enabled by the
exactness of the Trotterized gradient not being dependent on
δt which is not the case for the exact propagator gradient with
finite summation cutoffs, see Ref. [58]. We stress that the
exact derivative in Eq. (10a) is the main workhorse whereas
the homotopy and time evolution in Appendix B are secondary
but effective acceleration techniques.

The SI timescaling in Eq. (A6) depends on J−1
x and

thus the control value. Figure 6 shows that larger U/Jx

values correspond to longer SI times. Since we desire the

fastest possible optimal controls in real time, we place an
upper bound corresponding to vx � 13.5 ER during optimiza-
tion to limit this artifact of the nondimensionalization. We
also add slight preference toward lower control values by
introducing a regularization cost term, Jα , for the control
amplitude [Eq. (A28) in Ref. [58]]. Due to the limited
bandwidth of experimental electronics we also add a regu-
larization cost term, Jγ , for the temporal derivative of the
control, shifting preference toward smoother controls [Eq.
(A30) in Ref. [58]]. The strength of these terms are con-
trolled by the parameters α, γ � 0, respectively, and typically
α, γ ∼ 10−7 − 10−10. The total optimization objective is
thus

J (u) = JF (u) + Jα (u) + Jγ (u). (C1)

The derivatives for these cost terms are calculated in the
Appendix of Ref. [58] and are included in the optimization.

For the optimization [i.e., search direction and step size line
searching in Eq. (6)], we employ the nonlinear interior-point
algorithm implemented in IPOPT [93] by supplying the exact
derivatives. Briefly, interior-point methods can handle control
constraints by including them explicitly when solving for the
search direction, which in our case is 1.32 � un � 40.18 for
all time indices n. Being a second-order derivative method,
the search direction includes the Hessian or a gradient-based
approximation thereof (BFGS). We found the exact Hessian
calculation [58] (timescale of days per iteration) for the prob-
lem under consideration to be outside our time budget even
when including the homotopy, and therefore opted for the
BFGS approach (timescale of hours per iteration). The seeds
(initial points for the optimization) were optimized in parallel
on individual cores in a computer cluster. The results reported
in the main text were allotted roughly between three to seven

FIG. 8. Optimization trajectories (5%, 50%, 95%) quantiles for
1 − F as a function of (a), iteration, and (b), optimization wall-clock
time for the 100 seeds at T = 11 in Fig. 1(a). The vertical lines mark
changes in the δt homotopy parameter.
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days of optimization time. Our seeding strategy is based on an
exponential reference control overlaid with a sum of random
Fourier components. As a verification for our implementation
of, e.g., the exact analytical derivatives (gradient and Hessian)
and time evolution, we compared the analytical derivatives to
their finite difference counterpart and found that they agreed
to the same precision as in Ref. [58].

Figure 8 shows optimization trajectory statistics. Changes
in the δt homotopy parameter manifest as kinks at 50 and 100
iterations due to δt changes 0.1 → 0.05, and 0.05 → 0.025.
A dip in infidelity is seen at the first handover as the in-
creased time resolution of the control allows more complex
and fine-tuned dynamics. The homotopy approach acceler-
ates the computations and roughly doubles the number of
iterations achieved within the allocated time budget without
sacrificing performance since the infidelity iteration trajec-
tories follow roughly the same exponential law for all three
homotopy parameter regions.

FIG. 9. The 1 − F (T ) results from Fig. 1 plotted against SI in-
stead of simulation units.

Figure 9 shows the results in Fig. 1 plotted against their SI
duration using Eq. (A6).
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