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General Wick’s theorem for bosonic and fermionic operators
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Wick’s theorem provides a connection between time ordered products of bosonic or fermionic fields, and their
normal ordered counterparts. We consider a generic pair of operator orderings and we prove, by induction, the
theorem that relates them. We name this the general Wick’s theorem (GWT) because it carries Wick’s theorem
as special instance, when one applies the GWT to time and normal orderings. We establish the GWT both
for bosonic and fermionic operators, i.e., operators that satisfy c-number commutation and anticommutation
relations respectively. We remarkably show that the GWT is the same, independent of the type of operator
involved. By means of a few examples, we show how the GWT helps treat demanding problems by reducing the
amount of calculations required.
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I. INTRODUCTION

Ever since the advent of quantum mechanics, various rules
of operator orderings have been considered, e.g., in canonical
quantization [1], phase space representation [2], field theory
[3–7], quantum optics [8], and statistical physics [9]. Time
ordering T and normal ordering N of quantized fields φ̂(x)
are paradigmatic in relativistic quantum field theory. These or-
derings are related by Wick’s theorem [5], whose conception
proved crucial essentially in any area of theoretical physics,
because it allows for calculating the matrix elements of the
(time-ordered) evolution operator. Wick’s theorem for expo-
nential test functionals of a free bosonic or fermionic field
φ̂(x) can be written into the compact form [10],

T [e
∫

λ(x)φ̂(x)d4x] = eCN [e
∫

λ(x)φ̂(x)d4x], (1)

where λ(x) is an arbitrary c-number field and C is its quadratic
functional

C = 1

2

∫∫
C(x, y)λ(x)λ(y)d4xd4y , (2)

where C(x, y) is the kernel of Wick’s contraction:

C(x, y) = T φ̂(x)φ̂(y) − N φ̂(x)φ̂(y) ≡ (T − N )φ̂(x)φ̂(y).
(3)

Two further forms [6,7] of Wick’s original theorem were
proven for arbitrary functionals F instead of the exponential
test functionals in Eq. (1):

T [F (φ̂)] = N [F (φ̂′)], (4)

T [F (φ̂)] = e�N [F (φ̂)], (5)
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where φ̂′(x) = φ̂(x) + ∫
C(x, y) δ

δφ(y) d
4y, and � is the

quadratic form of the functional derivatives:

� = 1

2

∫∫
C(x, y)

δ

δφ(x)

δ

δφ(y)
d4xd4y . (6)

Wick’s seminal work was extended in different ways, so
the literature of “generalized Wick’s theorem” includes very
different kinds of generalizations, such as spin chains [11,12],
generalized normal order in quantum chemistry [13,14], ther-
mal field theory [15–17], phase-space representation of time
ordering against a generic ordering [18,19], nonequilibrium
Green’s functions [20], and multiphonon theory [21].

We follow the direction first taken in Ref. [22], where it
was suggested that the theorem in Eqs. (1)–(3) still holds if T
and N are replaced by any pair O, O′ of generic orderings.
With these replacements, Eq. (1) is called the general Wick’s
theorem (GWT), while Eq. (3) defines the general contraction.
A tentative proof of GWT for bosonic operators was provided
in Ref. [22], which was circumstantial but gave a strong indi-
cation of its correctness.

In this paper, not only do we confirm the correctness of
the intuition in Ref. [22] for GWT with bosonic operators, but
also our major result is the unique form of GWT for the pair
of generic orderings for bosonic and fermionic operators to-
gether. Precisely, we consider the forms (4) and (5) of Wick’s
theorem, and we prove the ultimate form of GWT:

O[F (φ̂)] = e�O′[F (φ̂)],

C(x, y) = (O − O′)φ̂(x)φ̂(y),
(7)

valid no matter if φ̂’s are bosonic or fermionic or both to-
gether.

The paper is organized as follows: In Secs. II and III we
respectively introduce the definitions of operator orderings
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and contractions. In Sec. IV we prove the GWT for bosonic
operators by induction, while in Sec. V we outline the proof
for fermionic operators. In Sec. VI we provide two applica-
tions of the GWT, namely to the Baker-Campbell-Hausdorff
formula and to quadratic forms, and in Sec. VII we draw our
conclusions.

II. OPERATOR ORDERINGS

We consider a set of operators φ̂α with α belonging to some
ordered index set �. An ordering operator O rearranges the
elements of an input product of operators, to output a suit-
ably ordered one. Orderings O can be bosonic or fermionic,
defined by

O[φ̂1 . . . φ̂n] = (±1)Pφ̂p1 . . . φ̂pn , (8)

when for simplicity’s sake the index set � consists of inte-
gers. Here P is the number of permutations that bring the
initial string of indexes 1 . . . n to the ordered one p1 � p2 �
· · · � pn. The signature ±1 distinguishes bosonic orderings
(+1) from fermionic ones (−1). Accordingly, fermionic or-
derings are sensitive to the order of the operators in the
input string, but bosonic orderings are not. By bosonic and/or
fermionic operators, we mean any set of operators satisfy-
ing c-number commutation and/or anticommutation relations:
[φ̂α, φ̂β]± ∈ C (where [·, ·]− = [·, ·] and [·, ·]+ = {·, ·}). The
identity (8) can be trivially extended to composite indices,
the paradigmatic example being the time ordering of fields
φ̂(x) = φ̂(t, x). We take the occasion to clarify an issue that
is often overlooked. In our definition (8), we follow Wick,
who observed that validity of his theorem required the in-
troduction of the sign (−1)P for fermionic orderings T ,N
[5]. So, Wick’s time ordering of fermionic fields differ from
Dysons’s [4], which does not contain the sign (−1)P. Accord-
ingly, fermionic Wick’s theorem in general cannot be applied
to Dyson-ordered evolution operators for fermionic systems
(see, e.g., Ref. [23]). In quantum electrodynamics, this con-
stitutes no issue because the electromagnetic field couples to
the current which is local quadratic in the fields: Dyson’s and
Wick’s orderings coincide in this case.

When we talk about a different ordering O′ of the same
product φ̂1 . . . φ̂n, it may be a different permutation of the field
operators, but it will be more general than that. We assume that
the operators φ̂α are linear combinations of operators ϕ̂k , with
k possibly belonging to some different index set �′,

φ̂α = Lαkϕ̂k , (9)

where and henceforth we assume the Einstein convention for
repeated indexes, with the additional condition that sums al-
ways run on all the elements of the respective index sets. Here
we assume that � and �′ are discrete sets but the following
analysis holds true invariably for continuous sets, provided
that sums are replaced by integrals, functions become func-
tionals, matrices become kernels, and partial derivatives are
replaced by functional derivatives. We postulate that O′ orders
the products of the operators ϕ̂k . To be as general as possible,
O orders (products of) φ̂α’s, cf. Eq. (8), but it does not order
ϕ̂k’s. Similarly, O′ orders ϕ̂k’s, but does not order φ̂α’s. A sim-
ple example to keep in mind is {φ̂} = q̂, p̂, O = qp ordering,
{ϕ̂} = a, a†, O′ = N . Still, we define O′ ordering of the φ̂’s

indirectly, using the expansion (9):

O′[φ̂α1 . . . φ̂αn ] ≡
(

n∏
i=1

Lαiki

)
O′[ϕ̂k1 . . . ϕ̂kn ] . (10)

The assumption of the linear relationship (9) allows for a
simpler and more transparent proof of GWT compared to
the tentative proof in Ref. [22]. Then the result can shortly
be extended for the case of the more generic, implicit linear
relationship [cf. (14)].

III. CONTRACTIONS

Given the pair of orderings O,O′ interpreted in Sec. II, we
define the matrix of their contraction:

Cαβ = (O − O′)φ̂αφ̂β, (11)

which is symmetric [antisymmetric] if the φ̂α’s are bosonic
[fermionic], respectively. Using Eqs. (9) and (10), we can
detail the right-hand side as follows:

Cαβ = θl�kLαkLβl [ϕ̂k, ϕ̂l ]± − θβ�α[φ̂α, φ̂β]±

= (θα�β − θk�l )[φ̂α, φ̂β]± , (12)

where we introduced the step function: θβ�α = 1 if β � α and
zero if α � β. About our compact notations in the second
line, we stress that O′ ordering of the operators φ̂α and φ̂β

refers to their expansion (9) in terms of the operators ϕ̂k and
ϕ̂l , respectively. When O = T and O′ = N to order quantum
fields φ̂(x) the index set � = {x} becomes continuous, and
our generalized contraction (11) yields Wick’s contraction (3)
as it should. Along our forthcoming derivations, we need the
matrix C̃kl of contraction in terms of the ϕ̂k’s:

C̃kl = (O − O′)ϕ̂kϕ̂l , (13)

satisfying LαkLβl C̃kl = Cαβ .
Contractions exist also when the operators φ̂α cannot be

expressed by linear combinations of the ϕ̂k’s like in Eq. (9)
but the following implicit linear relationship with some coef-
ficients λα and λ̃k does exist for them (cf. Ref. [22]),

λαφ̂α = λ̃kϕ̂k (≡ X̂ ), (14)

where the last identity simply defines the operator X̂ . This
is essentially a generalization of (9), retaining the minimal
requirement of linear relationship between the O-ordered φ̂α’s
and the O′-ordered ϕ̂k’s. A simple example to keep in mind is
{φ̂} = { f̂1 + f̂2, f̂3}, {ϕ̂} = { f̂1, f̂2 + f̂3}; a relation of the type
(9) cannot be established between φ̂ and ϕ̂, but (14) holds.
The contraction between O and O′ can now be established
in two steps. First, we consider the contraction between the
trivial “ordering” of the lonely operator X̂ and the O ordering
of the φ̂α’s. Note that that X̂ = λαφ̂α , which corresponds to
Eq. (9), so the previously defined contraction (11) applies, and
it applies similarly between the trivial ordering of X̂ and the
O′ ordering of the ϕ̂k’s:

CXφ = X̂ 2 − OX̂ 2, (15)

CXϕ = X̂ 2 − O′X̂ 2. (16)
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Second, we obtain the contraction between O and O′:

C = CXϕ − CXφ = (O − O′)X̂ 2 = Cαβλαλβ. (17)

In the special case when the explicit relationship (9) holds,
the above equation determines the matrix Cαβ uniquely and
in accordance with (11); otherwise we shall rely on the scalar
contraction C.

IV. BOSONIC GWT

We aim at proving that the O ordering of any function F of
operators φ̂α , with shorthand notation F (φ̂), can be rewritten
as the O′ ordering of the same function of new operators φ̂′

α ,
namely

O[F (φ̂)] = O′[F (φ̂′)] , (18)

with

φ̂′
α ≡ φ̂α + Cαβ∂β , (19)

Cαβ is the matrix of contraction (11), and ∂β = ∂/∂φβ is a
standard c-number derivative (see the Appendix for further
details on the specific meaning of such derivatives). On the
right-hand side of GWT (18) it is to be understood that before
the O′ ordering we express the operators φ̂′

α in terms of the
operators ϕ̂′

k; cf. (10). Exploiting (9), we can write

φ̂′
α = Lαkϕ̂

′
k, (20)

ϕ̂′
k = ϕ̂k + C̃kl ∂̃l , (21)

with notation ∂̃l = ∂/∂ϕl , and where we recall that the matrix
C̃kl satisfies LαkLβl C̃kl = Cαβ . Since any operator functional
can be expanded in power series, we will work with products
of operators. We prove the GWT by induction: We assume
that

O
[

n∏
i=1

φ̂αi

]
= O′

[
n∏

i=1

φ̂′
αi

]
(22)

holds up to a given n (the cases n = 0 and n = 1 are trivially
true), and we prove that

O
[
φ̂α

n∏
i=1

φ̂αi

]
= O′

[
φ̂′

α

n∏
i=1

φ̂′
αi

]
. (23)

Let us assume that O orders the operators φ̂ with decreasing
index from left to right, i.e., αn � · · · � α1:

O
[

n∏
i=1

φ̂αi

]
= φ̂αn . . . φ̂α1 , (24)

We can thus rewrite the left-hand side of Eq. (23) as follows:

O
[
φ̂α

n∏
i=1

φ̂αi

]
= φ̂αn . . . φ̂α j+1 φ̂αφ̂α j . . . φ̂α1 , (25)

where αn � · · · � α j+1 � α � α j � · · · � α1. In order to be
able to exploit Eq. (22), we need to bring φ̂α outside the
product, and we arbitrarily choose to do so by moving φ̂α to
the left (needless to say, the GWT can be equivalently proved

also by moving φ̂α to the right). This can be done by exploiting
the following identity:

φ̂αn . . . φ̂α j+1 φ̂αφ̂α j . . . φ̂α1 = φ̂αn . . . φ̂αφ̂α j+1 φ̂α j . . . φ̂α1

− [φ̂α, φ̂α j+1 ]∂α j+1O
[

n∏
i=1

φ̂αi

]
,

(26)

where α j+1 is the label of α’s left neighbor, and Einstein
summation does not apply to it. When iterated, this identity
leads to

O
[
φ̂α

n∏
i=1

φ̂αi

]
= φ̂α O

[
n∏

i=1

φ̂αi

]

− θβ�α[φ̂α, φ̂β]∂β O
[

n∏
i=1

φ̂αi

]
, (27)

where the Einstein convention is reactivated.
We apply Eq. (22), i.e., GWT up to order n, yielding

O
[
φ̂α

n∏
i=1

φ̂αi

]
= φ̂′

α O′
[

n∏
i=1

φ̂′
αi

]
− Cαβ∂βO′

[
n∏

i=1

φ̂′
αi

]

− θβ�α[φ̂α, φ̂β ]∂β O′
[

n∏
i=1

φ̂′
αi

]
, (28)

where we inserted φ̂α = φ̂′
α − Cαβ∂β . Let us concentrate on

the first term on the right-hand side, onto which we exploit
Eq. (20) in order to prepare for O′ ordering:

φ̂′
α O′

[
n∏

i=1

φ̂′
αi

]
= Lαk

[
n∏

i=1

Lαiki

]
ϕ̂′

kO′
[

n∏
i=1

ϕ̂′
ki

]
. (29)

The operator part on the right-hand side can further be written
as

ϕ̂′
kO′

[
n∏

i=1

ϕ̂′
ki

]
= O′

[
ϕ̂′

k

n∏
i=1

ϕ̂′
ki

]

+ θl�k[ϕ̂′
k, ϕ̂

′
l ]∂̃lO′

[
n∏

i=1

ϕ̂′
ki

]
, (30)

so that by reusing Eq. (20), Eq. (29) becomes

φ̂′
α O′

[
n∏

i=1

φ̂′
αi

]
= O′

[
φ̂′

α

n∏
i=1

φ̂′
αi

]

+Lαkθl�k[ϕ̂′
k, ϕ̂

′
l ]∂̃lO′

[
n∏

i=1

φ̂′
αi

]
. (31)

With this, we can write Eq. (28) into this form:

O
[
φ̂α

n∏
i=1

φ̂αi

]
= O′

[
φ̂′

α

n∏
i=1

φ̂′
αi

]
+ DO′

[
n∏

i=1

φ̂′
αi

]
, (32)

where D is the following differential operator:

D = Lαkθl�k[ϕ̂′
k, ϕ̂

′
l ]∂̃l − Cαβ∂β − θβ�α[φ̂α, φ̂β ]∂β. (33)

At this stage, we substitute the identity ∂̃l = Lβl∂β and,
invoking the definition (21), we can replace [ϕ̂′

k, ϕ̂
′
l ] =
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[ϕ̂k, ϕ̂l ] + C̃kl − C̃lk = [ϕ̂k, ϕ̂l ], yielding

D = [LαkLβlθl�k[ϕ̂k, ϕ̂l ] − θβ�α[φ̂α, φ̂β ] − Cαβ]∂β

= [(θα�β − θk�l )[φ̂α, φ̂β ] − Cαβ]∂β . (34)

Induction is done and the GWT (18) is proven provided D
vanishes, and this happens if we use the form (12) with com-
mutator of the contraction Cαβ . The GWT of (18) and (19) is
thus proven.

Now we turn toward the proof of the ultimate form (7) of
the GWT. There is a transformation of equivalence between
each φ̂′

α and φ̂α:

φ̂′
α = e�φ̂αe−� , (35)

where

� = 1
2Cαβ∂α∂β . (36)

Equation (35) can be confirmed, e.g., by Taylor expanding the
right-hand side:

φ̂α + [�, φ̂α] + 1
2 [�, [�, φ̂α]] + · · · , (37)

and observing that [�, φ̂α] = Cαβ∂β , while higher order com-
mutators are zero. This equivalence transformation allows us
to write the GWT (18) in the following way:

O[F (φ̂)] = e�O′[F (φ̂)] , (38)

where e−� was dropped because the derivatives have nothing
to act upon.

The above proofs of the two forms (18) and (38) of bosonic
GWT required the explicit linear relationship (9). Here we are
going to show that a similar GWT exists if (9) does not hold,
but the weaker, implicit linear relationship (14) does. For this
case, we defined the contraction C = (O − O′)X̂ 2 by Eq. (17).
The GWT expresses O ordering of a function F in terms of
O′ ordering of F and therefore it must be possible to express
F both in terms of φ̂ and of ϕ̂. Accordingly, here we need to
restrict the functions F to the class F (λαφ̂α ) = F (X̂ ), that is
an unavoidable compromise when (9) does not hold.

We are going to derive the form (38) of GWT between
orderings O and O′ in two steps, according to those in Sec. III.
First, since X̂ is a linear combination of the φ̂α’s, as well
as of the ϕ̂k’s, we can apply GWT (38) between the trivial
“ordering” of the lonely operator X̂ and the O ordering of the
φ̂α’s, and between X̂ and the ϕ̂k’s as well:

F (X̂ ) = e
1
2 CXφ∂2

X O[F (X̂ )],

F (X̂ ) = e
1
2 CXϕ∂2

X O′[F (X̂ )]. (39)

Second, we get from here the GWT, extended from the case
(9) to (14):

O[F (X̂ )] = e
1
2 C∂2

X O′[F (X̂ )] . (40)

Note that invoking the second expression of C in (17) and
using the chain rule of derivatives, we rewrite Eq.(40) as
follows:

O[F (X̂ )] = e
1
2 Cαβ∂α∂βO′[F (X̂ )], (41)

which is the same form (36)–(38) that we derived for the
direct relationship (9) except for the mentioned restriction
on the form of the function F . We remark that if relation

(14) holds for different sets (labeled by superscript i) {λi
α},

then the GWT (41) holds for F (X̂ 1, X̂ 2, . . . ) with X̂ i = λi
αφ̂α .

Eventually, if Eq. (14) holds for any choice of {λi
α}, then (9)

becomes existing and (41) yields Eq. (38), valid for F (φ̂)
without restriction.

We add, for completeness, that on exponential test func-
tions F (X̂ ) = eX̂ , our Eq. (41) yields

O[eX̂ ] = e
1
2 CαβλαλβO′[eX̂ ] (42)

which is the form of GWT proposed in Ref. [22] to generalize
the form (1)–(3) of Wick’s theorem.1

V. FERMIONIC GWT

The advantage of the functional approach is that it allows
to extend the GWT to fermionic systems. Namely, we aim at
proving the GWT [(18) and (19)], where now φ̂’s (and ϕ̂’s)
are fermionic operators (in the sense defined in Sec. II). We
therefore retain the same setting as Secs. II–IV, in particular
Eqs. (9), (12), (22), and (24), and we prove the GWT by
induction. We recall that fermionic orderings depend on the
initial order of the operators. In what follows, we nonetheless
retain the simple notation

∏
i φ̂i for products of fermionic

operators, which now denotes a definite initial ordering whose
choice is arbitrary, and anyway cancels from the GWT. The
equation corresponding to Eq. (25) for fermions reads

O
[
φ̂α

n∏
i=1

φ̂αi

]
= (−1)n− j φ̂αn . . . φ̂α j+1 φ̂αφ̂α j . . . φ̂α1 , (43)

where the factor (−1)n− j is due to the fact that the fermionic
ordering brings a factor (−1) for each permutation. In order
to move φ̂α to the left we need to rewrite the right-hand side
of this equation by iterating the following identity:

φ̂αn . . . φ̂α j+1 φ̂αφ̂α j . . . φ̂α1

= −φ̂αn . . . φ̂αφ̂α j+1 φ̂α j . . . φ̂α1

− (−1)n− j{φ̂α, φ̂α j+1}∂α j+1O
[

n∏
i=1

φ̂αi

]
, (44)

where the partial derivative is the standard Grassmann deriva-
tive, detailed in the Appendix. We can thus rewrite Eq. (43) as
follows:

O
[
φ̂α

n∏
i=1

φ̂αi

]
= φ̂α O

[
n∏

i=1

φ̂αi

]

− θβ�α{φ̂α, φ̂β}∂β O
[

n∏
i=1

φ̂αi

]
, (45)

which confirms that the initial ordering of operators is not
influent for the proof of GWT. Remarkably, this equations has
exactly the same structure as Eq. (27) for bosons. Accordingly,
from here the proof of the fermionic GWT follows the lines of

1We take the opportunity to correct two typos in Ref. [22].
Expression (6) of contraction C should contain a factor 1/2
in front of the integral. The contraction (42) should read Ct =
(ih̄/m)

∫ t
0 dτ

∫ τ

0 ds τFτ Fs.
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the bosonic one and we will not repeat it here. The final result
is given by Eqs. (18) and (19) with the anticommutator form
(12) for the contraction. We further remark that the form (38)
of GWT holds also for fermions, with the same definition (36)
for �.

An explicit form of GWT for fermionic fields ψ̂ and
ψ̂† can be easily obtained by considering the set {φ̂α}2n

α=1 =
{ψ̂1, ψ̂

†
1 , . . . ψ̂n, ψ̂

†
n }. Since {ψ̂α, ψ̂β} = {ψ̂†

α, ψ̂
†
β} = 0 and

{ψ̂α, ψ̂
†
β} ∈ C, by defining

C̄αβ = (θα�β − θk�l ){ψ̂α, ψ̂
†
β} , (46)

we observe that Cαβ = 0 when α and β are both even or odd;
Cαβ = C̄αβ when α is odd and β is even; Cαβ = −C̄αβ when α

is even and β is odd. Therefore, we can express the GWT for
fermionic fields as follows:

O[F (ψ̂, ψ̂†)] = O′[F (ψ̂ ′, ψ̂ ′ †)] , (47)

with

ψ̂ ′
α = ψ̂α − C̄αβ∂

†
β, (48)

ψ̂ ′ †
α = ψ̂†

α + C̄αβ∂β . (49)

If we identify O = T and O′ = N , we recover the form of
fermionic Wick’s theorem discussed in Refs. [6,7].

VI. EXAMPLES

In this section, we provide some applications of the GWT
in order to show how this helps to tackle in a straightforward
manner problems that possibly involve long calculations. Let
us start by considering two generic bosonic operators X̂ , Ŷ ,
and the ordering OXY that pushes the operator X̂ to the left
and the operator Ŷ to the right, i.e.,

OXY [eX̂+Ŷ ] = eX̂ eŶ . (50)

We apply the GWT between OXY and the Weyl ordering W
defined by

W[eX̂+Ŷ ] = eX̂+Ŷ . (51)

It is straightforward to show that the contraction (11) reads
CXY = (OXY − W )X̂Ŷ = 1

2 [X̂ , Ŷ ], and the GWT (38) pre-
dicts

eX̂ eŶ = eX̂+Ŷ + 1
2 [X̂ ,Ŷ ] . (52)

We thus see that the Baker-Campbell-Hausdorff (BCH)
[24–26] formula for bosonic operators is a special instance of
the GWT. This reverses the point of view taken in Ref. [22],
where the tentative proof of GWT was based on the BCH
formula, and therefore the GWT was understood to be a con-
sequence of BCH, not its generalization.

Another interesting example is the application of the GWT
to quadratic forms of the type e

1
2 Dαβ φ̂α φ̂β , which occur, e.g.,

in open quantum systems [27,28] and in quantum optics. For
the special class where D is real positive (or negative), we are
going to show that

O
[
e

1
2 Dαβ φ̂α φ̂β

] =
√

|D′|/|D|O′[e 1
2 D′

αβ φ̂α φ̂β
]
, (53)

with D′
αβ = (D−1

αβ − Cαβ )−1, valid if D′ > 0 (or negative when
D < 0). We introduce the random real Gaussian variables ξα

of zero mean Mξα = 0 and correlation Mξαξβ = Dαβ . The
symbol M stands for the Gaussian integral

M f (ξα ) ≡ 1√|D|
∫

f (ξα )e− 1
2 D−1

αβ ξαξβ

∏
α∈�

dξα√
2π

, (54)

which allows us to write

Meξαφ̂α = e
1
2 Dαβ φ̂α φ̂β . (55)

Then, using the GWT (38), we write

e
1
2 Cαβ∂α∂βO′[e 1

2 Dαβ φ̂αφ̂β
] = e

1
2 Cαβ∂α∂β MO′[eξαφ̂α ]

= MO′[e 1
2 Cαβξαξβ+ξαφ̂α

]
, (56)

and performing the Gaussian integral according to (54) we
eventually obtain Eq. (53). The proof for negative D is readily
obtained by replacing ξα by iξα . In absence of the GWT, such a
reordering of a quadratic form would require applying repeat-
edly the BCH formula on the lhs of Eq. (55), and resummation
of the contributions obtained. It is thus clear that the GWT
reduces the amount of calculations required.

The application of the GWT to the single-mode squeezing
operator eiκ q̂ p̂, which is a special case of the previous example
with D indefinite, was considered earlier in Refs. [22,29].
Here we calculate the N -ordered form of the two-mode
squeezing operator Ŝ(g) = exp(gâb̂ − H.c.), where the emis-
sion operators of the two modes are â, b̂, respectively, and the
squeezing parameter g can be chosen as non-negative. The
main steps are similar as before, except we need two inde-
pendent complex random Gaussians ξ1, ξ2, with correlations
M|ξ1|2 = M|ξ2|2 = g and Mξ 2

1 = Mξ 2
2 = 0. Then

Ŝ(g) = Me(ξ1â+ξ�
1 b̂+ξ2 â†−ξ�

2 b̂† )

= MW[e(ξ1â+ξ�
1 b̂+ξ2 â†−ξ�

2 b̂† )], (57)

where the second identity is simply given by the definition
(51) of Weyl ordering. We can now apply the GWT (38) to
write

W[e(ξ1â+ξ�
1 b̂+ξ2 â†−ξ�

2 b̂† )] = N
[
e

1
2 (ξ1ξ2−ξ�

1 ξ�
2 )e(ξ1â+ξ�

1 b̂+ξ2 â†−ξ�
2 b̂† )

]
,

(58)

where we exploited the fact that the only non-null contrac-
tions are (W − N )ââ† = (W − N )b̂b̂† = 1

2 . By replacing
this identity into Eq. (57) and performing the integration, we
find the squeezing operator in normal ordering:

Ŝ(g) =
√

(g2 + 1)N
[
e

g
g2+1

[âb̂−b̂†â†−2g(â†â+b̂†b̂+1)]]
. (59)

We remark that the same result might have been obtained di-
rectly from Eq. (53) by performing the suitable replacements.

We eventually mention that in a series of papers [19,30,31],
Agarwal and Wolf set up a phase-space method to investigate,
among other issues, expectation values of functions of cre-
ation and annihilation operators, ordered according to W , N ,
and A (antinormal ordering). The GWT allows us to recover
and generalize this result, without the need to resort to the
phase-space formalism. Namely, the GWT (41) allows us to
write

〈O[F ({âγ }, {â†
γ })]〉 = 〈

e
1
2 Cαβ∂α∂

†
βO′[F ({âγ }, {â†

γ })]
〉
, (60)
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where the contraction is Cαβ = (O − O′)âα â†
β , and the

derivatives are defined as ∂α = ∂/∂aα and ∂
†
β = ∂/∂a†

β . By
recognizing that

(W − N )âα â†
β = (A − W )âα â†

β = 1

2
(A − N )âα â†

β = δαβ

2
,

(61)

one recovers the results in Ref. [31].

VII. CONCLUSIONS

We have proven the general Wick’s theorem, namely the
generalization of Wick’s theorem (which relates time ordering
to normal ordering) to any pair of operator orderings. We have
shown that the GWT has the same form both for bosonic
and fermionic operators, i.e., those operators satisfying c-
number (anti)commutation relations. As an application, we
have demonstrated that the BCH formula for bosonic oper-
ators is a special instance of the GWT. We further considered
the ordering of quadratic forms and we have shown that the
GWT allows us to treat it in a rather straightforward manner,
sensibly reducing the amount of calculations required with
respect to earlier approaches. The relationship provided by
the GWT is so general that it may possibly be applied in any
field where operators ordering plays a role. Whether some
form of GWT can be proven for operators satisfying general
commutation relations is still an open issue, and it will be
subject of future research.
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APPENDIX

In the main text, we make extensive use of derivative
symbols to which special meanings are attached [6,7], and
this Appendix aims to clarify their meaning and properties.
The bosonic derivatives ∂ = ∂/∂φ used in Sec. IV should be
understood as standard c-number derivatives. The action of
∂/∂φ on a function of operators is thus equivalent to temporar-
ily treating φ̂ like a c-number, then performing the derivative
∂/∂φ, and eventually restoring the hat on φ̂:

∂

∂φ
F (φ̂, ψ̂, . . . , ζ̂ ) = ∂

∂φ
F (φ, ψ̂, . . . , ζ̂ )

∣∣∣∣
φ=φ̂

. (A1)

As such, bosonic derivatives satisfy the following commuta-
tion relations:

[∂α, φ̂β] = δαβ, [∂α, ∂β ] = 0. (A2)

Similarly, in Sec. V, where we are dealing with fermionic
operators φ̂, the derivatives ∂/∂φ should be understood as
Grassmann derivatives, which satisfy

{∂α, φ̂β} = δαβ, {∂α, ∂β} = 0. (A3)

In order to perform the Grassmann derivative of a product of
fermionic operators, one first needs to move the operator to
be differentiated close to the derivative, by exploiting anti-
commutation relations, and then the derivative can act as a
standard c-number derivative:

∂α j+1

∏
i

φ̂αi = (−1)n− j−1∂α j+1

(
φ̂α j+1

∏
i 	= j+1

φ̂αi

)

= (−1)n− j−1
∏

i 	= j+1

φ̂αi . (A4)

This equation explains the term (−1)n− j in the second line of
Eq. (44).
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