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Quantum Bell nonlocality as a form of entanglement
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Bell nonlocality describes a manifestation of quantum mechanics that cannot be explained by any local
hidden variable model. Its origin lies in the nature of quantum entanglement, although understanding the precise
relationship between nonlocality and entanglement has been a notorious open problem. In this paper, we develop
a dynamical framework in which quantum Bell nonlocality emerges as a special form of entanglement and both
are unified as resources under local operations and classical communication (LOCC). Our framework is built on
the notion of classical and quantum processes, which are defined as channels that map elements between specific
intervals in space and time. Entanglement is identified as a process that cannot be generated by LOCC while
Bell nonlocality is the subset of these processes that have an instantaneous input-to-output delay time. LOCC
preprocessing is a natural set of free operations in this theory, thereby providing previous nonlocality activation
results a clear resource-theoretic foundation. We provide a systematic method to quantify the Bell nonlocality of
a bipartite quantum channel. It is shown that both the relative entropy and the max relative entropy of nonlocality
are nonadditive for a family of bipartite classical channels. This family includes the channel obtained when using
the singlet state to maximally violate the CHSH inequality. We also find that the regularized relative entropy of
Bell nonlocality provides an upper bound on the asymptotic rate of converting (i.e., simulating) many copies of
one classical instantaneous resource to another.
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I. INTRODUCTION

Entanglement and Bell nonlocality represent two of the
most stunning nonclassical features of quantum mechanics.
Both of them refer to a certain type of interdependence
between two or more quantum systems that challenges the
way we think about physical reality. More practically, entan-
glement and nonlocality have been recognized as potential
resources for enhanced communication and information pro-
cessing. Yet, from a fundamental perspective, the exact
relationship between the two has remained unclear. This work
reveals their unified nature and identifies the essential aspect
of Bell nonlocality that makes it a resource for certain infor-
mation tasks.

Entanglement is traditionally understood as the property of
nonseparability [1,2]. More precisely, the bipartite state ρAB

of systems A and B is entangled if it cannot be separated into
a statistical mixture of product states,

ρAB �=
∑

λ

p(λ)ρA
λ ⊗ ρB

λ . (1)

On the other hand, quantum Bell nonlocality is the property
that enables certain quantum states to implement a classical
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channel that does not admit a local hidden variable (LHV)
model. These channels are called nonlocal, and they are char-
acterized by transition probabilities W (a, b|x, y) that cannot
be separated into a statistical mixture of product channels,

W (a, b|x, y) �=
∑

λ

p(λ)Wλ(a|x)Wλ(b|y). (2)

Here, (a, b) are channel outputs for Alice and Bob, respec-
tively, while (x, y) are their inputs. Building on the pioneering
insight of J.S. Bell [3], one can test whether a given chan-
nel is compatible with a LHV model by checking whether
the probabilities W (a, b|x, y) satisfy a finite family of in-
equalities, known as Bell inequalities [4]. The well-known
Clauser-Horne-Shimony-Holt (CHSH) Inequality is one such
inequality [5], and it completely characterizes the set of LHV
channels for binary inputs and outputs [6,7]. Bell nonlocality
is the underlying resource enabling many quantum informa-
tion applications such as device-independent cryptography
and randomness extraction [4].

The most direct way to generate a nonlocal channel from a
quantum state ρAB is by performing local measurements on
it. The channel generated by such a process has transition
probabilities determined by Born’s rule,

W (a, b|x, y) = Tr
[
ρAB

(
Mx

a ⊗ Ny
b

)]
, (3)

where {Mx
a}a represent measurement operators on Alice’s

system (A) for measurement choice x and outcome a, and
similarly for the operators {Ny

b }b on Bob’s system (B). For
example, by choosing suitable pairs of local measurements,
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FIG. 1. Local operations and classical communications (LOCC)
describes a class of distributed quantum information processing pro-
tocols in which only classical information is exchanged between
spatially separated parties. Each “round” of the protocol consists one
party, say Alice, performing a local quantum operation {Ai1} and
sending classical data i1 to Bob who conditions his next local action
on these data [22,23].

a bipartite maximally entangled state |φ+〉 = √
1/2(|00〉 +

|11〉) can be used to generate a classical channel that violates
the CHSH Inequality.

In reflecting on the similarity between Eqs. (1) and (2),
prior work has shed some light on the physical relationship
between bipartite entanglement and Bell nonlocality [1,2,8–
19], although formulating a precise connection has remained
a longstanding open problem. An early discovery was the ex-
istence of certain entangled states that cannot violate any Bell
inequality when generating a classical channel according to
Eq. (3) [1,11]. However, it was later shown that every bipartite
entangled state ρA0B0 can violate the CHSH Inequality when
combined with another state σ A′

0B′
0 that itself cannot violate

the CHSH Inequality, after the two are allowed to undergo
processing by local operations and classical communication
(LOCC) prior to receiving any classical inputs for the resultant
channel (see Figs. 1 and 2) [14]. That is, a CHSH-violating
classical channel can be generated by ρA0B0 ⊗ σ A′

0B′
0 when

Eq. (3) is modified to have the form

W (x1, y1|x0, y0)

= Tr
[
Lpre(ρA0B0 ⊗ σ A′

0B′
0 )

(
Mx0

x1
⊗ Ny0

y1

)]
, (4)

where Lpre is a so-called preprocessing LOCC map that is
applied to ρA0B0 ⊗ σ A′

0B′
0 before the choice of measurements

(x0, y0). A similar result also holds for multipartite entangled

FIG. 2. A state ρ that cannot violate a Bell inequality can be
transformed into a state that violates one by performing a pre-LOCC
map, like that in Fig. 1. The key property we identify in this work
is that after the LOCC map, what remains is a bipartite classical
channel with essentially zero delay time between the inputs (x0, y0 )
and outputs (x1, y1). Dots with the same color correspond to the same
time.

states [20], and other types of “nonlocality activation” have
been discovered [10,15,21].

Despite the significance of this result, a remaining piece
of the puzzle has remained: why is it physically reasonable
to introduce pre-LOCC in the study of Bell nonlocality? On
the one hand, in a Bell experiment it is crucial that Alice and
Bob do not classically communicate after their input choices
(x, y), or else they could exploit the so-called locality loophole
[24,25] and classically violate any Bell inequality. On the
other hand, the pre-LOCC map requires classical communi-
cation. Hence the resulting scenario has Alice and Bob freely
communicating all the way up to the point of measurement
choices, but then all of a sudden this freedom is removed.
From a physical perspective, this sudden restriction might
seem artificial, and one may wonder whether it is truly funda-
mental to the nature of nonlocality. Here, we introduce a new
way to understand Bell nonlocality that removes any artificial
restrictions in the operational model.

Every Bell experiment involves the simulation of a clas-
sical channel W (a, b|x, y) that receives its input at some
moment and time and yields its outputs at a later time. What
is crucial here is not that Alice and Bob are able to gen-
erate a channel W (a, b|x, y) capable of violating the CHSH
Inequality, but rather that they are able to produce this channel
using a local physical process having an input-to-output delay
time shorter than the time it takes light to travel between the
two laboratories. In contrast to other operational theories of
nonlocality [26–32], we explicitly account for the significance
of the input-to-output delay time by identifying it as part of the
nonlocality resource itself.

To make this idea more rigorous, we invoke the machinery
of dynamical resource theories (DRTs) [33,34], which have
been extensively studied in recent years [35–46]. In fact, the
whole field of quantum Shannon theory [47] can be seen as
a DRT [48]. In a quantum resource theory, one identifies a
restricted subset of quantum operations as being “free,” and
objects that cannot be generated by these free operations are
deemed to possess a resource [33,34]. For example, in the re-
source theory of entanglement, LOCC represents the free class
of operations and all processes that cannot be implemented
by LOCC embody the resource of entanglement. Dynamical
resource theories generalize static resource theories in that the
former consider the resource-theoretic properties of channels
whereas the latter study the resources in states. However note
that every state can itself be interpreted as a channel with a
one-dimensional input.

We then go one step forward and distinguish dynamical
resources based on whether their input-to-output delay time
is instantaneous versus noninstantaneous. Under this distinc-
tion, quantum Bell nonlocality is an instantaneous classical
process that can be obtained by LOCC only when Alice and
Bob are initially supplied with an entangled state, as in Fig. 2.
One of the key features of our model is that pre-LOCC maps
are naturally free operations; i.e., static-to-dynamic conver-
sions having the form of Eq. (4) are allowed in this framework.
At the same time, the use of LOCC maps after the classical
inputs (x0, y0) in Eq. (4) is automatically prohibited as it leads
to a noninstantaneous resource. Under our framework, Bell
nonlocality and entanglement ultimately belong to the same
species: resources under LOCC.
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This paper carefully unpacks these high-level ideas and
then uses them to motivate operationally-meaningful mea-
sures of Bell nonlocality. We begin in Sec. II by laying
down the basic notation used throughout. In Sec. III, we
introduce the abstraction of quantum processes and super-
processes, which provide the primary conceptual pieces to
our approach. Section IV establishes our central claim that
Bell nonlocality is indeed a special type of entanglement, in a
precise resource-theoretic sense. In Sec. V, we identify mea-
sures of Bell nonlocality based on channel divergences and
classical-to-quantum extensions of entanglement measures.
Sections V A and V B show that both the relative entropy and
the max relative entropies of Bell nonlocality are nonadditive.
Section V C derives a bound on the rate of asymptotically
converting instantaneous processes in terms of the regular-
ized relative entropy of Bell nonlocality. Finally, concluding
remarks are provided in Sec. VI.

A Comment on LOSR theories

Before we describe our framework in more detail, let
us comment on local operations and shared randomness
(LOSR), along with the role that it plays in our theory. If one
moves beyond the setting of Bell nonlocality and considers
semiquantum nonlocality, then a tight connection between
entanglement, nonlocality, and LOSR is already known. Semi-
quantum nonlocality involves replacing the fully classical
channel of Eq. (3) with one that receives quantum inputs.
Buscemi has elegantly shown that all entangled states pro-
vide an advantage in some semiquantum nonlocal game, and
moreover, one bipartite state can be converted into another by
LOSR if and only if the first scores no worse than the second
in every semiquantum nonlocal game [49]. However, when
considering Bell nonlocality as it is traditionally understood,
such a relationship between nonlocal games and LOSR con-
vertibility no longer holds.

Nevertheless, it often claimed that LOSR should still pro-
vide the operational foundation to any resource theory of Bell
nonlocality [32] (although not always [26]). Here, we take
a critical stance on this perspective. Unlike LOCC, LOSR
lacks a clear operational interpretation when understood in the
context of quantum information protocols. LOSR is typically
justified using a common-cause model [30] in which a helper
distributes shared randomness to spatially separated parties.
This common randomness, however, is useless for carrying
out some protocol without the parties first agreeing on some
pre-established strategy, an agreement which inevitably will
require some communication. For example, the only way
that Alice, Bob, and perhaps some other party, can recognize
which physical system encodes the shared randomness is by
prior interactive communication. A second issue is that LOSR
misses certain important aspects of Bell nonlocality such as
it being “hidden” in some states; i.e., certain channels gener-
ated in Eq. (4) cannot be realized when the pre-LOCC map
Lpre is restricted to LOSR. The framework presented here
overcomes these problems since it starts with the physically
motivated class of LOCC and then arrives at a restricted subset
of operations, which includes pre-LOCC, by incorporating
the practically-relevant property of input-to-output delay time.
LOSR still plays an important role in this theory; however it

FIG. 3. A quantum process (N ,�x, �t ) takes an input ρ at
arbitrary space-time point (xA0 , t0) and generates an output N (ρ )
at space-time point (xA1 = xA0 + �x, t1 = t0 + �t ). The input-to-
output delay time of N in this process is �t .

emerges not by appealing to some common cause, but rather
by considering bipartite LOCC channels that are implemented
with zero input-to-output delay time.

II. NOTATION

In this paper, quantum physical systems and their cor-
responding Hilbert spaces will be denoted by A and B,
while classical systems will be denoted by X and Y . We
will make a distinction between static versus dynamical sys-
tems. Static systems will be denoted with subscripts such as
A0, A1, B0, B1. Dynamical systems will be denoted without
subscripts; for example, A refers to an input-output system
(A0, A1), where the zero subscript will always refer to the in-
put subsystem and the subscript one to the output subsystem.
Similarly, B = (B0, B1), X = (X0, X1), etc. One exception
of this notation is the auxiliary systems (e.g. environment
system, reference systems) E and R which will always cor-
respond to static systems. The notation A1B1 ≡ A1 ⊗ B1 will
indicate a bipartite (static) system. We write |A| = |A0||A1| to
denote the dimension of a dynamical system A, where |A0| and
|A1| are the dimensions of its corresponding input and output
subsystems.

The set of all density matrices (i.e., positive semidefinite
hermitian matrices with trace one) acting on A1 will be de-
noted by D(A1). As customary, we use ρ and σ to represent
density matrices and ψ and φ to represent pure states. A
maximally entangled state in D(A1B1) is denoted by φ

A1B1+ .
The set of all completely positive and trace preserving

(CPTP) maps is denoted by CPTP(A) := CPTP(A0 → A1).
Similarly, we will use the notation CPTP(AB) in short for
CPTP(A0B0 → A1B1). Quantum channels will be denoted
with calligraphic letters M,N , E,F . We will use the su-
perscripts N A and N AB to indicate N ∈ CPTP(A) and N ∈
CPTP(AB), respectively. The identity channel in CPTP(A0 →
A0) is denoted by idA0 .

III. QUANTUM PROCESSES

A quantum process, denoted by (N ,�x,�t ), is a quantum
channel N ∈ CPTP(A) that transforms any state ρ ∈ D(A0) at
arbitrary space-time point (xA0 , t0) into state N (ρ) ∈ D(A1)
at space-time point (xA1 , t1), where xA1 = xA0 + �x and t1 =
t0 + �t (see Fig. 3). Here we assume for simplicity that sys-
tems A0 and A1 are at rest in the same inertial frame and the
coordinates are measured with respect to this frame. The time
interval �t � 0 in a quantum process (N ,�x,�t ) is called
the input-to-output delay time of N (or simply the “delay
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FIG. 4. The bipartite channel E2 ◦ N ◦ E1 can have differing de-
lay times for the different subsystems if it is built by composing
multiple processes (top). The result is a multiprocess (bottom). Dots
with the same color correspond to the same time.

time” of N ), and it quantifies how quickly the channel input
propagates to the output.

Some quantum processes can be physically implemented
and some cannot. For example, the no-signaling principle of
special relativity prohibits (N ,�x,�t ) from being physically
realizable whenever N is able to transmit information and
�t < �x/c, where c is the speed of light. Quantum pro-
cesses with zero input-to-output delay time are known as
instantaneous, and they play an important role in this theory.
Whenever �x > 0, an instantaneous process (N ,�x, 0) is
physically realizable if and only if N is a replacement chan-
nel, i.e., N has the form Nρ (X ) := Tr[X ]ρ for ρ ∈ D(A1).
An instantaneous implementation of Nρ is done as follows:
knowing that Alice will receive the channel input at time t0,
she simply prepares the state ρ at t0.

The abstraction of quantum processes also applies to bi-
partite channels N ∈ CPTP(AB). In this case, however, the
input and output of the channel are each distributed across two
points in space. Hence, a bipartite process (N ,�xA,�xB,�t )
is the channel N that transforms a bipartite state ρA0B0 held at
(xA0 , t0) and (xB0 , t0) into the state N (ρA0B0 ), held at (xA1 , t1)
and (xB1 , t1), where xA1 = xA0 + �xA, xB1 = xB0 + �xB, and
t1 = t0 + �t . Note that the number of inputs and outputs can
differ by treating one of the systems as trivial. Multipartite
processes are defined in the same way: all inputs at spatial
coordinates (x1, x2, · · · , xn) evolve to outputs at spatial co-
ordinates (x1 + �x1, x2 + �x2, · · · , xn + �xn) in the same
time interval �t . By composing processes together, we obtain
a multiprocess. The only difference between a process and a
multiprocess is that the latter can have differing time delays
for different subsystems due to the composition, whereas the
former cannot. The general idea is depicted in Fig. 4.

We next go one step forward and define a quantum su-
perprocess as a superchannel � that transforms one process
(N ,�x,�t ) into another (N ′,�x′,�t ′). We denote such ob-
jects by (�,�x → �x′,�t → �t ′). Recall that the action of
every superchannel � : CPTP(A) → CPTP(A′) on a channel
N ∈ CPTP(A) can be represented as

�A→A′
[N A] = EEA1→A′

1
post ◦ N A0→A1 ◦ EA′

0→EA0
pre , (5)

where Epre ∈ CPTP(A′
0 → EA0) and Epost ∈ CPTP(EA1 →

A′
1) are fixed quantum channels corresponding to pre-

processing and post-processing of the channel N A [50,51].

FIG. 5. A quantum superprocess (�, �x → �x′, �t → �t ′)
converts process (N ,�x, �t ) to process (N ′, �x′, �t ′). The shaded
yellow area represents the action of the superprocess. Since Epre

and Epost might belong to multiprocess, the times s0 and s1 are not
necessarily equal to t0 or t1. For example, in Fig. 6, we will see an
example in which t0 < t ′

0 = s0 = s1 = t1.

A superprocess is constructed by invoking Eq. (5) and con-
sidering Epre and Epost as processes, as they would be in
any physical implementation of a superchannel. A general
superprocess then has the form of Fig. 5. The wires entering
and leaving each channel might be multiple systems bundled
together.

If the overall process transformation is (N ,�x,�t ) →
(N ′,�x′,�t ′), then there are four possibilities for how
EA′

0→EA0
pre and EEA1→A′

1
post can facilitate this transformation.

(1) The input to N at the point (xA, t0) depends on the input
to Epre at the point (xA′

0
, t ′

0) (and hence t ′
0 � t0) and the output

of Epost at (xA′
1
, t ′

1) depends on the output of N at (xA1 , t1) (and
hence t1 � t ′

1). In this case, the input-to-output delay time is
always nondecreasing, i.e., �t � �t ′.

(2) The input to N at the point (xA, t0) does not depend
on the input to Epre at the point (xA′

0
, t ′

0) but the output of
Epost at (xA′

1
, t ′

1) depends on the output of N at (xA1 , t1) (and

hence t1 � t ′
1). This means that EA′

0→A0E
pre in Fig. 5 is a quantum

channel whose output at A0 is fixed and independent on the
input of the channel. This is a special case of a semi-causal
channel [52] and was proven in [53] to have for all ω ∈ D(A′

0)
the form

EA′
0→EA0

pre (ωA′
0 ) = LA′

0A2→E (ωA′
0 ⊗ ρA0A2 ), (6)

where A2 is some auxiliary system, ρ ∈ D(A0A2) is a fixed
quantum state, and L ∈ CPTP(A′

0A2 → E ) is a quantum
channel. However, the form above implies that LA′

0A2→E can
be “absorbed” into Epost (of Fig. 5) so that w.l.o.g. we can re-

place EEA1→A′
1

post ◦ LA′
0A2→E with EA′

0A1A2→A′
1

post (see Fig. 6). Hence
when t0 is sufficiently earlier than t ′

0 = t1, one can attain
�t = t1 − t0 > �t ′ = t ′

1 − t ′
0. Note that the difference �t ′ is

determined entirely by the delay time of Epost, whereas �t is
the delay time of the input process (N ,�x,�t ).

(3) The input to N at the point (xA, t0) depends on the
input to Epre at the point (xA′

0
, t ′

0) but the output of Epost at
(xA′

1
, t ′

1) does not depend on the output of N at (xA1 , t1). The
superprocess in this case acts as replacement superchannel,
always outputting the same channel

�[N ] = EE→A′
1

post ◦ EA′
0→E

pre (7)
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FIG. 6. When the input to N does not depend on the input to Epre

it is possible to construct a superprocess (�, �x → �x′, �t → �t ′)
that decrease the input-to-output delay time, �t ′ < �t . Observe in
particular that we absorbed LA′

0→E that appears in the expression (6)
of Epre into Epost. In this case the delay time �t ′ depends only on the
implementation of Epost and in general can be much smaller than �t .
Dots with the same color correspond to the same time.

irrespective of the input channel N . Here, EA′
0→E

pre := TrA0 ◦
EA′

0→EA0
pre and for all ρ ∈ D(E ), EE→A′

1
post (ρE ) := EEA1→A′

1
post (ρE ⊗

ωA1 ) for some arbitrary fixed ω ∈ D(A1). Therefore, while
this case might result with �t > �t ′ 1, this is a somewhat
trivial case and will not play an important role in our formal-
ism.

(4) The input to N at the point (xA, t0) does not depend on
the input to Epre at the point (xA′

0
, t ′

0) and the output of Epost

at (xA′
1
, t ′

1) does not depend on the output of N at (xA1 , t1).
As in the previous case, also here the superprocess acts as
the replacement superchannel that always output the channel
given in (7).

The most crucial aspect of this analysis is that the superpro-
cess depicted in Fig. 6 can produce processes with �t ′ = 0.
This happens when Epost is physically implementable with
zero delay time, or more generally, if Epost has the form (see
Fig. 7)

EA′
0A1A2→A′

1
post = FA′

0R→A′
1

2 ◦ FA1A2→R
1 (8)

where FA1A2→R
1 corresponds to a quantum process with

arbitrary delay time, whereas FA′
0R→A′

1
2 corresponds to an

instantaneous quantum process. Since F2 is instantaneous,

1For example, one could remove Epost from Fig. 5, discard the
output to N at (xA1 , t1), and extend (xE , t0 ) with a straight line to
the output (xA′

1
, t ′

1) so that t0 = t ′
1.

FIG. 7. The most general superprocess that can convert a quan-
tum process (N A, �x, �t ) with �t > 0 into an instantaneous
quantum process. Irrespective of the time delays of N and F1,
since F2 is instantaneous we have t ′

1 = t ′
0 � t1 > t0. In particular,

�t ′ = t ′
1 − t ′

0 = 0.

FIG. 8. A bipartite superprocess (�,�t → �t ′) converts pro-
cess (N ,�t ) into process (�[N ],�t ), where � is a superchannel
that transforms N using pre- and postprocessing maps Epre and Epost .
The processes implementing Epre and Epost must themselves have
delay times consistent with the overall change �t → �t ′.

�t ′ = 0 irrespective of the delay times associated with N
and F1. In Fig. 7, we depict the most general superprocess
that converts a noninstantaneous quantum process into an
instantaneous one.

To isolate the essential features of this theory, going for-
ward we will assume that the spatial intervals �x and �x′
are given and fixed. Then, the only processes we consider
are specified by the channel and its delay time, (N ,�t ).
The relevant superprocesses in this case are characterized
by a superchannel and its induced change in delay times,
(�,�t → �t ′).

IV. ENTANGLEMENT THEORY WITH INSTANTANEOUS
RESOURCES, ALIAS BELL NONLOCALITY

Having introduced the underlying concepts of this work,
we now restrict attention to processes that can be implemented
by LOCC (as in Fig. 1). We will make the simplifying assump-
tion that all local operations are instantaneous, a reasonable
assumption to make when Alice and Bob’s laboratories are
separated relatively far apart. Consequently, the delay time
�t of an LOCC process will always be proportional to the
number of communication exchanges conducted in the par-
ticular implementation of the channel. Since there is always
some nonzero spatial separation between Alice and Bob, ev-
ery communication protocol will have �t > 0.

LOCC superprocesses constitute the free operations in this
resource theory, and these are superprocesses (�,�t → �t ′)
having the form of Fig. 8 with Epre and Epost being LOCC
maps. The fundamental question is whether one quantum
process can be converted to another using an LOCC superpro-
cess. When (N ,�t ) → (N ′,�t ′) is achievable by LOCC, we
write

(N ,�t )
LOCC−−−→ (N ′,�t ′). (9)

The free objects in this resource theory are the quantum pro-
cesses that can be generated by LOCC “from scratch” (i.e.,
from the trivial process),

(id1
, 0)

LOCC−−−→ (N ,�t ), (10)

where id1 represents here the trivial state/channel; i.e., the
only element of D(C) ∼= CPTP(C → C). Notice that every
LOCC channel L belongs to some free process (L,�t ) with
�t ∈ [0,+∞]. As a special case, a channel L belongs to an
instantaneous LOCC processes (L, 0) if and only if it can
be implemented by local operations and shared randomness
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FIG. 9. Implementation of an LOSE quantum process with an
entangled state ω ∈ D(A2B2) and local superprocess ϒ that takes
the quantum state ωA2B2 as its input and then outputs the bipartite
quantum channel N AB := ϒ[ωA2B2 ].

(LOSR). This means that

L =
∑

λ

p(λ)EA
λ ⊗ FB

λ (11)

with p(λ) forming a probability distribution, EA
λ ∈ CPTP(A)

and EB
λ ∈ CPTP(B), and the collection of such maps cor-

responds precisely to the family of instantaneous LOCC
processes.

There are non-LOCC bipartite channels N whose instan-
taneous process (N , 0) can also be physically implemented.
These are channels that belong to the class of local operations
and shared entanglement (LOSE). As depicted in Fig. 9, we
say that N ∈ LOSE(AB) if there exists some entangled state
ω ∈ D(A2B2) such that

N AB = ϒ[ωA2B2 ], (12)

where ϒ is an LOSR superchannel comprising of
the two local channels E ∈ CPTP(A0A2 → A1) and
F ∈ CPTP(B0B2 → B1) such that for any ρ ∈ D(A0B0)

ϒ[ωA2B2 ](ρA0B0 )

:= EA0A2→A1 ⊗ FB0B2→B1 (ρA0B0 ⊗ ωA2B2 ). (13)

Every bipartite quantum state ρ ∈ D(A1B1) can be viewed
as a bipartite quantum process (ρ, 0) with a one-dimensional
input and zero input-to-output delay time since if Alice and
Bob hold ρA1B1 and they know they will receive an input at
time t0, they can immediately output ρA1B1 at time t0. In this
way, our framework captures all of state-based entanglement
theory. We emphasize that even though states have an instan-
taneous input-to-output delay time, this does not mean that
every bipartite state ρA1B1 can be created instantaneously. The
LOCC preparation of a state is described by the superprocess

(id1
, 0)

LOCC−−−→ (ρ, 0), (14)

which is possible if and only if ρ is separable. In fact, even if
ρ is separable but not a product state, the LOCC superprocess
carrying out Eq. (14) cannot be implemented instantaneously

FIG. 10. An LOSR superprocess with �t = �t ′.

since shared randomness must be distributed from one party
to another, and this will require time. In general, bipartite
processes with instantaneous input-to-output delay time will
require nonzero time to build from scratch, if it is even possi-
ble to do so by LOCC.

The fundamental result of this approach is that Bell
nonlocality can now be understood as a special type of entan-
glement. Every experimental test for Bell nonlocality involves
the conversion of an entangled bipartite state ρA1B1 into a clas-
sical channel N XY , like in Eq. (3) or (4). This is sometimes
described as transforming a static resource (ρA1B1 ) into a dy-
namical classical resource (N XY ). However, this description
does not make explicit the resource-theoretic aspect of nonlo-
cality. While every classical channel can be implemented by
LOCC, not every instantaneous classical process admits such
an implementation. Hence, in the resource theory developed
here, (N XY ,�t ) is a free object for �t > 0, but (N XY , 0) is
a resource if N XY is non-LOSR, i.e., not admitting a LHV
model. Entanglement, whether it be static or dynamic, can be
defined as any process (N AB,�t ) that cannot be generated by
LOCC,

entanglement: (id1, 0) �LOCC−−−→ (N AB,�t ), (15)

and it is the resource in this theory. Bell nonlocality is simply
the restriction of these superprocesses to those that output
classical channels,

Bell nonlocality: (id1, 0) �LOCC−−−→ (N XY , 0). (16)

When referring to quantum Bell nonlocality, we mean some
Bell nonlocal process that can be obtained from a quantum
process using LOCC,

(N AB,�t )
LOCC−−−→ (N XY , 0) (17)

but (id1, 0) �LOCC−−−→ (N XY , 0). (18)

The following theorem characterizes the structure of such
superprocesses.

Theorem 1. Let (�AB→A′B′
,�t → �t ′) be an LOCC su-

perprocess.
(1) If �t = �t ′ = 0, then the superprocess has the form

of either Figs. 10 or 11.
(2) If �t > �t ′ = 0, then the superprocess has the form

of Fig. 11.
Conversely, if � has the form of either Figs. 10 or 11, then

it is instantaneous-preserving; i.e., �t = 0 ⇒ �t ′ = 0.
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FIG. 11. An LOCC superprocess containing preprocessing
LOCC simulating an instantaneous dynamical resource.

Proof. For the first part, assume that �t ′ = �t = 0. A
general bipartite superprocess is depicted in Fig. 8. Recall the
four cases that we considered in Sec. III on how Epre and Epost

can facilitate a superprocess. In the first of these cases, we
have that t ′

0 � t0 and t1 � t ′
1. When �t ′ = �t = 0 we must

have that t0 = t1 = t ′
0 = t ′

1 so that Epre, and Epost belongs to an
instantaneous quantum process. Since we also have that � is
LOCC, Epre and Epost must be both LOCC and correspond to
instantaneous quantum processes; i.e., both Epre and Epost are
LOSR which is precisely the form given in Fig. 10.

In the second case (out of the four cases) the superprocess
has the form of Fig. 6 adjusted to the bipartite case. Now,
since �t ′ = 0 the superprocess has the form of Fig. 7 (again
adjusted to the bipartite case). Note that since � is LOCC, ρ,
F1, and F2 of Fig. 7 all must be LOCC since we want the
superprocess to be both LOCC and instantaneous preserving.
Hence, ρ is is precisely the LOCC process/state that appears
on the left side of Fig. 11, F1 is the LOCC process that
appears at the output of N AB in Fig. 11, and since also F2

corresponds to an instantaneous quantum process it must be
an LOSR channel corresponding to the two post-LO chan-
nels that appear on the right side on Fig. 11. Note that the
shared randomness of F2 can be absorbed into the pre-LOCC
channel preceding it. Since the third and fourth cases do not
lead to new implementations of the superprocess, the proof is
concluded for the case �t ′ = �t = 0.

Consider now the second part of the theorem in which
�t > �t ′ = 0. The only implementation (out of the four) of
the superprocess for this case is given in Fig. 7 adjusted to the
bipartite case. As discussed in the first part of the proof, an
LOCC superprocess of this form is given in Fig. 11.

The converse statement of theorem 1 follows by inspection.
This completes the proof. �

One of the most important consequences of theorem 1 is
that it provides a physical justification for allowing pre-LOCC
processes in experiments of Bell nonlocality. If the channel N
is replaced by a quantum state ρA1B1 , then Fig. 11 has precisely
the same form as Fig. 2. Thus hidden Bell nonlocality and
superactivation of nonlocality are both features that are op-
erationally accessible in this resource theory. More precisely,
channels having the form of Eq. (4) reflect the resource con-
version

(ρA1B1 ⊗ σ A′
1B′

1 , 0)
LOCC−−−→ (N XY , 0), (19)

FIG. 12. A comparison between the different classes of pro-
cesses relevant to the study of quantum entanglement and Bell
nonlocality. All processes belonging to the physically-realizable
region outside LOCC possess entanglement. The instantaneous clas-
sical LOSE channels lying in the intersecting region are the Bell
nonlocal processes.

and so the result of [14] implies that every entangled state can
activate some Bell nonlocal resource using the free operations
of this theory.

Furthermore, all so-called “anomalies” of bipartite entan-
glement [13] vanish under this resource theory. These refer to
certain nonlocal effects (such as how large Bell inequalities
can be violated or how robust violations are to noise) that are
more prominent in partially entangled states than maximally
entangled ones. However, every partially entangled bipartite
state can be obtained from a maximally entangled one under
LOCC. Hence, in this resource theory whatever process can
be freely generated by a weakly entangled state can also be
generated by a maximally entangled one. This allows the par-
tial order of states defined by any measure of Bell nonlocality
to reflect the partial order defined by LOCC convertibility.

Let us further remark that theorem 1 unifies previous
resource-theoretic formulations of Bell nonlocality. Figure 10
describes the transformation of channels by LOSR super-
channels. This model has been studied in the abstract setting
of nonlocal “boxes” that are governed by a common cause
[30–32]. An alternative operational model has been proposed
in Ref. [26] which is known as wiring and prior-to-input clas-
sical communication (WPICC) (see also [29]). In the context
of quantum resources, WPICC amounts to applying a pre-
processing map implementable by LOCC, as in Fig. 11. Our
resource theory introduces the notion of input-to-output delay
time as a way to physically motivate both of these types of
channel transformations in a unified way.

We close this section with Fig. 12, which provides an
overview of the different type of processes discussed here and
their relationships. Everything within the LOCC oval is free,
whereas processes outside LOCC are not free and possess
the resource of entanglement. It is important to stress that
this resource theory and the categories in Fig. 12 pertain
to processes, not channels. To best illustrate this distinction,
consider the swap channel, which interchanges the states in
Alice and Bob’s laboratory. The noninstantaneous classical
swap channel can be implemented by LOCC and is therefore
a free process in our model, whereas an instantaneous swap is
not even physically realizable. On the other hand, the quantum
swap channel can be physically implemented only through
quantum communication between Alice and Bob’s laborato-
ries. Hence, the noninstantaneous quantum swap is a physical
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resource in this theory. Bell nonlocality refers to the classical
processes lying in the LOSE region of Fig. 12.

V. QUANTIFICATION OF BELL NONLOCALITY

We next turn to the question of quantifying Bell non-
locality. As in any resource theory, a valid measure of
Bell nonlocality must be monotonically decreasing under
the free operations of the theory, and its value must vanish
for all free objects. In Ref. [38], the notion of entangle-
ment monotones for channels was introduced as any func-
tional E : ∪A,BCPTP(AB) → R+ ∪ {0} satisfying E(�[N ]) �
E(N ) for any N ∈ CPTP(AB) and for any � ∈ LOCC(AB →
A′B′). We can extend this to the level of processes by incor-
porating the input-to-output delay time associated with each
quantum channel.

In the following definition we denote by Q(AB) the set
of all realizable bipartite quantum processes of the form
(N AB,�t ) over all �t ∈ [0,∞], where N ∈ CPTP(AB).
Similarly, we denote by Q(XY ) the set of all such classical
processes (N XY ,�t ).

Definition V..1. The function

E :
⋃
A,B

Q(AB) → R,

where the union is over all finite dynamical systems A and B,
is called a measure of dynamical entanglement if on the trivial
process (id1

,�t ), we have E (id1
,�t ) = 0, and for any two

bipartite processes (N ,�t ) and (N ′,�t ′) such that

(N ,�t )
LOCC−−−→ (N ′,�t ′) (20)

we have E (N ,�t ) � E (N ′,�t ′).
The condition that (id1

,�t ) = 0 in this definition assures
that all free processes (N ,�t ) satisfy E (N ,�t ) = 0. When
N and N ′ are bipartite quantum states this definition reduces
to a measure of (static) entanglement on bipartite states. When
N and N ′ are classical bipartite channels and �t = �t ′ = 0
(i.e., instantaneous processes) the definition above reduces to
a measure of Bell nonlocality. This means that any measure
of dynamical entanglement, E , reduces to a measure of Bell
nonlocality when the domain is restricted to instantaneous
classical processes. We denote by Ecl the restriction of E to
the classical domain, and we call it a classical entanglement
measure. Note that if �t > 0 (i.e., the process is nonin-
stantaneous) and N ∈ CPTP(XY ), then the transformation

(id1
,�t )

LOCC−−−→ (N ,�t ) is always physically realizable and
so Ecl(N XY ,�t ) = 0. Hence, in what follows, the only classi-
cal processes we will consider are instantaneous because only
these can possess Bell nonlocality, and we write Ecl(N XY ) to
denote Ecl(N XY , 0). Similarly, we let LOCC0(XY → X ′Y ′)
indicate the set of all classical superprocesses having the form
of either Fig. 10 or 11. The converse of theorem 1 assures that
superprocesses from LOCC0(XY → X ′Y ′) leave the collec-
tion of instantaneous classical processes invariant.

Monotones of Bell nonlocality for classical channels have
been previously explored in which the domain of the func-
tionals is restricted to nonsignaling bipartite classical channels
[30]. As depicted in Fig. 12, nonsignaling processes can either
be (i) noninstantaneous (and so free), (ii) instantaneous LOSR

(and so free), (iii) instantaneous LOSE but not LOSR (and so
physically realizable and not free), or (iv) instantaneous but
not LOSE (and so not physically realizable). The measures we
present below can quantify the resource content in processes
of both type (iii) and (iv), similar to the results of Ref. [30].
In fact, since our resource measures are based on different
channel “distances” from the set of LOSR, the measures can
also be applied to instantaneous signaling channels, despite
them being nonphysical like those of type (iv).

In the next three sections, we define and study the classical
relative, max relative, and regularized relative entropies of
nonlocality. While these are defined on classical systems, in
Sec. V D, we extend them to the domain of quantum channels
using the extension techniques developed in Ref. [54].

A. Relative entropy of Bell nonlocality

We begin by introducing a classical Bell nonlocality mea-
sure that is based on channel divergences [45,46,51,55–
58]. Typically, in resource theories such monotones are con-
structed as the “distance” (as measured by the divergence) of
the resource to the set of free objects. Since we are restrict-
ing to instantaneous processes in the classical case, the free
objects can be identified with the set of LOSR channels.

Let D be the Kullback-Leibler divergence (relative en-
tropy) defined on any two n-dimensional probability vectors
p and q as

D(p‖q) :=
n∑

x=1

p(x)[log2 p(x) − log2 q(x)]. (21)

Its extension to classical channels is defined as [58]

D(N‖M) := max
x∈[|X0|]

D(N (|x〉〈x|X0 )‖M(|x〉〈x|X0 )),

for all classical channels N ,M ∈ CPTP(X ). The above func-
tion is called a channel divergence since it satisfies the data
processing inequality; i.e., for all � ∈ SC(X → Y ), we have
D(�[N ]‖�[M]) � D(N‖M). In [58] it was shown that the
above classical channel relative entropy is the only channel
relative entropy that reduces to the Kullback-Leibler diver-
gence on classical states (i.e., when |X0| = 1). We define the
relative entropy of Bell nonlocality as

Er (N XY ) := min
M∈LOSR(XY )

D(N XY ‖MXY ). (22)

This function provides a valid measure of dynamical Bell
nonlocality for instantaneous classical processes. In particular,
since the channel divergence D satisfies the data-processing
inequality, it follows that for any � ∈ LOCC0(XY → X ′Y ′)

Er (�[N XY ]) � Er (N XY ). (23)

An appealing property of a resource measure is additivity.
This says that the total amount of resource in independent
states accumulates in an additive way:

E (ρ ⊗ σ ) = E (ρ) + E (σ ). (24)

In other words, the whole is equal to the sum of its parts.
However, it turns out that this adage is generally not true
for entanglement, and most known measures of static en-
tanglement are nonadditive. Here we show that the same
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holds for instantaneous classical channels. For |X0| = |Y0| =
|X1| = |Y1| = 2, consider the one-parameter family of chan-
nels WX0Y0→X1Y1

λ having the form

with 0 � λ � 1, in which each box encodes the channel prob-
abilities

for Wλ. Note that when λ = 1√
2

the channel Wλ =: WCHSH

generates the maximal quantum violation of the CHSH
inequality, while when λ = 1 the channel Wλ =: WPR cor-
responds to a PR-box [59].

We will show that these channels have a nonadditive rela-
tive entropy under tensor product. One might already expect
nonadditivity of the channel WCHSH due to nonparallelization
of the optimal classical strategy in XOR games [60]. However,
the connection between an optimal strategy in nonlocal games
and an optimal LOSR map in the definition of Er is not direct.
Nevertheless, the general intuition of nonadditivity remains
correct. Our approach resembles that taken by Vollebrecht
and Werner who showed that the relative entropy of static
entanglement is nonadditive [61]. Namely, we will exploit the
high degree of symmetry that the channels Wλ enjoy. Each
Wλ is invariant under the following operations: (i) applying
a pre- and post- swap gate between Alice and Bob’s systems;
(ii) flipping Alice and Bob’s output bits; (iii) flipping Alice’s
output conditioned on her input being 1, while flipping Bob’s
input bit; and (iv) flipping Alice’s output conditioned on her
input being 0, while flipping Bob’s output conditioned on his
input being 1, and then flipping the input bits of both parties.

Operations (ii)–(iv) belong to LOSR, and while (i) does
not, it still leaves the collection of local channels invariant.
In fact, it is not difficult to verify that up to a relabeling of
outputs, any channel in CPTP(XY ) gets projected down into
some channel Wλ when averaging over the action of the group
generated by these four transformations. Note that a relabeling
of, say, Alice’s outputs simply cause the transformation λ →
−λ in the channel probabilities of Wλ.

Proposition 1. An arbitrary channel N ∈ CPTP(XY ) un-
dergoes the transformation N → Wλ, with

λ = 1
4 (p(0, 0|0, 0) + p(1, 1|0, 0) + p(0, 0|0, 1)

+ p(1, 1|0, 1) + p(0, 0|1, 0) + p(1, 1|1, 0) + p(0, 1|1, 1)

+ p(1, 0|1, 1)),

when averaging over operations (i)—(iv) and all their com-
positions. This transformation leaves the set LOSR(XY )
invariant.

We now compute the relative entropy of nonlocality for the
channels Wλ. By proposition 1 and convexity of the mapping

L(x0, y0) �→ D(W (x0, y0)‖L(x0, y0))

for any choice of input (x0, y0), without loss of generality we
can restrict attention to local channels Lλ that have the same
symmetries as Wλ. The following lemma characterizes the
locality conditions.

Lemma 1. Lλ ∈ LOSR(XY ) if and only if λ � 1/2.
Proof. It is well-known that membership of LOSR(XY ) is

decided entirely by whether or not the channel satisfies the
CHSH inequality

− 1 � p(0, 0|0, 0) − p(0, 1|0, 1)

− p(1, 0|1, 0) − p(0, 0|1, 1) � 0 (25)

and all equivalent inequalities obtained by input/output rela-
beling [7]. An exhaustive search finds that for Lλ this reduces
to the constraint λ � 1/2. �

Using lemma 1, we can then phrase the relative entropy as
a simple optimization problem:

Er (Wλ) = min
|μ|�1/2

1 + λ

2
log2

1 + λ

1 + μ
+ 1 − λ

2
log2

1 − λ

1 − μ
.

This can be readily solved to yield the formula

Er (Wλ) = 1 + λ

2
log2

1 + λ

3/2
+ 1 − λ

2
log2

1 − λ

1/2
(26)

when 1/2 � λ � 1, and Er (Wλ) = 0 when 0 � λ � 1/2. In
the former case, the optimal LOSR channel is given by

and the specific channels of interest have values

Er (WCHSH) ≈ 0.046, (27)

Er (WPR) ≈ 0.415. (28)

Next, we consider two copies of the channel. Our main result
is the following.

Theorem 2. The quantity Er is nonadditive for all nonlocal
channels Wλ, i.e., whenever λ > 1/2.

Proof. Consider the local channel L ∈
LOSR(X0X ′

0Y0Y ′
0 → X1X ′

1Y1Y ′
1 ) defined by the functions

(x1, x′
1) =

{
(0, 0) if x0x′

0 = 0
(1, 0) if x0x′

0 = 1 ,

(y1, y′
1) =

{
(0, 0) if y0y′

0 = 0
(0, 1) if y0y′

0 = 1 . (29)

052208-9



CHITAMBAR, GOUR, SENGUPTA, AND ZIBAKHSH PHYSICAL REVIEW A 104, 052208 (2021)

This channel can also be depicted by the 16 × 16 grid

in which each subblock encodes the transition probabili-
ties p(x1, x′

1; y1, y′
1|x0, x′

0; y0, y′
0). We now symmetrize this

channel by averaging over transformation (ii)—(iv) applied
independently to each input/output group (x0, y0, x1, y1) and
(x′

0, y′
0, x′

1, y′
1), as well as an average over swapping of parties.

This generates a total of 27 = 128 transformations and the
resulting channel is given by

Using this channel, we have

Er
(
W⊗2

λ

)
� D

(
W⊗2

λ ‖L)

= (1 + λ)2

4
log2

(1 + λ)2

5
+ 1 − λ2

2
log2(1 − λ2)

+ (1 − λ)2

4
log2 2(1 − λ)2 + 1. (30)

FIG. 13. The solid line is 2Er (Wλ) whereas the dashed line is
D(W⊗2

λ ‖L). We observe nonadditivity for λ > 0.74. The y axis is
the relative entropy (units being defined as nonlocal bits) and the x
axis is channel parameter λ.

In Fig. 13, we plot D(W⊗2
λ ‖L) versus 2Er (Wλ). It can be

seen that D(W⊗2
λ ‖L) is strictly smaller whenever λ > 0.74.

We next extend this construction by considering convex com-
binations of the two local channels L⊗2

1/2 and L,

L(z) = zL⊗2
1/2 + (1 − z)L. (31)

Why might there be some advantage to mixing these chan-
nels? Intuitively, L has a greater probability than L⊗2

1/2 of
satisfying both the XOR conditions x1 ⊕ y1 = x0y0 and x′

1 ⊕
y′

1 = x′
0y′

0 (5/8 versus 9/16, respectively). On the other hand,
L also has a greater probability than L⊗2

1/2 of not satisfying ei-
ther of these XOR conditions (1/8 versus 1/16, respectively).
Hence we might expect that a smaller channel divergence can
be obtained by mixing the two strategies. In fact, this turns out
to be the case. We consider

D
(
W⊗2

λ

∥∥L(z)) = 2 + (1 + λ)2

4
log2

(1 + λ)2

9z + 10(1 − z)

+ 1 − λ2

2
log2

1 − λ2

3z + 2(1 − z)

+ (1 − λ)2

4
log2

(1 − λ)2

z + 2(1 − z)
, (32)

and note that the choice z = 1 corresponds to the additive
bound. With this in mind we compute

d

dz
D

(
W⊗2

λ ‖L(z))∣∣∣∣
z=1

= 1

9
(1 − 2λ)2 � 0, (33)

which implies that

D
(
W⊗2

λ

∥∥L(z)
)

< 2Er
(
W⊗2

λ

)
(34)

in a neighborhood z < 1 for every λ > 1/2. As an example,
for the CHSH channel, the minimization is obtained at the

point z0 = 3 − √
2 −

√
5(3 − 2

√
2), for which

D(WCHSH ⊗ WCHSH‖L(z0 ) ) ≈ 0.088

< 2Er (WCHSH) ≈ 0.093. (35)

�
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Remark. Theorem 2 shows nonadditive of Er for an en-
tire class of channels. We conjecture that this result can
extended to all channels N ∈ LOSE(XY ) \ LOSR(XY ). On
the other hand, there are nonphysically realizable processes
whose relative entropy of dynamical entanglement is addi-
tive. For instance, the instantaneous d × d classical swap
has Er (N swap

d , 0) = log2 d , which is an additive quantity. The
source of additivity here, appears to be because N swap

d is a de-
terministic channel. Since the only deterministic nonsignaling
channels are also local, we suspect that all nonlocal yet phys-
ically realizable channels have nonadditive relative entropy.

B. The max relative entropy of Bell nonlocality

We next proceed to consider the max relative entropy of
Bell nonlocality, which is defined as

Emax(N XY ) = min
M∈LOSR(XY )

Dmax(N XY ‖MXY ), (36)

where

Dmax(N‖M) = log2 max{λ : λM � N }. (37)

Here the inequality λM � N is to be understood as non-
negativity over the cone of CP maps, i.e., λM − N ∈
CPTP(XY ). The max relative entropy has emerged as an
important quantity in the study of different resource theories.
For instance, it can be equivalently expressed as the log-
robustness or resource [62], which measures how resilient a
given state or channel is to losing all its resource under mix-
ing. The max relative entropy (and its smooth variant) appears
as a quantifier in certain channel discrimination problems
[36,57]. It also captures the resource cost in the general task
of catalytic resource erasing [42,63], as well as the one-shot
cost for channel simulation in certain resource theories such as
coherence theory [64] and general nonsignaling theories [65].

For classical channels N ,M ∈ CPTP(XY ), it is straight-
forward to see that

Dmax(N‖M) = min
M∈LOSR(XY )

max
x0, y0
x1, y1

log2
p(x0, y0|x1, y1)

q(x0, y0|x1, y1)
,

where p(x0, y0|x1, y1) are the channel probabilities of N and
q(x0, y0|x1, y1) the channel probabilities of M. In fact, by
introducing the notation z0 = (x0, y0), z1 = (x1, y1), and the
normalized Choi matrices

ĴN := 1

|X0||Y0|
∑
z0,z1

p(z1|z0)|z0〉〈z0| ⊗ |z1〉〈z1|,

ĴM := 1

|X0||Y0|
∑
z0,z1

q(z1|z0)|z0〉〈z0| ⊗ |z1〉〈z1|,

one has

Emax(N XY ) = min
M∈LOSR(XY )

Dmax(ĴN ‖ĴM). (38)

Interestingly, such a representation in terms of the Choi ma-
trices does not hold for the standard relative entropy; i.e.,
Er (M) �= minM∈LOSR(XY ) D(ĴN ‖ĴM). Nevertheless, one can
bound

Er (M) � min
M∈LOSR(XY )

D(ĴN ‖ĴM). (39)

Using the family of channels introduced in the previous sec-
tion, nonadditivity of Emax can also be established. First, by
employing the same symmetry argument as before, we have

Emax(Wλ) = min
|μ|�1/2

max

{
log2

1 + λ

1 + μ
, log2

1 − λ

1 − μ

}

=
{

1 + log2
1+λ

3 if λ � 1/2
0 if λ < 1/2

. (40)

On the other hand,

Dmax
(
W⊗2

λ ‖L)

= 2 + max

{
log2

(1 + λ)2

10
, log2

1 − λ2

2
, log2

(1 − λ)2

2

}
.

(41)

For the specific choice of λ = 1√
2
, we find

Dmax(WCHSH ⊗ WCHSH‖L) ≈ 0.22 (42)

whereas

2Emax(WCHSH) ≈ 0.37. (43)

C. The regularized relative entropy of Bell nonlocality and
asymptotic channel convertibility

Due to the nonadditivity of both the relative entropy and
the max relative entropy, regularization is required when con-
sidering the rate of resource among multiple channels. For
instance, the regularization of Er is given by

E∞
r (N ) := lim

n→∞
1

n
Er ((N XY )⊗n). (44)

Here we show that the relative entropy of Bell nonlocality
provides an upper bound on the rate n

m at which n copies of a
bipartite instantaneous channel N XY can be used to simulate
m copies of MXY under parallel use. More precisely, let N ∈
CPTP(X0Y0 → X1Y1) and M ∈ CPTP(X ′

0Y
′

0 → X ′
1Y

′
1 ) be two

instantaneous classical resources. We define the asymptotic
rate of converting N to M as

R(N → M) := lim
ε→0+

sup
{m

n
: dBell(N⊗n → M⊗m) � ε

}
,

(45)
where dBell is the conversion distance

dBell(N → M) := min
�∈LOSR(XY →X ′Y ′ )

1
2‖MX ′Y ′

− �XY →X ′Y ′
(N XY )‖�. (46)

Note that a more general strategy for channel simulation in-
volves adaptively using the n copies of N , such that the output
of some can be used as the input to others (see Ref. [36] and
references within). We do not consider this problem here, and
it remains an open question whether or not theorem 3 below
still holds in the adaptive setting.

We say that the resource theory of Bell nonlocality is
reversible if

R(N → M)R(M → N ) = 1. (47)

It is unknown to the authors if the resource theory of Bell
nonlocality is reversible. One might be tempted to try and
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apply the general reversibility criteria for state-based resource
theories [66]. However, this approach does not hold in the
channel domain. Moreover, Ref. [66] makes use of maximal
set of free operations, whereas LOSR superchannels are not
the maximal set of superchannels that leave the collection
of LOSR channels invariant. To see this, not that a pre and
post application of the swap channel will transform any LOSR
channel into another LOSR channel; yet this superchannel is
clearly not LOSR.

Despite the results of Ref. [66] being applicable here, we
can still recover the same bound on the asymptotic convert-
ibility rate for two channels.

Theorem 3. Using the same notations as above,

R(N → M) � E∞
r (N XY )

E∞
r (MX ′Y ′ )

(48)

and equality holds if the resource theory is reversible.
Proof. Let {εn}n∈N be a sequence of positive numbers

with zero limit, let {mn}n∈N be a sequence of integers, and
{�n}n∈N be a sequence of LOSR superchannels with �n ∈
LOSR(X nY n → X ′mnY ′mn ), such that∣∣∣R(N → M) − mn

n

∣∣∣ � εn (49)

and
1
2‖(MX ′Y ′

)⊗mn − �n(N XY )‖1 � εn. (50)

In Ref. [35], it was shown that the relative entropy of a dy-
namical resource is asymptotically continuous. Therefore, for
all n ∈ N,

Er ((N XY )⊗n) � Er (�n((N XY )⊗n))

� Er ((MX ′Y ′
)⊗mn ) − εnκn

− (1 + εn)h

(
εn

1 + εn

)
,

where κn := maxE∈LOSR(X nY n ) Er (E ) and h is the binary Shan-
non entropy. Dividing both sides by n and taking the limit
n → ∞ yields

E∞
r (N ) � lim

n→∞
mn

n

1

mn
Er ((MX ′Y ′

)⊗mn )

= R(N → M)E∞
r (MX ′Y ′

), (51)

where we used the fact that

lim
n→∞

κn

n
< ∞. (52)

For the equality, observe that if the resource theory is re-
versible then we also have

R(N → M) = 1

R(M → N )
� E∞

r (N XY )

E∞
r (MX ′Y ′ )

(53)

since from the first part of the theorem we know that R(M →
N ) � E∞

r (MXY )
E∞

r (N X ′Y ′ )
. Therefore, in this case, we must have equal-

ity in (48). �

D. Extending classical measures to the quantum domain

We would like now to extend the above measure to all
instantaneous bipartite quantum processes; i.e., to all channels

N ∈ LOSE(AB) as given in (12). We focus in this paper on
the quantification of instantaneous resources since the quan-
tification of noninstantaneous entanglement, both static and
dynamic, are well understood [2,38,67]. Recall that LOSE
also includes all bipartite quantum states, and so the exten-
sions of Er to all instantaneous bipartite quantum channels
will also provide measures of Bell nonlocality in a quantum
bipartite state. We follow the extension approach recently put
forward in Ref. [54] for generalized resource theories.

Definition V.2. Let

E :
⋃
X,Y

Q(XY ) → R

be a classical entanglement measure. Then, for any bipartite
quantum channel N ∈ LOSE(AB), the minimal and maximal
extensions of Ecl to all instantaneous quantum processes, de-
noted by Ecl and Ecl, respectively, are given by

Ecl(N ) := sup Ecl
(
�[N ]

)
and

Ecl(N ) := inf Ecl(C), (54)

where the supremum and infimum are taken over all LOCC
superchannels � ∈ LOCC(AB → XY ) and all bipartite clas-
sical channels C ∈ ∪X,Y CPTP(XY ) that satisfy N = ϒ[C] for
some superchannel ϒ ∈ LOSR(XY → AB).

Remark. Since we are only considering here instantaneous
resources, the superchannels � and ϒ above are themselves
instantaneous LOCC operations. In particular, � has either
the form of Fig. 10 (i.e., LOSR) or the form of Fig. 11, while
ϒ can only have the LOSR form of Fig. 10 since its domain
is classical (hence the state on systems Ã1 and B̃1 will always
be separable which means it could be replaced with classical
shared randomness with the quantum preparation being ab-
sorbed into the post-LO instantaneous channels; in this case
the superchannel depicted in Fig. 11 becomes a special case
of the LOSR superchannel of Fig. 10).

The following theorem follows directly from the general
formalism introduced in Ref. [54] for the extension of re-
source measures from one domain to a larger one.

Theorem 4. Let Ecl be a classical entanglement measure,
and Ecl and Ecl be as above. Then, Ecl and Ecl are entangle-
ment measures for instantaneous bipartite quantum processes.
Moreover, any other such measure E ′

cl that reduces to Ecl on
classical instantaneous processes satisfies

Ecl(N ) � E ′
cl(N ) � Ecl(N ) ∀ N ∈ LOSE(AB).

Note that from its definition, Ecl cannot be increased even
under pre-LOCC operations that results in an instantaneous
classical channel, as depicted in Fig. 11.

VI. CONCLUSION

In this work, we have demonstrated that Bell nonlocality
is a property of bipartite quantum systems that can be studied
as a special form of entanglement. This is accomplished by
constructing a resource theory based on the abstract notion
of a quantum processes and input-to-output time delay. Re-
sources in quantum information science can thus be diversely
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classified as (1) classical or quantum, (2) static or dynamic,
(3) noisy or noiseless, (4) private or public, and as we add
in this paper, (5) instantaneous or noninstantaneous. This last
piece is the key to unifying entanglement and nonlocality as
quantum resources.

One of the key features of our model is that pre-LOCC
maps are naturally free operations; i.e., static-to-dynamic
conversions having the form of Eq. (4) are allowed in this
framework. At the same time, the use of LOCC maps after the
classical inputs (x0, y0) in Eq. (4) is automatically prohibited
as it leads to a noninstantaneous resource. By allowing pre-
LOCC, a well-defined partial order among static and dynamic
resource convertibility can be established. In particular, max-
imally entangled states will be “maximally resourceful” for
generating all forms of quantum correlations, including those
present in Hardy-like Bell tests [8]. This reflects our overall
conclusion that Bell nonlocality belongs to the same resource
theory as quantum entanglement.

There are a number of interesting open questions related to
the quantification of Bell nonlocality. We have shown that a
large class of bipartite classical channels is nonadditive with
respect to the relative entropy of resource. We conjecture that
this is a generic property in that all nonlocal, nonsignaling
channels are nonadditive. A related question is how non-
additive the relative entropy of Bell nonlocality can be. In
principle, it is possible that the measure scales sub-linearly in
the number of copies so that E∞

r (N ) = 0 for some non-LOSR
channel N . It is known that E∞

r is a faithful measure for states
(i.e., vanishing iff a given state is entangled) [68,69]; whether
or not the same is true for channels remains an open problem.
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