
PHYSICAL REVIEW A 104, 052206 (2021)

Transition to the classical regime in quantum mechanics on a lattice and implications
of discontinuous space

Oleg Kabernik *

Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada

(Received 16 April 2021; accepted 13 October 2021; published 4 November 2021)

It is well known that, due to the uncertainty principle, the Planck constant sets a resolution boundary in
phase space and the resulting trade-off in resolution between incompatible measurements has been thoroughly
investigated. It is also known that, in the classical regime, sufficiently coarse measurements of position and
momentum can simultaneously be determined. However, the picture of how the uncertainty principle gradually
disappears as we transition from the quantum to the classical regime is not so vivid. In the present work we
clarify this picture by studying the associated probabilities that quantify the effects of the uncertainty principle
in the framework of finite-dimensional quantum mechanics on a lattice. We also study how these probabilities
are perturbed by the granularity of the lattice and show that they can signal the discontinuity of the underlying
space.
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I. INTRODUCTION

Heisenberg’ s uncertainty principle is colloquially under-
stood as the fact that arbitrarily precise values of position
and momentum cannot simultaneously be determined (see
Refs. [1,2] for a review). A rigorous formulation of the un-
certainty principle is often conflated with the uncertainty
relations for states σxσp � h̄/2, where σx and σp refer to the
standard deviations of independently measured position and
momentum of a particle in the same state. This inequality is
also known as the preparation uncertainty relations because
it rules out the possibility of preparing quantum states with
arbitrarily sharp values of both position and momentum. It
does not, however, rule out the possibility of measurements
that simultaneously determine both of these values with ar-
bitrary precision. The essential effect that rules out the latter
possibility is the mutual disturbance between measurements
of incompatible observables, also known as error-disturbance
uncertainty relations.

According to the original formulation by Heisenberg [3],
due to the unavoidable disturbance by measurements, it is not
possible to localize a particle in a phase-space cell of the size
of the Planck constant or smaller. However, when phase-space
cells much coarser than the Planck constant are considered,
Heisenberg argued that the values of both observables can
be estimated at the expense of lower resolution. The picture
that emerges from Heisenberg’s original arguments is that the
Planck constant sets a resolution boundary in phase space
(see Fig. 1, left) that separates the quantum scale from the
classical scale. There is, of course, a continuum of scales and
it is natural to ask for a characteristic function that outlines
how the uncertainty principle becomes inconsequential as we
decrease the resolution of measurements.

*ok1223@gmail.com

A rigorous formulation of the error-disturbance uncertainty
relations has been extensively debated in recent years [4–9],
producing multiple perspectives on the fundamental limits
of simultaneous measurability of incompatible observables.
These formulations are similar to the preparation uncertainty
relations as they capture the trade-off between the resolution
and disturbance of measurements (which may also depend
on the states). However, the error-disturbance relations focus
on the limits of simultaneous measurability but they do not
outline how the mutual disturbance effects fade away with
decreasing resolution of measurements.

In the present work we will study the mutual disturbance
effects of the uncertainty principle on a finite-dimensional
lattice of integer length d . We will quantify the mutual dis-
turbance effects with the average probability 〈pagree〉 that an
instantaneous succession of coarse-grained measurements of
position-momentum-position will agree on both outcomes of
position. Since the value 〈pagree〉 measures the strength of the
mutual disturbance effects as a function of measurement res-
olution, it will allow us to quantitatively outline the transition
from the quantum to the classical regime where the mutual
disturbance effects fade away. With that we will show that the
geometric mean of the minimal length and the maximal length
on a lattice is a significant scale that separates the classical
regime of joint measurability, from the quantum regime where
mutual disturbance effects are important (see Fig. 1, right).

The idea of using coarse-grained measurements to study
the quantum-to-classical transitions is not new. Most notably
(and what initially inspired this work) is the work of Peres
[10], and later of Kofler and Brukner [11], where it was
argued that classical physics arises from sufficiently coarse
measurements. This idea has also been investigated from the
perspectives of entanglement observability [12] and Bell’s
or Leggett-Garg inequalities [13]. There are also a series of
studies by Rudnicki et al. [14–16] on uncertainty relations
for coarse-grained observables. What is different about the
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FIG. 1. (left) The continuous phase space where the cells with
the area 2π h̄ represent the resolution scale associated with the un-
certainty principle. (right) The discretized phase space of a lattice of
integer length d . Analogous cells with the area

√
d × √

d arise from
the scale

√
d which is the geometric mean of the minimal length (1)

and the maximal length (d) on a unitless lattice. The Planck constant
2π h̄ can be recovered from

√
d by converting the phase space area√

d × √
d to proper units.

present work is that we do not focus on the limits captured
by a certain bound (as in Bell’s inequalities or uncertainty
relations) but on the average case captured by the probability
〈pagree〉.

Our analysis of the mutual disturbance effects on a lattice
with discretized lengths are also related to what is known as
the generalized uncertainty principle [17]. The idea of the
generalized uncertainty principle follows from the fact that
the continuous phase-space picture is incompatible with the
various approaches to quantum gravity [18] where the mini-
mal resolvable length is δx ≈ 10−35 m. The existence of such
minimal length should affect the uncertainty principle and it
is usually captured by modifying the canonical commutation
relations [17].

There is great interest in identifying observable effects
associated with the modifications of the uncertainty principle
due to minimal length, and in recent years there have been at
least two experimental proposals [19,20] based on this idea.
Here we will capture the same effect of minimal length, but
instead of modifying the canonical commutation relations we
will show how 〈pagree〉 is perturbed by nonvanishing δx.

II. FROM QUANTUM TO CLASSICAL REGIMES
ON A LATTICE

Let us consider the simple, operationally meaningful quan-
tity pagree, which is the probability that an instantaneous
succession of position-momentum-position measurements
will agree on both outcomes of position, regardless of the
outcomes. When all measurements have arbitrarily fine res-
olution, the second measurement in this succession prepares
a sharp momentum state that is nearly uniformly distributed
in position space. Then, the probability that the first and the
last measurements of position will agree is vanishingly small
pagree ≈ 0. As we decrease the resolution of measurements,
we expect the probability pagree to grow from 0 to 1 because
coarser momentum measurement will cause less spread in the
position space, and coarser position measurements will be
more likely to agree on the estimate of position.

FIG. 2. Periodic one-dimensional lattice with d lattice sites in
total, w lattice sites in each coarse-graining interval, and k = d/w

intervals. The lattice unit of length is δx.

Now, consider the average 〈pagree〉 over all states. In gen-
eral, the average value 〈pagree〉 does not inform us about how
strongly the measurements disturb each other for any particu-
lar state ρ. However, when the average 〈pagree〉 is close to 0 or
1, the value of pagree(ρ) has to converge to the average for al-
most all states ρ. That is because pagree ∈ [0, 1] so the variance
has to vanish as the average gets close to the edges. Therefore,
the value of 〈pagree〉 indicates how close we are to the regime
〈pagree〉 ≈ 0 where the measurements strongly disturb each
other for almost all states, or the regime 〈pagree〉 ≈ 1 where
the mutual disturbance is inconsequential for almost all states.
We can therefore utilize 〈pagree〉 as a characteristic function
that quantifies the relevance of the uncertainty principle and
outlines the transition between quantum and classical regimes.

To calculate the value of 〈pagree〉 as a function of mea-
surement resolution, we turn to the canonical setting of
finite-dimensional quantum mechanics. In this setting we con-
sider a particle on a periodic one-dimensional lattice with d
lattice sites. Initially, both lattice units of position and mo-
mentum will be set to unity δx ≡ 1, δp ≡ 1. Later, we will
introduce proper units and consider the continuum limit.

Following the construction in Refs. [21,22], the Hilbert
space of our system is given by the span of position basis
|X ; n〉 for n = 0, . . . , d − 1. The momentum basis is related
to the position basis via the discrete Fourier transform F :

|X ; n〉 = F †|P; n〉 = 1√
d

d−1∑
m=0

e−i2πmn/d |P; m〉, (1)

|P; m〉 = F |X ; m〉 = 1√
d

d−1∑
n=0

ei2πmn/d |X ; n〉. (2)

In principle, realistic finite-resolution measurements
should be modeled as unsharp positive operator valued mea-
surements (POVMs) [10,23], where each POVM element is
centered around a certain outcome value but has a nonzero
probability (usually Gaussian) to respond to the adjacent
values as well. To simplify the calculations we consider
an idealized version of that in the form of coarse-grained
projective measurements. That is, each POVM element is a
projection on a subspace associated with a range of values
such that an outcome associate with each projection does not
distinguish between any of the values in the range.

We introduce the integer parameters wx, wp to specify the
widths of the coarse-graining intervals for the corresponding
observables (larger w means lower resolution). The variable
k = d/w specifies the number of coarse-graining intervals
which we will also assume to be an integer. See Fig. 2 for
a diagrammatic summary of the relevant lengths.
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The coarse-grained position and momentum observables
are constructed from the spectral projections

�X ;ν =
νwx+wx−1∑

n=νwx

|X ; n〉〈X ; n|,

�P;μ =
μwp+wp−1∑

m=μwp

|P; m〉〈P; m|,

associated with the eigenvalues of coarse-grained position
ν = 0, . . . , kx − 1 and momentum μ = 0, . . . , kp − 1. The
coarse-grained observables are then given by

Xcg =
kx−1∑
ν=0

ν �X ;ν, Pcg =
kp−1∑
μ=0

μ�P;μ.

In the following, we only compute the probabilities of out-
comes so Pcg and Xcg are only shown here for the sake of
completeness; the spectral projections �X ;ν and �P;μ is all
we need.

Let us now calculate the probability of getting the
outcomes ν, μ, ν in an instantaneous sequence of position-
momentum-position measurements on the initial state ρ. If
ρ (ν), ρ (νμ) are the intermediate postmeasurement states in this
sequence then we can express this probability as

pxpx(ν, μ, ν|ρ) = tr[�X ;νρ]tr[�P;μρ (ν)]tr[�X ;νρ
(νμ)]

= tr[(�X ;ν�P;μ�X ;ν )2ρ], (3)

where the last line follows using explicit expressions for ρ (ν)

and ρ (νμ). Then, the probability that both position outcomes
agree, regardless of the outcomes, is

pagree(ρ) =
kx−1∑
v=0

kp−1∑
μ=0

pxpx(ν, μ, ν|ρ)

= tr

⎡
⎣kx−1∑

v=0

kp−1∑
μ=0

(�X ;ν�P;μ�X ;ν )2ρ

⎤
⎦. (4)

From Eq. (4) we identify the observable

�agree =
kx−1∑
ν=0

kp−1∑
μ=0

(�X ;ν�P;μ�X ;ν )2,

whose expectation values are the probabilities pagree(ρ) =
tr(�agreeρ).

Since pagree(ρ) is linear in ρ, the average 〈pagree〉 is given
by pagree(〈ρ〉) where 〈ρ〉 = 1

d I is the average state. We can
then calculate

〈pagree〉 = pagree

(
1

d
I

)
= 1

d
tr[�agree]

= wx

d
+ 2

wxwpd

wp−1∑
n=1

(wp − n)
sin2

(
πnwx

d

)
sin2

(
πn
d

) (5)

(see Appendix B for the details of this calculation).
The plot of 〈pagree〉 as a function of wx, wp is shown in

Fig. 3(a) which makes it clear that 〈pagree〉 is symmetric under
the exchange of wx with wp. The plot of 〈pagree〉 along the

FIG. 3. (a) The plot of the average probability 〈pagree〉 that an
instantaneous succession of position-momentum-position measure-
ments will agree on both outcomes of position as a function of the
resolution parameters wx , wp on a lattice of length d . The dotted
curve wxwp = d is the boundary that outlines the intermediate scale
with respect to which we distinguish the quantum and classical
regimes. (b) The plot of 〈pagree〉 (solid) on the diagonal w = wx = wp

with the upper and lower bounds (dashed) from Eqs. (6) and (7).

diagonal w = wx = wp is shown in Fig. 3(b) together with
the upper and lower bounds

〈pagree〉 � w2/d, w <
√

d, (6)

〈pagree〉 � 1 − 2

π2

ln(w2/d ) + 3π2/2

w2/d
, w >

√
d (7)

(see Appendix D for the derivation). Note that
√

d distin-
guishes the two separate domains where these bounds are
valid.
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The upper bound (6) tells us that, when w <
√

d , the value
of 〈pagree〉 falls to 0 at least as fast as ∼w2. The lower bound

(7) tells us that, when w >
√

d , the value of 〈pagree〉 climbs

to 1 at least as fast as ∼1 − ln w2

w2 . The fact that the domains

of these bounds are separated by
√

d implies that there is an
inflection in 〈pagree〉 somewhere around w = √

d along the

diagonal w = wx = wp. That is,
√

d is an intermediate scale
where neither bound applies so it can serve as a reference
point with respect to which we distinguish the quantum and
classical regimes.

The above observation can be extended to the entire plane
of wx, wp, where the curve wxwp = d generalizes the point
w = √

d . According to the plot in Fig. 3(a), as we get far-
ther from the curve wxwp = d , we get deeper into one of
the regimes, and an inflection in 〈pagree〉 occurs somewhere
near the curve. It can be shown (see Appendix C) that the
intermediate value 〈pagree〉 ≈ 0.656 holds almost everywhere
on this curve, except the far ends where it climbs to 1.

There is nothing special about the value 0.656, however,
the significance of the curve wxwp = d is that it outlines the
intermediate scale in phase space with respect to which we
can distinguish the quantum regime from the classical. That
is, the curve wxwp = d sets a reference scale so we can say
that {〈pagree〉 ≈ 1, wxwp 	 d

〈pagree〉 ≈ 0, wxwp 
 d.

We can of course say the same about wxwp = cd for some
c �= 1; the important fact is that the constraint cd depends
linearly on d . We will see below that for c = 1 this constraint
corresponds exactly to the Planck constant.

III. THE CONTINUUM LIMIT AND THE IMPLICATIONS
OF MINIMAL LENGTH

A. Perturbations of 〈pagree〉
We now introduce proper units. The total length of the

lattice in proper units is L = δxd , where δx is the smallest unit
of length associated with one lattice spacing. The smallest unit
of inverse length, or a wave number, is then 1/L. With the de
Broglie relation p = 2π h̄/λ, we can convert wave numbers
1/λ to momenta, so the smallest unit of momentum is δp =
2π h̄/L.1 The coarse-graining intervals wx and wp become

x = δxwx and 
p = δpwp when expressed in proper units.

The continuum limit can be achieved by taking δx → 0
and d → ∞ while keeping L constant. The coarse-graining
interval of position 
x = δxwx is kept constant as well by
fixing the total number of intervals kx = d/wx while wx →
∞. Unlike δx, δp = 2π h̄/L does not vanish in the continuum
limit (the momentum of a particle in a box remains quantized)
so the coarse-graining intervals of momentum 
p = δpwp are
unaffected and wp remains a finite integer.

We may now ask what happens to 〈pagree〉 as we take
the continuum limit. Since wx/d = 
x/L, the expression in

1Note that the de Broglie relation is the source of the Planck
constant in all of the following equations.

Eq. (5) can be reexpressed using the proper units of length as

〈pagree〉 = 
x

L
+ L


x

2

wp

wp−1∑
n=1

(wp − n)
sin2

(
πn
x

L

)
[
d sin

(
πn
d

)]2 . (8)

We did not have to use the proper units of momentum since

wp = 
p

δp
= 
p

2π h̄
L,

which is a legitimate quantity even in the continuum limit
(provided that L is finite).

The only evidence for the lattice structure that remains in
Eq. (8) is the d dependence of the factors

[
d sin

(πn

d

)]−2
= 1

π2n2
+ 1

3d2
+ O

(
1

d3

)
.

In the continuum limit they reduce to 1/π2n2, but when the
minimal length δx = L/d is above 0, these factors are per-
turbed with the leading-order contribution of 1/3d2.

The leading-order perturbation term of 〈pagree〉 is therefore

〈pagree〉pert. = L


x

2

wp

wp−1∑
n=1

(wp − n)
sin2

(
πn
x

L

)
3d2

= 2

3wxwpd

wp−1∑
n=1

(wp − n) sin2
(πnwx

d

)
, (9)

and we reverted to the lattice units in the last step. In Fig. 4(a)
we plot Eq. (9) for d = 104. As we can see from the plot,
the lattice perturbation gets stronger as wx decreases and wp

increases, and the perturbation spikes in the regime where
wx <

√
d and wp >

√
d .

Focusing on this regime, we can assume that wp 	 1
(since

√
d 	 1) and approximate the sum with an integral.

That is,

〈pagree〉pert. = 2wp

3wxd

wp−1∑
n=1

1

wp

(
1 − n

wp

)
sin2

(
πnwxwp

wpd

)

≈ 2

3

wp

wxd

∫ 1

0
dα(1 − α) sin2

(
πα

wxwp

d

)

= 2

3

wp

wxd

[
1

4
+ cos (2πwxwp/d ) − 1

8π2(wxwp/d )2

]
. (10)

See Fig. 4(b) for the plot of Eq. (10). By re-introducing proper
units and rearranging we get

〈pagree〉pert. ≈ 1

6π

(
δx


x

)2[1

2


x
p

h̄
+ cos (
x
p/h̄) − 1


x
p/h̄

]
.

In particular, on the curve 
x
p = 2π h̄ we have
〈pagree〉pert. ≈ 1

6 (δx/
x)2 so the perturbation keeps growing
as we ascend on this curve.

Since 〈pagree〉 is an operationally defined quantity, it can be
measured in principle. The perturbation term 〈pagree〉pert. can
therefore be leveraged as a signal of the discontinuity of space
in experimental approaches. That is, given the continuum

052206-4



TRANSITION TO THE CLASSICAL REGIME IN QUANTUM … PHYSICAL REVIEW A 104, 052206 (2021)

FIG. 4. (a) The plot of the perturbation of 〈pagree〉 on a lattice of
length d = 104 as given by Eq. (9) (the dotted curve is wxwp = d).
(b) The profile of the perturbation as given by Eq. (10) for wp/

√
d =

1, 2, 3, 4 and d = 104.

probabilities

〈pagree〉cont. = 
x

L
+ L


x

2

wp

wp−1∑
n=1

(wp − n)
sin2

(
πn
x

L

)
π2n2

,

we expect to find that

〈pagree〉 = 〈pagree〉cont. + 〈pagree〉pert. + O

(
1

d3

)
,

so by measuring the deviation of 〈pagree〉 from the value of
〈pagree〉cont. as defined above, we can detect the discontinuity
of space.

For realistic values of d the signal of 〈pagree〉pert. is of
course extremely weak. However, the “humps” of 〈pagree〉pert.

start to appear on the intermediate scales of 
x < δx
√

d and

p > δp

√
d [see Fig. 4(b)], so we do not have to go to the

extremes of minimal length or maximal momentum to look
for them.

B. Factorizing the Planck constant

With the introduction of proper units we observe that the
smallest unit of phase space area on a lattice is2 δxδp =
2π h̄/d . Therefore, the curve wxwp = d that outlines the in-
termediate scale in phase space becomes


x
p = δxδpwxwp = δxδp d = 2π h̄. (11)

Thus, we have recovered Heisenberg’s original argument that
the Planck constant sets the scale in phase space where
the mutual disturbance effects become significant. Note that
Eq. (11) is related to what is known as the error-disturbance
uncertainty relations (not to be confused with the preparation
uncertainty relations). We thus see that, in the unitless lattice
setting (where δx ≡ 1 and δp ≡ 1), the constant d is the unit-
less “Planck constant.”3

In the continuous phase space, the uncertainty principle is
only associated with the constant 2π h̄, which does not admit
a preferred factorization into position and momentum. On the
lattice, however, the same constant is given by δxδpd , which
can be factorized as δx

√
d and δp

√
d . This factorization is

not arbitrary and the significance of the scales δx
√

d and
δp

√
d is supported by the analysis of 〈pagree〉. In particular, we

saw that the perturbation 〈pagree〉pert. due to the discontinuity

of the lattice spikes in the regime where 
x < δx
√

d and

p > δp

√
d .

The significance of the scale
√

d on a lattice can also be
observed from 〈pagree〉 directly. In Fig. 3(a) we can see that,

when the localization in position wx crosses
√

d from above,
the localization in momentum wp has to diverge faster than
it converges in wx in order to stay in the classical regime. In
contrast, as long as both wx,wp 	 √

d , the classical regime
is insensitive to the variations in these variables and there is
no need to compensate the increase in localization for one
variable with the decrease in localization for the other.

This observation is directly analogous to the analysis of
Kofler and Brukner in Ref. [11] (similar questions have been
considered in Refs. [25] and [10]), where they demonstrated
that, for a spin- j system, incompatible spin components can
simultaneously be determined if the resolution of measure-
ments is coarse compared with

√
j. Our analysis show that the

same conclusion applies to position and momentum on a lat-
tice, where both variables can simultaneously be determined if
the resolution of measurements is coarse compared with

√
d .

The uncertainty principle on a lattice can therefore primar-
ily be associated with the unitless scale

√
d , which identifies

the intermediate scales δx
√

d and δp
√

d for position and

2This is a well-known constraint that comes up in the construction
of generalized Clifford algebras in finite-dimensional quantum me-
chanics. See Ref. [24] for an overview and the references therein.

3Note that, unlike 2π h̄, the constant d depends on the size of the
system. This inconstancy traces back to the fact that, in the unitless
case, we define δp ≡ 1, while in proper units we have δp = 2π h̄/L,
which depends on the total length L.
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momentum. The intermediate scale in phase space is in turn
given by

(δx
√

d )(δp
√

d ) = δxδp d = 2π h̄.

The intermediate length scale δx
√

d can be identified as
the scale around which increases in localization in position
result inequal decreases in localization in momentum, and
vice versa. Of course, this definition is only meaningful on a
lattice because it requires the fundamental units δx and δp in
terms of which we can compare the changes in localization for
both variables. Nevertheless, we conclude that, on a lattice, in
addition to the minimal length δx and the maximal length L,
the uncertainty principle singles out another significant length

lu = δx
√

d.

The length lu is directly related to the minimal length δx
via L = δxd as lu = √

δx L or δx = l2
u /L. The length lu is

therefore the geometric mean of the minimal length δx and
the maximal length L. It can also be framed as the length for
which there are as many intervals lu in L as there are δx in lu.
In the continuum limit, where the minimal length δx vanishes,
the length lu = √

δx L must also vanish. Therefore, if we can
establish that lu > 0 then it follows that δx > 0.

We saw that the perturbations of 〈pagree〉 spike in the regime
where 
x < lu, but it is not clear at this point what realisti-
cally observable effects can be associated with the length lu. If
such effects can be identified, however, then the discontinuity
of space can be probed at scales that are many orders of
magnitude greater than the Planck length. For instance, for
L ≈ 1 m of the order of a macroscopic box and δx ≈ 10−35 m
of the order of Planck length, we have lu ≈ 10−17.5 m, which
is much closer to the scale of experiments.

IV. CONCLUSION

In the present work we have studied the effects of the
uncertainty principle on a finite-dimensional periodic lattice
and their dependence on minimal length. Instead of modifying
the canonical commutation relations, we have operationally
quantified the mutual disturbance effects with the average
probability 〈pagree〉 and compared it with the continuum limit.

The analysis of 〈pagree〉 indicates that
√

d is a significant
scale on a lattice that separates the classical regime of joint
measurability, from the quantum regime where mutual distur-
bance effects are important. In the units of length, the scale√

d corresponds to the geometric mean lu = √
δxL of the min-

imal length δx and the maximal length L, and in phase space
it corresponds to the Planck constant. This result is consistent
with the conclusion of Kofler and Brukner [11] for spin- j
systems where incompatible observables can simultaneously
be determined if the resolution of measurements is coarse
compared with

√
j.

We have also analyzed the perturbations of 〈pagree〉 due
to the nonvanishing minimal length δx on a lattice. As a
result, we saw that the perturbations become pronounced in
the regime where the resolution in position falls below the
scale of lu, and the resolution in momentum rises above the
scale of δp

√
d .

This is a preliminary result and we make no attempt to
translate it into experimental predictions. For a more con-
crete experimental proposal it will be necessary to repeat the
analysis of pagree with the experimentally accessible ensem-
ble of states ρ. Furthermore, depending on the experimental
implementation, it will be necessary to use the nonideal-
ized coarse-grained measurements and (possibly) account for
the time evolution in between or during the measurements.
Nonetheless, this result indicates that, in principle, it is possi-
ble to detect the discontinuity of the underlying space on the
intermediate scales associated with

√
d .
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APPENDIX A: GENERAL DEFINITIONS AND IDENTITIES

As described above, we are dealing with the d-dimensional
Hilbert space of a particle on a periodic lattice with the po-
sition and momentum basis related via the discrete Fourier
transform F . The translation operators TX , TP in position and
momentum can be defined by their action on the basis [21] as
follows:

TX |X ; n〉 = |X ; n + 1〉, T †
X |X ; n〉 = |X ; n − 1〉,

TP|P; m〉 = |P; m + 1〉, T †
P |P; m〉 = |P; m − 1〉,

where ±1 are mod d . By expanding the position basis in
momentum basis and vice versa and using the definitions, it
is straightforward to verify that

TP|X ; n〉 = ei2πn/d |X ; n〉, T †
P |X ; n〉 = e−i2πn/d |X ; n〉,

TX |P; m〉 = e−i2πm/d |P; m〉, T †
X |P; m〉 = ei2πm/d |P; m〉.

Therefore, TP commutes with |X ; n〉〈X ; n| and so does TX with
|P; m〉〈P; m|. This also means that TP commutes with �X ;ν

and TX commutes with �P;μ.
Using the translation operators we can express the coarse-

grained position and momentum projections as

�X ;ν = T νwx
X �X ;0T νwx†

X , �P;μ = T
μwp

P �P;0T
μwp†

P .

Then, using the commutativity of projections with translations
we get the identity

�X ;ν�P;μ�X ;ν = T
μwp

P (�X ;ν�P;0�X ;ν )T μwp†
P

= T
μwp

P T νwx
X (�X ;0�P;0�X ;0 )T νwx†

X T
μwp†

P .

(A1)
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Focusing on the ν = μ = 0 case we can express

�X ;0�P;0�X ;0 =
wp−1∑
m=0

�X ;0|P; m〉〈P; m|�X ;0

= 1

kx

wp−1∑
m=0

|P0; m〉〈P0; m|. (A2)

Thus, we define the truncated momentum states which are
given by the normalized support of the mth momentum state
on the νth position interval:

|Pν ; m〉 :=
√

kx �X ;ν |P; m〉 = 1√
wx

νwx+wx−1∑
n=νwx

ei2πmn/d |X ; n〉.

(A3)

In general, these states are not orthogonal and their overlap is
given by

〈Pν ′ ; m′ |Pν ; m〉 = δν ′,νkx〈P; m′|�X ;ν |P; m〉

= δν ′,ν
kx

d

νwx+wx−1∑
n=νwx

ei2π (m−m′ )n/d .

It will be convenient to identify sums such as the one above
by defining the function

Δq(x) := 1

q

q−1∑
n=0

ei2πxn/q = eiπ (x−x/q)

q

sin (πx)

sin(πx/q)
(A4)

over real x and integers q � 1. Note that Δq(0) = 1. Then, for
ν ′ = ν = 0 the overlap of truncated momentum states can be
expressed as

〈P0; m′ |P0; m〉 = Δwx

(
m − m′

kx

)
. (A5)

APPENDIX B: CALCULATION OF EQ. (5)

Given the operator

�agree =
kx−1∑
ν=0

kp−1∑
μ=0

(�X ;ν�P;μ�X ;ν )2,

we are interested in the quantity 〈pagree〉 = 1
d tr[�agree]. Using

the identity (A1) we can simplify the problem:

〈pagree〉 = 1

d
tr

⎡
⎣kx−1∑

ν=0

kp−1∑
μ=0

(�X ;ν�P;μ�X ;ν )2

⎤
⎦

= kxkp

d
tr[(�X ;0�P;0�X ;0 )2]. (B1)

Using (A2) and (A5) we can further simplify

〈pagree〉 = 1

d

kp

kx

wp−1∑
m,m′=0

| 〈P0; m′ |P0; m〉|2

= 1

d

kp

kx

wp−1∑
m,m′=0

∣∣∣∣Δwx

(
m − m′

kx

)∣∣∣∣
2

.

Since the summand depends only on the difference n = m −
m′, we can reexpress the sum in terms of the single variable n

〈pagree〉 = 1

d

kp

kx

wp−1∑
n=−wp+1

(wp − |n|)
∣∣∣Δwx

( n

kx

)∣∣∣2
.

Since the summed function is symmetric |Δwx (x)|2 =
|Δwx (−x)|2, we have

〈pagree〉 = 1

d

kp

kx

[
wp|Δwx (0)|2+2

wp−1∑
n=1

(wp − n)
∣∣∣Δwx

( n

kx

)∣∣∣2
]
.

Substituting the definition (A4) of Δwx and recalling that
Δwx (0) = 1 and that kx = d/wx and kp = d/wp, we get the
result

〈pagree〉 = 1

d

wx

wp

[
wp + 2

wp−1∑
n=1

(wp − n)
1

w2
x

sin2
(

πnwx
d

)
sin2

(
πn
d

)
]

= wx

d
+ 2

wxwpd

wp−1∑
n=1

(wp − n)
sin2

(
πnwx

d

)
sin2

(
πn
d

) . (B2)

The apparent asymmetry under the exchange of wx with
wp in the result (B2), traces back to the apparent asymmetry
under the exchange between �X ;0 and �P;0 in the expression
(B1). These asymmetries are only apparent because

tr[(�X ;0�P;0�X ;0 )2] = tr[�X ;0�P;0�X ;0�P;0]

= tr[(�P;0�X ;0�P;0 )2],

so if we were to change the order in expression (B1) to
tr[(�P;0�X ;0�P;0 )2], we would end up with

〈pagree〉 = wp

d
+ 2

wxwpd

wx−1∑
n=1

(wx − n)
sin2

(πnwp

d

)
sin2

(
πn
d

) .

The form (B2) is better suited for the continuum limit where
wp remains finite while wx is not (but wx

d is).

APPENDIX C: THE VALUE OF 〈pagree〉 ON THE CURVE
wxwp = d

When wxwp = d we can simplify

〈pagree〉 = 1

wp
+ 2

d2

wp−1∑
n=1

(wp − n)
sin2

(
πn
wp

)
sin2

(
πn
d

) . (C1)

First, let us consider the intermediate range of values 1 

wp 
 d , which includes wp = √

d provided that 1 
 d .
Since n < wp 
 d we can approximate sin−2( πn

d ) ≈ ( πn
d )−2

and so

〈pagree〉 ≈ 1

wp
+ 2

π2

wp−1∑
n=1

(wp − n)
sin2

(
πn
wp

)
n2

. (C2)

Since 1 
 wp, we can approximate the sum with an integral
by introducing the variable α = n

wp
∈ [0, 1] and dα = 1

wp
,
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such that

〈pagree〉 ≈ 1

wp
+ 2

π2

wp−1∑
n=1

1

wp

(
1 − n

wp

) sin2
(
π n

wp

)
n2/w2

p

≈ dα + 2

π2

∫ 1

0
dα(1 − α)

sin2(πα)

α2
≈ 0.656.

Thus, 〈pagree〉 ≈ 0.656 for 1 
 wp 
 d on the curve wxwp =
d .

When the values of wp are close to 1, we cannot assume
that 1 
 wp but wp 
 d still holds so we can still use the
approximation (C2). For wp = 1 the sum in (C2) vanishes
and we are left with 〈pagree〉 = 1/wp = 1 [we can also see
that from Eq. (B1) that is easy to evaluate for wp = 1, and
wx = d]. Numerically evaluating Eq. (C2) for the subsequent
values of wp results in the following series (considering only
three significant figures)

wp 1 2 3 4 ... 15 16 ...
〈pagree〉 1.00 0.703 0.675 0.667 ... 0.657 0.656 0.656

Thus, we can see that, on one end of the curve wxwp =
d , where the wps are small, the function 〈pagree〉 reaches and
stays on the value 0.656 starting from wp � 16.

Since wx and wp are interchangeable, we can reexpress
Eq. (C2) as

〈pagree〉 ≈ 1

wx
+ 2

π2

wx−1∑
n=1

(wx − n)
sin2

(
πn
wx

)
n2

.

Then, on the other end of this curve, where the wxs are small,
the function 〈pagree〉 reaches and stays on the value 0.656
starting from wx � 16. Therefore, 〈pagree〉 ≈ 0.656 almost ev-
erywhere on the curve wxwp = d , with the exception of the
far ends where wp < 16 or wx < 16; there it climbs to 1.

APPENDIX D: CALCULATION
OF THE BOUNDS (6) AND (7)

From here on, we assume w = wx = wp and k = kx = kp.
To calculate the bounds on 〈pagree〉 we have to find a differ-

ent way to express �X ;0�P;0�X ;0. Recalling Eq. (A5) and the
function (A4) we now have

|〈P0; m′|P0; m〉| =
∣∣∣∣Δw

(
m − m′

k

)∣∣∣∣ = sin
(
π m−m′

k

)
w sin

(
π m−m′

d

) .

Observe that the truncated momentum states are orthogonal
when the difference m − m′ is an integer number of ks. That
is, for any integers c, c′, and n the states |P0; ck + n〉 and
|P0; c′k + n〉 are orthogonal.

In Eq. (A2) we have derived the form

�X ;0�P;0�X ;0 = 1

k

w−1∑
m=0

|P0; m〉〈P0; m|, (D1)

where |P0; m〉〈P0; m| are rank-1 projections. Since some of
these projections are pairwise orthogonal, we can group them

together and express �X ;0�P;0�X ;0 as a smaller sum of
higher-rank projections.

To do that, let us first assume that γ = w/k is a nonzero
integer (we will not need this assumption in general). Then
the set of integers {m = 0, . . . ,w − 1} can be partitioned
into k subsets �n = {ck + n | c = 0, . . . , γ − 1} with n =
0, . . . , k − 1. Thus, we can group up the orthogonal elements
in the sum (D1) as

�X ;0�P;0�X ;0 = 1

k

k−1∑
n=0

∑
m∈�n

|P0; m〉〈P0; m| = 1

k

k−1∑
n=0

�(n),

where we have introduced the rank-γ projections

�(n) =
∑

m∈�n

|P0; m〉〈P0; m| =
γ−1∑
c=0

|P0; ck + n〉〈P0; ck + n|.

When γ = w/k is not an integer, the accounting of indices
is more involved. We have to introduce the integer part g =
�γ � and the remainder part r = w − k�γ � of γ . As before,
we partition the set {m = 0, . . . ,w − 1} into subsets

�n :=
{{ck + n | c = 0, . . . , g}, n < r
{ck + n | c = 0, . . . , g − 1}, n � r,

but now they are not of equal size and the range of n depends
on whether γ � 1. When γ � 1 then |�n| is g + 1 for n < r
and g for n � r. When γ < 1 so g = 0 and r = w, then
|�n| = 1 for n < w but |�n| = 0 for n � w so we do not
need to count �n for n � w. Noting that the condition γ � 1
is equivalent to min(k,w) = k and the condition γ < 1 is
equivalent to min(k,w) = w, we conclude that we only have
to count �n for n < min(k,w). Therefore, for the general γ

we have

�X ;0�P;0�X ;0 = 1

k

min(k,w)−1∑
n=0

∑
m∈�n

|P0; m〉〈P0; m|

= 1

k

min(k,w)−1∑
n=0

�(n), (D2)

and the projections

�(n) =
∑

m∈�n

|P0; m〉〈P0; m| =
gn−1∑
c=0

|P0; ck + n〉〈P0; ck + n|

are now of the rank

gn =
{

g + 1, n < r
g, n � r.

Using the new form (D2), we can reexpress Eq. (B1) as

〈pagree〉 = k2

d
tr
[
(�X ;0�P;0�X ;0 )2]

= 1

d

min(k,w)−1∑
n,n′=0

tr[�(n)�(n′ )]. (D3)

1. The upper bound

The quantity tr[�(n)�(n′ )] is the Hilbert-Schmidt inner
product 〈�(n),�(n′ )〉 (also known as the Frobenius inner
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product) of the operators �(n) and �(n′ ). Therefore, it obeys
the Cauchy–Schwarz inequality

|tr[�(n)�(n′ )]|2 = |〈�(n),�(n′ )〉|2 � 〈�(n),�(n)〉〈�(n′ ),�(n′ )〉
= tr[�(n)]tr[�(n′ )].

Since the value

tr[�(n)�(n′ )] =
∑

m∈�n

∑
m′∈�n′

|〈P0; m|P0; m′〉|2

is clearly real and positive, we get

tr[�(n)�(n′ )] �
√

tr[�(n)]tr[�(n′ )].

The value of tr[�(n)] is the rank of the projection which is
either g or g + 1, so

tr[�(n)�(n′ )] � g + 1.

Therefore, the form of 〈pagree〉 in Eq. (D3) implies that

〈pagree〉 �
1

d

min(k,w)−1∑
n,n′=0

(g + 1) = (g + 1)
min(k,w)2

d
.

When γ � 1, this upper bound is greater or equal to 1
because

(g + 1)
min(k,w)2

d
= (g + 1)

k2

d
� γ

k2

d
= w

k

d
= 1,

which is not helpful since we already know that 〈pagree〉 � 1
because it is a probability. When γ < 1, on the other hand, we
have g = 0 and so

(g + 1)
min(k,w)2

d
= w2

d
.

Thus, when γ < 1, which translates to w < k = d/w so w <√
d , we have the upper bound

〈pagree〉 �
w2

d
.

2. The lower bound

We now focus on the lower bound of the inner product
tr[�(n)�(n′ )] for the case γ � 1 [so w �

√
d and min(k,w) =

k] and then substitute the result in Eq. (D3).
Since we are interested in the lower bound, we can simplify

the expression by discarding the terms c, c′ = g in the sum

tr[�(n)�(n′ )] =
gn−1∑
c=0

gn′−1∑
c′=0

|〈P0; c′k + n′|P0; ck + n〉|2

�
g−1∑

c,c′=0

|〈P0; c′k + n′|P0; ck + n〉|2.

According to Eq. (A5) we have

| 〈P0; c′k + n′ |P0; ck + n〉|2 = |Δw(c − c′ + α)|2,

where we have introduced the variable α = n−n′
k . We can now

identify the sum

S(α) =
g−1∑

c,c′=0

|Δw(c − c′ + α)|2 � tr[�(n)�(n′ )]

and focus on lower bounding S(α) for all possible α.
Since |Δw(x)|2 is a symmetric function of x we have

|Δw(c − c′ + α)|2 = |Δw(−c + c′ − α)|2,
and since the values of c and c′ are interchangeable in the sum,
we conclude that S(α) is a symmetric function of α. There-
fore, we only need to consider positive α = n−n′

k , and since
n, n′ = 0, . . . , k − 1, it takes the values α = 0, 1

k , . . . , k−1
k ∈

[0, 1].
Since the summand in S(α) only depends on the differ-

ences l = c − c′, we can simplify the sum

S(α) =
g−1∑

l=−g+1

(g − |l|)|Δw(l + α)|2

=
g−1∑

l=−g+1

(g − |l|)
w2

sin2 [π (l + α)]

sin2 [π (l + α)/w]
,

where in the last step we substituted the explicit form of Δw.
Note that sin2[π (l + α)] = sin2(πα) for integer l and also
sin−2( π (l+α)

w
) � ( π (l+α)

w
)−2 so we get

S(α) � sin2 (πα)

π2

g−1∑
l=−g+1

g − |l|
(l + α)2 . (D4)

We now focus on evaluating the lower bound of the sum

s(α) =
g−1∑

l=−g+1

g − |l|
(l + α)2 . (D5)

We can rearrange the elements of this sum as follows:

s(α) = g

α2
+

g−1∑
l=1

[
g − l

(l + α)2 + g − l

(l − α)2

]

= g

α2
+

g−1∑
l=1

[
l

(g − l + α)2 + l

(g − l − α)2

]

where in the last step we simply reversed the order of the
elements in the sum. Now we can introduce the auxiliary
variables β± = g ± α, so

s(α) = g

α2
+

g−1∑
l=1

[
l

(l − β+)2 + l

(l − β−)2

]

= g

α2
+

g−1∑
l=1

[
β+

(l − β+)2 + 1

(l − β+)
+ β−

(l − β−)2

+ 1

(l − β−)

]

= g

α2
+ s1(α) + s2(α), (D6)
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where we have identified the sums of harmonic-like series

s1(α) =
g−1∑
l=1

[
1

(l − β−)
+ 1

(l − β+)

]
,

s2(α) =
g−1∑
l=1

[
β−

(l − β−)2 + β+
(l − β+)2

]
.

Such sums can be evaluated using the polygamma
functions [26],

ψ ( j)(x) := d j

dx j
ln �(x),

where � is the gamma function that interpolates the factorial
for all real (and complex) values. The two key properties of
the polygamma functions that we will need are the recursion
and reflection relations

ψ ( j)(1 + x) = ψ ( j)(x) + (−1) j j!

x j+1
, (D7)

ψ ( j)(1 − x) = (−1) jψ ( j)(x) + (−1) jπ
d j

dx j
cot(πx). (D8)

For integer g we can expand ψ ( j)(g − x) for j = 0, 1 using
the recursion relation (D7) to get

ψ (0)(g − x) = ψ (0)(1 − x) +
g−1∑
l=1

1

l − x
,

ψ (1)(g − x) = ψ (1)(1 − x) −
g−1∑
l=1

1

(l − x)2 .

Applying the reflection relation (D8) and rearranging yields

g−1∑
l=1

1

l − x
= ψ (0)(g − x) − ψ (0)(x) − π cot (πx), (D9)

g−1∑
l=1

1

(l − x)2 = −ψ (1)(g − x) − ψ (1)(x) + π2

sin2 (πx)
. (D10)

Now, using (D9) and recalling that g − β± = ∓α we can
express s1(α) as

s1(α) = ψ (0)(α) − ψ (0)(β−) + ψ (0)(−α) − ψ (0)(β+),

where the trigonometric terms cancel each other out as
they are antisymmetric and periodic with integer g. We can
reexpress ψ (0)(α) and ψ (0)(−α) as ψ (0)(α + 1) using the re-
cursion (D7) and reflection relations (D8), respectively:

ψ (0)(α) + ψ (0)(−α) = 2ψ (0)(α + 1) + π cot (πα) − 1

α
.

We can replace 2ψ (0)(α + 1) with its lower bound 2ψ (0)(1)
on the interval 0 � α < 1 as the function ψ (0)(x) is monoton-
ically increasing for 0 � x. For the same reason we can also
use the bound ψ (0)(β±) � ψ (0)(g + 1) so we end up with the
overall lower bound on the sum

s1(α) � 2ψ (0)(1) − 2ψ (0)(g + 1) + π cot(πα) − 1

α
. (D11)

Similarly, using (D10) we can express s2(α) as

s2(α) = −[β−ψ (1)(α) + β+ψ (1)(−α)]

− [β−ψ (1)(β−) + β+ψ (1)(β+)]

+ β−π2

sin2(πβ−)
+ β+π2

sin2(πβ+)
.

Using the recursion (D7) and reflection (D8) relations, we
express

−[β−ψ (1)(α) + β+ψ (1)(−α)] = 2αψ (1)(α + 1) − β−
α2

− β+π2

sin2(πα)

� −β−
α2

− β+π2

sin2(πα)
,

where in the last step we have replaced 2αψ (1)(α + 1) with
its lower bound 0 at α = 0. Since ψ (1)(x) is monotonically
decreasing for 0 � x we also use the lower bound

−[β−ψ (1)(β−) + β+ψ (1)(β+)] � −2gψ (1)(g − 1).

Thus, the overall lower bound for s2(α) is

s2(α) � −β−
α2

− β+π2

sin2(πα)
− 2gψ (1)(g − 1) + β−π2

sin2(πβ−)

+ β+π2

sin2(πβ+)

= −β−
α2

− 2gψ (1)(g − 1) + β−π2

sin2(πα)
, (D12)

where in the last step we have used the fact that sin2(πβ±) =
sin2(πα).

Combining the lower bounds (D11) and (D12) into
Eqs. (D4)–(D6), we get

S(α) � g − 2 sin2(πα)

π2
[ψ (0)(g + 1) + gψ (1)(g − 1)] − α

+ 2 sin2(πα)

π2
ψ (0)(1) + sin(2πα)

2π
.

On the interval 0 � α < 1, the minimum value of

−α + 2 sin2(πα)

π2
ψ (0)(1) + sin(2πα)

2π

is given by −ε1 ≈ −1.005 and the minimum value of the
coefficient − 2 sin2(πα)

π2 is − 2
π2 . With that, we can get rid of the

dependence on α:

S(α) � Smin = g − 2

π2
[ψ (0)(g + 1) + gψ (1)(g − 1)] − ε1.

We know that ψ (0)(x) is a smooth function for x > 0 and is
bounded by [27]

ln x − 1

x
< ψ (0)(x) < ln x − 1

2x
,

so asymptotically the function ψ (0)(x + 1) ∼ ln(x + 1)
and it converges to ln x from above. Since ψ (1)(x) =
dψ (0)(x)/dx then asymptotically ψ (1)(x) ∼ 1

x so the function
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xψ (1)(x − 1) ∼ x/(x − 1) and it converges to 1 from above.
Therefore, for any ε2 > 0 there is a x′ > 0 such that, for all
x > x′,

ψ (0)(x + 1) + xψ (1)(x − 1) � ln x + 1 + ε2.

Conveniently choosing ε2 = π2

2 (2 − ε1) − 1 and solving for
x′ results in x′ ≈ 1.722. Thus, for all g � 2 > x′ we have

Smin � g − 2

π2
(ln g + 1 + ε2) − ε1 = g − 2

π2
ln g − 2

� γ − 2

π2
ln γ − 3,

where the last inequality follows from g = �γ � � γ − 1 and
ln g � ln γ .

Recalling that tr[�(n)�(n′ )] � S(α) � Smin and
γ = w/k = w2/d , we return to Eq. (D3) and get the result

〈pagree〉 = 1

d

k−1∑
n,n′=0

tr[�(n)�(n′ )]

� k2

d
Smin � 1

w2/d

[
w2/d − 2

π2
ln(w2/d ) − 3

]

= 1 − 2

π2

ln(w2/d ) + 3π2/2

w2/d
.
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