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Nanoscale devices, either biological or artificial, operate in a regime where the usual assumptions of a
structureless Markovian bath do not hold. Being able to predict and study the dynamics of such systems is
crucial and is usually done by tracing out the bath degrees of freedom, which implies losing information about
the environment. To go beyond these approaches we use a numerically exact method relying on a matrix product
state representation of the quantum state of a system and its environment to keep track of the bath explicitly.
This method is applied to a specific example of interaction that depends on the spatial structure of a system
made of two sites. The result is that we predict a non-Markovian dynamics where long-range couplings induce
correlations into the environment. The environment dynamics can be naturally extracted from our method and
shine a light on long-time feedback effects that are responsible for the observed non-Markovian recurrences in

the eigenpopulations of the system.
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I. INTRODUCTION

Real-life quantum systems are never truly isolated from the
rest of the universe and are typically exposed to a macroscopic
number of fluctuating degrees of freedom that constitute their
often unobservable (and invariably uncontrollable) environ-
ments [1,2]. Weak interactions of a quantum system with
spectrally broad and dynamically featureless environments
lead to so-called Markovian dissipation in which energy re-
laxation and decoherence can be accurately described by a
time-local Redfield or Lindblad master equation [1-3]. In
these leaky systems, the perturbations of the environment
caused by the system rapidly and irreversibly propagate away,
essentially removing any trace, or memory, of prior interac-
tions in the way the environment acts locally on the embedded
system (see Fig. 1). Acting always in the instant and having no
dependence on the shared history of the system-bath interac-
tions, Markovian noise is thus very difficult to control, and
most strategies to combat its unwanted effects simply aim at
its total suppression.

However, in functional nanoscale materials the dividing
line between the system and environmental excitations be-
comes less clear, and large and long-lasting correlations
between them can build up over the duration of a process. In
the presence of these nonequilibrium conditions, these corre-
lations can, inter alia, lead to nonclassical work extraction,
energy transport, and violation of detailed balance [4—6]. The
investigation of how open system-environment correlations
influence and might even help optimize energy harvesting,
transport, and transduction processes in devices operating at
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the few-quantum level is an important research line in the
burgeoning field of quantum thermodynamics [7,8].

Nowhere are these concepts of more relevance than in
the protein-based nanomachines that nature has developed to
perform the key optoelectronic tasks of photosynthesis. For
example, the pigment-protein complexes (PPCs) that perform
the electron transfers at the core of photosynthesis are com-
posed of photoactive pigments in interaction with a highly
structured environment made of a protein scaffold that tunes
the electronic and vibrational properties of the molecular net-
work. The structure of such a reaction center (RC) is shown
in Fig. 2. The electron transport chain is shown in Fig. 2(b),
beginning at the special pair of chlorophyll and terminating at
the quinone acceptors (not shown). In higher plants, the hole
left behind by electron transport is ultimately refilled by the
splitting of water and evolution of oxygen [9]. This requires
the RC being turned over four electrons in a concerted action,
a remarkable feat of multicarrier photocatalysis.

Coordinating multiple charge dynamics in structures with
poor dielectric screening and typical lateral sizes of only 5-6
nm requires exquisite spatiotemporal control of energy trans-
fer and electron transport, including mechanisms of feedback
to ensure the processes occur in the correct order with-
out waste of excited-state energies. While the role of the
structured environments that found PPCs has been widely
discussed in terms of transport efficiency and the possible
support of coherent electronic dynamics in light harvesting
[10-13], the signaling and potential efficiency gains from
spatiotemporal feedback and heralding feedforward processes
in the environment have received rather scant attention. How-
ever, first-principles methods based on crystal structures do
show that the large secondary protein elements that span the
electron transport chain in the RC could communicate the
initial and final sites of the electron transport and may act
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FIG. 1. Schematic representation of (a) a Markovian environ-
ment and (b) a non-Markovian environment. In a Markovian
environment, excitations created through the interaction with the bath
propagate away and do not influence the system. By contrast, in the
non-Markovian case, these excitations can have a backaction at a
later time on a different part of the system.
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to prevent accumulation of further charges [14]. Elsewhere in
biology, the idea of dynamical structural changes as a way
to regulate processes is well established, especially in the
field of allosteric regulation [15,16]. Considered as an open
quantum system problem, the existence of strong spatiotem-
poral correlations necessitates a manifestly non-Markovian
description of the dynamics, as the key physics is encoded
in the retarded action at a distance that results from previous
system-bath interactions, energy exchange, etc. In this article
we develop a model that allows us to explore these effects
in a fully quantum mechanical description which opens a
route to establishing the phenomenology of non-Markovian
dissipation in the regime where system dynamics, relaxation
transitions, and environmental signaling occur on similar
timescales. By first identifying and understanding the under-
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FIG. 2. Biological inspiration for our correlated bath model.
(a) Protein structure of a nanoscale photosynthetic reaction center.
Photoactive pigments are held rigidly by noncovalent protein in-
teractions that also tune their electronic overlaps, interactions, and
excited-state energies. The coordination of multiple cofactors by
extended structures, such as quasi-one-dimensional « helices, allows
vibrational fluctuations to act on different cofactors in a spatiotempo-
rally correlated manner. (b) Structure of the cofactors active in charge
separation through quantum electron transport (ET). The oxidation of
water in photosynthesis requires four successful electron transports
and this multifermion process is regulated through feedforward (FF)
and feedback (FB) mechanisms induced by strong electron-hole in-
teractions with the dissipative protein scaffold.

lying microscopic physics behind these phenomena, we hope
to build up a conceptual base that could be used to exploit
these effects, including any explicitly nonclassical effects, in
artificial nanoscale devices.

However, capturing non-Markovian dynamics has proven
to be quite challenging because of the large amount of in-
formation that usually needs to be kept about the system’s
dynamics and the large number of (often continuous) modes in
the environment which subjects such problems to the curse of
dimensionality: The number of possible quantum states grows
exponentially with the number of modes of the environment.
Moreover, non-Markovian dynamics are also nonperturbative
and their study thus requires the use of advanced numerical
methods. There are two broad approaches to this problem, re-
duced density matrix methods and wave-function approaches.
The former does not keep a microscopic description of the
environment. The only information kept about the environ-
ment is its correlation function, or equivalently its spectral
density. The evolution of the system’s density matrix can then
be described, for example, by an approximate weak-coupling
master equation [1] or exactly using a process tensor [17] or a
tensor network representation of the influence functional as in
the time-evolving matrix product operator (TEMPO) method
[18,19]. Indeed, a process tensor can be extracted from the
TEMPO method [20] and this can lead to still more efficient
calculations [21]. The latter distinct approach relies on a
wave-function representation of the isolated joint system and
keeps an explicit microscopic description of the environment,
but often with an alternative description of its degrees of free-
dom. For example, the time-evolving density operator with
orthonormal polynomials algorithm (TEDOPA) [22] maps the
continuum of independent modes of the environment into
a chain with nearest-neighbor couplings. Alternatively, the
multilayer multiconfiguration time-dependent Hartree method
[23] relies on a description of the environmental degrees of
freedom with so-called time-dependent single-particle func-
tions. Both the reduced density matrix and wave-function
approaches have gained numerical efficiency by using tensor
network Ansdtze as their fundamental objects and exploiting
efficient contractions and compression techniques.

In this paper we present an extension of the TEDOPA
method to describe system-bath interactions that are long
range even in the mapped chain topology. These long-range
interactions come in our model from a spatial dependence of
the phases of the coupling coefficients between sites of the
system and the environment. We describe the properties of
these new couplings and how they can be integrated in the
usual matrix product operator (MPO) representation of the
Hamiltonian in Sec. II C. Notably, with this method the new
tensors of the MPO scale with the (small) dimension of the
reduced system and are independent of the (large) dimension
of the environment. The time evolution is then performed
on a two-site system and its environment using a one-site
time-dependent variational principle (1TDVP) [24] scheme
with a matrix product state (MPS) representation of the wave
function. Standard tensor network-based approaches, such as
time-evolving block decimation (TEBD) [25], are formulated
for local interactions and can treat long-range interactions
only at the cost of an increased complexity (by increasing
the number of steps needed to perform the time evolution,
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FIG. 3. Schematic diagram of the model under study. A system
composed of interacting sites is embedded into a single bosonic
environment. Each site couples differently to the environment.

for example, via the use of swap gates for TEBD [26]), thus
increasing its computational cost or decreasing its accuracy.
Putting all these elements together, in Sec. III we demonstrate
regimes of the model where long-time and even periodic com-
munication between the sites is mediated by the environment.

II. METHODS
A. Model

We consider a one-dimensional chain of N sites {«} in
a common one-dimensional bosonic bath with modes char-
acterized by the wave vectors k € [—k., +k.], where k. is
the environmental cutoff wave vector. The environmental dis-
persion relation is given by w; = |k|c, with ¢ the speed of
the phonons in the bath. We restrict ourselves to the single-
excitation subspace of the system described by a Hamiltonian
Hj with nearest-neighbor hopping

H = Hs + Hg + Hiy, (D
N—1
= ZE ) (el + Y J(le) (o + 1] + Hee.)
a=1 a=1
ke . ke
+ / oajigdk + ) o) (o / (gax + H.e.)dk,
—ke ” —ke
2

where dy is the annihilation operator of a bath mode of wave
vector k, gf = gkeik’“, with g, = g_x € R, is the coupling
strengths between the system and the bath, and r, is the
position of the site «.

Here the interaction between the excitation and the bath
depends explicitly on the position of this excitation on the
chain through the phases of the coupling constants g7. We call
this type of coupling a plane-wave coupling. A schematic of
the model is presented in Fig. 3.

In the rest of the paper we consider a system made of two
degenerate sites with an initial state where the system and its
environment are decoupled and the bath is empty

W =0)=1S0) & 10, 3)
ke[—ke k]

where |S(0)) is the initial state of the system and |0;) rep-
resents the vacuum state of the mode k of the bath. Adding

extra system sites does not add any complexity to our method,
but for simplicity and ease of interpretation of results in this
paper we only present results for two system sites. As we
will explain in Sec. IIB, the empty bath can also be used
to effectively describe a Gibbs state at temperature 7', and
so we are able to extend our results to nonzero temperature.
Even though the method presented in this paper works for any
initial state of the system, in Secs. III and IV the initial state of
the system is chosen to be the highest-energy eigenstate (i.e.,
upper eigenstate) of the system Hamiltonian Hs.

In order to study the time evolution of the system and
its bath, we use a numerically exact method based on the
implementation of the time-dependent variational principle
with a tensor network formulation using a MPS Ansatz for
the quantum states [27]. This method requires a discrete rep-
resentation of the environment in order to write the MPS and
to write the Hamiltonian as a MPO.

B. Environment chain mapping

Instead of sampling £ modes of the environment to keep
only a discrete set of modes, we use a chain mapping approach
that enables us to keep all the relevant bath modes easily and
at the same time generate a discrete representation of the en-
vironment [22,28,29]. This method consists of using a unitary
transformation defined through a family of orthonormal poly-
nomials that transforms a continuous bosonic environment
into a semi-infinite chain and is known as the time-evolving
density matrix with orthonormal polynomials algorithm.

1. Zero temperature

We separate positive and negative wave-vector modes and
apply to them two different chain mappings and we note that

A def , . . o
by = a_x. The bath and interaction Hamiltonians become

ke
Hg + Hyp = / dk wp(afa + bby)
0

kL . AL
+) o) (el / dk gi[e™™ (& + b)) + H.c.].
o 0

“)
We now introduce two unitary transformations
s0 = Y Un(k)n, 5)
Ek}() = Z Vm(k)d,\ma (6)
where the matrix elements are
Uy (k) = V() = giPu(k), (N

where {P,},cn are orthonormal polynomials with respect to

the measure (k) = |g‘,’(‘|2 = gi & J(k) (which is the bath
spectral density) such that Py(k) = 1 and

ke
/ PaOP (T (K)dk = 8. ®)
0

The nature of the polynomials thus depends on the spectral
density of the bath. We choose an Ohmic spectral density with
a hard cutoff (here at k.) J(k) = 2akH (k. — k), where « is a
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coupling strength and H the Heaviside step function, as it is
neither a trivial (i.e., flat) nor an exotic spectral density that
would obscure the effects induced by the spatial correlations.
Moreover, this spectral density is commonly used in biologi-
cal contexts [30]. In that case, the P, are Jacobi polynomials.
Another useful property of these polynomials is that they obey
a recurrence relation

Pu(k) = (k = Ap_1)Py—1 (k) + By—1 Py (k), (€))

where A, is related to the first moment of P, and B,, to the
norms of P, and P,_; [22]. This recurrence relation can be
used to construct the polynomials with the conditions that
Py(k) =1 and P_; (k) = 0. We can then map the bath Hamil-
tonian using the unitary transformations from Egs. (5) and (6)
to two tight-binding chains with the same on-site energies w,
and hopping energies f,:

Ap =" (e, + djdy)

1, (@81 + & 80+ didyr +ddy). (10)

For the interaction Hamiltonian, we apply the same procedure
and make use of Eq. (9) and find that the chains couple to the
system with coupling coefficients y,(r,) and y,,(ry)",

A =Y la) (@ Y [yalra)(@ +d))+Hel, (1)
where

ke
ya(ra) = / dk J (k)™ P, (k). (12)
0

In preceding works, the TEDOPA resulted in the system
being connected only to the first site of the chain. By contrast,
here the system is generally coupled to all the sites of the
chain, as represented in Fig. 4(a).

2. Finite temperature

This chain mapping technique has been extended to de-
scribe finite-temperature systems in a statistical mixture as
an equivalent zero-temperature state vector under the name
thermalized time-evolving density matrix with orthonormal
polynomials algorithm [24,31]. It relies on allowing the
bath to have negative frequency modes to describe thermal
fluctuations and using an alternative bath spectral density
that captures the temperature dependence. To identify this
new effective spectral density, we put the finite-temperature
bath autocorrelation functions Cg(r, t) for propagating and
counterpropagating modes in the form of a zero-temperature
autocorrelation Coo (7, 1).

The interaction Hamiltonian in interaction picture is

ke '
I:iilnt = Z o) (O"/ dkgk(el(kraiwkt)&k + H.c.)
a 0
ke ) R
+ ) e (aI/ dk gi(e”®ret e L He)  (13)
o 0

= Z lor) (| [B), (1) + B (1)]. (14)

Continuous k-modes Discrete n-modes

Yn(r)

(b)

FIG. 4. (a) The unitary transformation U, (k) transforms a con-
tinuous environment of uncoupled k& modes to semi-infinite discrete
tight-binding chains. (b) Schematic diagram of the MPS representa-
tion of the wave function of the system and the chain. The circles
represent individual tensors whose rank is given by their number of
legs. The open legs correspond to physical Hilbert spaces of dimen-
sions dg for the system and d for the environment. The horizontal
legs are virtual bonds related to the amount of correlation between
sites; their maximal dimension is Dp,,x. When a leg is shared between
two tensors they are contracted, i.e., summed over the corresponding
index.

Hence the bath correlation function for the propagating modes
is

Cs(r — ', 1) = (BN 1)BL(0)), o
kr
= / dk J (@) {ng(ay)e” 07
0

+ng(wp) + 1]ek0=r-edly (16)

where ng(wy) is the Bose-Einstein distribution and g =
(kgT)~! is the inverse temperature. A more detailed derivation
can be found in Appendix A. We could write the correspond-
ing correlation function for the counterpropagating modes
which would be the same except for the sign of the wave
number k. These two correlation functions have, in addition
to the usual temperature dependence 8 and time dependence
t, a spatial dependence r — r’ originating from the spatial
dependence of the coupling coefficients {g}} between the sys-
tem and the bosonic bath. Hence these correlation functions
contain more information (i.e., about space and time) than the
correlation functions usually encountered. For zero tempera-
ture, the correlation function reduces to

ke ) )
Coo(r—r' 1) = / dk J(w)e =07 (17)
0
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We want to rewrite Cg(r —r’,t) in the same form as
Eq. (17), i.e., the integral of a spectral density times a plane-
wave phase factor. In other words, we want to find a bath
at zero T with a different spectral density but with the same
system dynamics as the finite-7" bath.

We recast the first term of Cg(r — 1/, ¢) in Eq. (16) such
that the argument of the exponential is the same as the second
term by sending k — —k, allowing for negative frequencies
(hence, w_; = —wy) and using the identity

ng(—wy) = —[ng(wp) + 11. (18)
With this transformation we have, in a sense, double the num-
ber of propagating modes. There are the propagating positive
k modes with positive energies and the propagating negative k
modes with negative energies (coming from the second term
of the correlation function).
Finally, the bath correlation function for propagating
modes can be written

ke ) ,
Co(r—r',t) = / dk Jexi (@) [ng (wy) + 1] —)7ent]]

—k,
19)
where Je is the spectral density with a domain ex-
tended to negative frequencies and antisymmetrized such that
Jext(—|wr|) = —Jext(lwi]). The same procedure can be ap-
plied to the counterpropagating modes. We can thus define
orthonormal polynomials with the finite-temperature spectral
density
Jp(k) = Jext(@)ng(wp) + 11, (20)
which is always positive and continuously differentiable. We
define the unitary transformation to chain modes

&k = Z Uf(k)én fork € [_kcv +kc]s (21)

l;k = Z Uf(k)d,\n fork (S [_kc‘a +k(,‘]7 (22)

where Uf (k) = /Jp (k)Pf (k) and Pf(k) is a polynomial of
order n from a family of orthonormal polynomials with re-
spect to the measure d (k) = Jg(k)dk, i.e.,

ke
/ PEGOPE () (k) = S 23)
—k,

With this set of orthogonal polynomials, we can map the
environment to two tight-binding chains and a coupling coef-
ficient

ke
Yalr) = / dk Jg(wp)e™ PP (k) (24)

¢

between the system and the a; and 131 operators.

:ﬁ- Ja+laﬁx JoH»luthz

o O O

Wicasn =

C. Hamiltonian MPO formulation

To construct the MPO representation of a Hamiltonian A
which is made of a sum of local terms, we use a method based
on the recurrence relation presented in [32]. To define the kth
tensor of the MPO, we have to decompose the Hamiltonian
into a part that describes what happens before the bond k
(which is the bond connecting site k and site k + 1) A%, after

the bond kA¥, |, and atbond k )", ik, @ i,

A=At eif+ifedl,+ Yl o, 0
a

where If =1® - -®1and 1 =1 ® - - - ® 1. The last term
N—k+1 times k times

of Eq. (25) is an interaction Hamiltonian between the part of
the system on the left of bond k and the one on the right of
bond k. Hence fzia contains an operator defined on the left of k
and fzfa an operator defined on the right of k (e.g., for an XYZ
Hamiltonian with nearest-neighbor couplings, we could have
ht, =J,8¢ and AR =8¢, with a € {x,y,z}). A recurrence
relation between the right parts of the Hamiltonian at two
consecutive sites can be defined

AR YR
H Hiy
hf = Wk+1 hf+] 5 (26)
AR AR
1 L
with the matrices Wy defining the Hamiltonian MPO
N 010! 1,020, oNOY, / ’
H = Z Wlul, lWZuZ/]lzuz v 'WNZ;NZ loy---on) (o) ---opl.
o,0',w
(27)

In Eq. (27) the o and o’ indices refer to the local Hilbert
spaces of the different parts of the system (i.e., site and chain
modes) whereas the w indices relate to virtual bonds between
the different parts of the system. The bath modes will be
considered as extra sites where different kinds of excitations
[which couple to the excitation existing on the sites with the

v & v (ry) coefficients] can exist. We introduce a new set
of commuting operators { f;} such that | + 1) (| = fj 4 f;
Figure 4(b) shows a schematic diagram of the MPO and how
it contracts with a MPS. The on-site tensor has a bond dimen-
sion D = 2(« + 2) for the oth site and a physical dimension
(dimension of the local Hilbert space) ds = 2,

Wi = Jofi Jof] 1D ) A ED(]) (28)

and
2(a—2)
TT )l @) (@] Egle) (@l
fi
fa
0 , (29)
0
0 0 O
i
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with Jy1 y = O for the last system tensor. The chain on-site
tensor has a similar structure, but with a constant bond dimen-
sion for each mode. The on-site tensor has a bond dimension
D = 2(N 4+ 2) and, in principle, a physical dimension d = oo
that we truncate to a value dr in our numerical treatment.
The number of sites of the two semi-infinite chains is also
truncated at large enough values N, and N,, such that an

excitation on the chain does not have the possibility to reach
the end of the chain during the time evolution

1 e e,

o O O
o>
2

=

NA
vl
1

(30)
with ty, = 0. The second chain’s tensors are identical with d,,
and yn/(r)d;, instead of ¢, and y,(r)é,, where n’ corresponds
to the mirror site on the other chain. The last tensor is

m

[ dl:/’ dN'/”

Wy, = " : (31)
i

One might notice that the chain site tensors have a bond
dimension D that is fixed by the number of sites in the system
N. This means that having a large environment only increases
the number of individual tensors one needs but not their size.
This result is central for the tractability of this approach. The
identity operators present on the diagonals carry out along the
chain the long-range coupling coefficients such that they are
associated with the corresponding system site. Hence, they
allow a local representation of the Hamiltonian as a MPO even
though the interactions are long range across the chain.

To illustrate how the Hamiltonian is recovered from these
tensors, we perform the calculation in the case where there is
only one site in the system and two modes on a unique chain.
In that case there are only three tensors

Wi=@ (nar mar Eqnan, G2
il l‘]é-[ negy 0 0 w111CC
1o o 0o 1 0 ya
=10 0 0 0 iy | P
0 0 0 0 0 i

0)2@;@2
(&)
AT
)
1a

V2
1% AT

Y2 &
1

W3 = (34)

The contraction of W, and W3 gives a 5 x 1 tensor with the
same shape as W3 and the transpose of the shape of Wi,

wnéles +11(@]er +818)) + wiéle

1A 1A
) + c
Wy W = RaTne . (35)

Further contraction with W gives a scalar corresponding to
the Hamiltonian

Wy Wy - W3 = 0)26"2‘-62 + 1 (6‘1162 + 6'16;) + 0)16‘-{-61
+ys I (e 4y (D) (e + 9 1) (1] &

+ I (1 E + ) (1]
+E 1) (1], (36)

W]’WZ'W3 ZH (37)

III. ZERO TEMPERATURE
A. Couplings

Because of the dependence of the system-bath coupling
strengths on the spatial configuration of the system, the
system-chain couplings are long range. In the cases presented
in previous works [24,31] the system only coupled to the
first site of the semi-infinite chain. The system could thus
only inject excitation at one end of the chain, which then
would propagate according only to the tight-binding interac-
tions along the chain. In the present case, the system-chain
couplings are long range and thus the system can create ex-
citations on different regions of the chain. Absolute values of
the system-chain coupling for zero temperature are shown in
Fig. 5 for an Ohmic spectral density.

The first site of the system couples only to the first site
of the chain. However, the other sites couple to a range of
modes with a maximum strength for the mode n ~ R/2c, with
R the distance between the considered system’s site and the
first system’s site in units of k'

We can also see in Fig. 5 that the amplitude of the coupling
before the peak decreases with the position of the peak. Said
differently, the larger the distance is between the two sites, the
less the second site interacts with the beginning of the chain.
Thus, we can expect that for infinite separation when R — oo
this system will behave like a spin-boson model (SBM). This
limit is looked at in Appendix C.

Looking at the opposite limit, when the separation between
the two system sites vanishes, Eq. (2) tells us that the system
completely decouples from the environment. Because each
site in the system couples mostly to a specific region of the
chain, we call our model correlated environment in contrast
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FIG. 5. Absolute value of the system-chain coupling constants,
for a bosonic bath with a hard cutoff Ohmic spectral density, as a
function of the chain modes n and the site separation R. Note that
the main peak is centered around R/2c. Here « = 0.12, ¢ = 1, and
ke = 1.

| |
0

5 10 15

n

with the cases where the system couples only to the first site
of the chain.

B. Non-Markovian recurrences and bath feedback

At zero temperature, the dynamics of the two-level system
in a bosonic environment is well known and described by the
SBM [1]. In the system’s eigenbasis, the population of the
upper state (high-energy state) should spontaneously decay
to the lower state on a timescale given by the intensity of
the coupling between the system and the bath. Figure 6(b)
shows the evolution of the eigenpopulations with an initial
state of the system being the upper eigenstate. We clearly
see that the upper level population decays as expected until
w;t =~ R/c when a revival happens. This revival corresponds
to an increased localization of the excitation on the second

0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0

25 0 25 0 08 06 04 02
Chain Mode Upper Level Population

(@) (b)

FIG. 6. System and bath dynamics. (a) Heatmap of the chain
occupation in time showing the propagation of bath excitations along
the chains. (b) Upper eigenstate population. An eigenstate revival
and a site localization are associated with a chain excitation reaching
the beginning of the chain. The separation between the two sites
is R = 40, their coupling is J = 0.25, the speed of sound is ¢ = 1,
oa=0.12,and k. = 1.

site of the system after following an evolution in a spatial
superposition. With the same conditions, the SBM exhibits
the same dynamics except for the revival. However, we note
that the two-site case presented here can be mapped to a
SBM with an effective spectral density depending on R (see
Appendix B), but this property is “accidental” and does not
generalize to larger systems.

The study of the bath in the chain representation allows
us to have a spatial interpretation of the interaction between
the system and its environment as the maximum coupling
between a system’s site and the chain is localized around
n = R/2c. Figure 6(a) shows a heatmap of the occupation of
the modes of the chains as a function of time. The positive
and negative chain modes each correspond to one of the two
chains necessary to take into account propagating and counter-
propagating k modes. The corresponding initial system state
is an excitation delocalized on the two sites with a separation
R = 40.

We can see that the chain modes around n = £R/2¢ =
420 get populated first and that the corresponding bath’s
excitations then propagate on the chains. At w.t &~ 20 an exci-
tation propagating from the mode n = 0 coupled mostly to the
first site and an excitation propagating from the mode n = 20
constructively interfere around n = 10. The former continues
to propagate on the chain and traces a ray in the diagram. The
latter reaches n = 0 at w.t ~ 40 and is reflected. We can see
from this diagram that revivals happen when the excitation
emitted along the chain by one site reaches the part of the
chain interacting with the other site. We thus have a feedback
effect of the environment on the system.

The dynamics of the chain with negative modes is not the
reflection of the dynamics of the chain with positive modes.
Indeed, the negative chain modes correspond to the propagat-
ing k modes; hence the excitations created by the second site
move away from the origin of the chain (which is coupled
to the first site). On the contrary, bath’s excitations created
by the second site on the positive modes chain correspond to
the counterpropagating k modes and move toward the origin
of the chain. On both chains the excitations created by the
first system site propagate toward the end of the chain as they
move away in real space from the first site. This explains the
apparent “asymmetry” between the two chains.

The dynamics of the system, all other parameters being the
same, only depends on the ratio R/c. This is also true for the
chain dynamics, for example, the (R =40,c =1) and (R =
20, ¢ = 0.5) cases have the same heatmaps. This was expected
as the system’s sites couple in both cases to the same parts of
the chain and the bath’s excitations travel on the chain at the
same speed.

Increasing the propagation speed of the bath excitations,
we can generate several revivals with something like an echo
between the two sites, as shown in Fig. 7, where revivals with
decreasing amplitudes can be observed with a periodicity of
R/c. All the parameters are the same as in Fig. 6 except the
speed of the bath’s excitations that has been doubled.

Figure 7(a) shows the heatmap of the chains for the same
parameters as in Fig. 6 except the speed of bosonic exci-
tation ¢ which is doubled. We note that even though c is
doubled, the speed of the excitation on the chain remains
the same as the rays in both Figs. 6 and 7 travel the same
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FIG. 7. (a) Heatmap of the chain occupation in time showing the
propagation of bath excitations along the chains. Arrows have been
added to represent the trajectories of the chains’ excitations. (An
unannotated figure is given in Appendix D.) (b) System eigenstate
population for an initial state in the upper eigenstate. The separation
between the two sites is R = 20, their coupling is J = 0.25, the
speed of sound is ¢ =2, « = 0.12, and k. = 1. We can definitely
see a revival of population at a time consistent with the amount of
time needed for a bosonic excitation to travel into the bath from one
system’s site to the other.

distance along the chain in the same time. The propagation
speed on the chain is independent of the coupling strength o
or the bosonic excitation speed c¢. The propagation speed on
the chain depends on the asymptotic hopping energy between
the sites of the chain, which depends on the cutoff frequency
w, of the spectral density, which is here held constant [22].
However, for a fixed separation R, for ¢ = 2 the modes for
which the coupling between the chain and the second system
site is maximal are twice as close to the origin as the ones for
c =1 (as seen in Sec. III A). Hence, for a given R, it takes
half the time for an excitation to travel from the second to the
first system site for ¢ = 2 than for ¢ = 1. The four revivals of
eigenpopulation that we see in Fig. 7 correspond to the four
rays on the positive chain that come from internal reflections
of the initial chain excitation highlighted with arrows. These
rays correspond to transmitted parts of the bath’s excitations
bouncing back and forth between the two system sites.

To see the influence of the coupling strength o between
the system and the bath, we varied it while keeping a fixed
separation R between the system’s sites and a fixed speed of
the bosonic excitation c¢. These results are presented in Fig. 8,
where we can see that increasing the coupling strength sharp-
ens the revivals and brings their peaks closer to w.f &~ R/c.
The amplitude of the revivals decreases with the increase of
the upper level population prior to the revival.

Figure 9 shows the coherence between the two sites in the
case described by Fig. 6 where the initial state of the system
is the upper eigenstate. For a degenerate two-level system, the
coherences are proportional to the upper eigenstate popula-
tion. This means that the revivals coincide with a decrease
of coherences in absolute value. A decrease of coherences is
hence associated with relocalization.

Another way to show that this revival of eigenpopulation
(relocalization) is an incoherent mechanism is to look at the

Upper level Population

FIG. 8. Comparison of the dynamics of the upper eigenstate at
zero temperature for different values of the coupling to the bath «.
As the coupling increases, the revivals become sharper. The other
parameters are held constant at R = 30, k. = 1, ¢ = 1,and J = 0.25.

evolution of the purity A = tr(p3) of the system state. The
purity measures how close the state is to a pure state: For
A =1, the state is a pure state and for A = 0.5 the state of a
two-level system is a maximal statistical mixture. Figure 10
presents the evolution of the purity and clearly shows that
revivals are associated with an increase of mixedness of the
system’s state.

Hence the mechanism behind the revivals can be seen as a
partial measurement by the environment on the system’s sites
that, as a consequence, relocalizes the system’s excitation. As
the purity is a first-order approximation of (one minus) the
von Neumann entropy, the decreasing purity at the time of a
revival can be seen as an increasing entanglement between the
system and its environment. This analysis is consistent with
what has been previously said and can be further understood
by considering the chain sites that couple the most to the
system sites as fragments of the environment that can inform
us about the system populations [33]. Indeed, knowing when
the chain modes around n = 20, in the case where R = 40 and

0.4

I
S

Coherence
o
o

-0.2

FIG. 9. Real and imaginary parts of the coherence between the
two system sites. The real part is proportional to the upper eigen-
state population; hence the revival coincides with a sudden loss of
coherence.
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FIG. 10. Purity tr(p?) of the system. The revival corresponds to
a loss of purity.

¢ = 1, have a gain in population enables us to affirm that there
will be a revival at this same time.

IV. FINITE TEMPERATURE
A. Couplings

The finite-temperature coupling constants between the
system and the chain keep broadly the same form as the zero-
temperature ones. An example profile for several different
system site separations is displayed in Fig. 11. The differences
are that the amplitudes increase with temperature and the peak
value is no longer centered around the mode n = R/2c but
rather n = R/c. For B = 0.5 the amplitude of the coupling
is doubled compared to the zero-temperature case. We also
note that the tail before the peak presents more oscillations
than the zero-temperature one which is smoother. The change
in the coupling profile as a function of temperature is shown
in Fig. 12. For high and moderately high temperatures, the
couplings decrease in amplitude as B increases but are still
centered around n ~ R/c. For high values of 8, the amplitude

Iy (R)]
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
5 10 15 20 25 30
n

FIG. 11. Absolute value of the system-chain coupling constants
at finite temperature, for a bosonic bath with a hard cutoff Ohmic
spectral density, as a function of the chain modes n and the site sep-
arations R. The peaks are centered around n = R/c. Here o« = 0.12,
B=05c=1,andk. = 1.

0.3}
— 3 = 1e6
— B=50
- 8=10
— B=175
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—~~
— =25
) — 51
§ ces =05
BCEIA
0.0F : ‘
15 20

FIG. 12. Absolute value of the system-chain coupling constants
at finite temperature, for a bosonic bath with a hard cutoff Ohmic
spectral density, as a function of the chain mode number » for a fixed
R =5 and several temperatures (¢ = 0.12 and k. = 1).

stays constant but the maximum swaps to n =~ R/2c as we
recover the zero-temperature value.

B. Non-Markovian recurrences and bath feedback

Using the method presented in Sec. II B 2, we also investi-
gate the finite-temperature dynamics of the system. For a large
range of values of §, the system’s dynamics stay qualitatively
the same except that the steady-state population is increased
because of thermal fluctuations, as we can see for § =5 in
Fig. 13.

The peak of the coupling is at n = R/c and not R/2c as in
the zero-temperature case, but the propagation speed along the
chain is doubled because the support of the extended spectral
density is twice as large as the support of the zero-temperature
spectral density [31]. Figure 13(a) shows the time-frequency
diagram for finite temperature for the inverse temperature 8 =
5 and a separation R = 30. For this intermediate temperature,
the chain excitation propagates ballistically in way similar

0.9 0.8 0.7 06 0.5 0.4 0.3 02 0.1 0

3% 03
20 20
10 10

0 ; . ) 0
60 -40  -20 0 20 1.0 08 06 04 02
Chain Mode Upper Level Population
(@) (b)

FIG. 13. (a) Heatmap of the chain occupation in time showing
the propagation of bath excitations along the chains. (b) Upper eigen-
state population. The separation between the two sites is R = 30,
the speed of sound is ¢ =1, the inverse temperature 8 =5, and
a=0.12.
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Upper Level Population

FIG. 14. Upper eigenstate populations for R = 30, o, = 1, ¢ =
1, wp = 0.25, o = 0.12, and several values of the inverse temperature

B.

to the zero-temperature case, except that modes are more
populated due to thermal fluctuations. Wave packets emitted
from the origin of the chain and the part coupled to the second
site interfere when they meet. Hence, we see interference
fringes appear when excitations with different phases come
together. As in the finite-temperature case, when excitations
reach the origin of the chain they give rise to a revival of the
eigenstate population.

Figure 14 shows the upper eigenstate population for in-
creasing values of the temperature. The revivals are still
present for moderate temperatures such as § =5 but they
become barely noticeable for high temperature, as we can
also see in Fig. 15. Between § = 5 and 8 = 1 the dynamics
of the chains’ modes are the same but the populations are
increased by a factor ~5. This increased population is a direct
consequence of the thermal population. We can see, in Fig. 14,
that the amplitude of the revival seems to be related to the
depth of the plateau reached before w.t & R/c. Hence, as the
eigenpopulation in this region gets closer to a half, the revival
is suppressed.

5 4 3 2 1 0

|

60 40 -20 0 20 1.0 0.8 0.6 0.4
Chain Mode Upper Level Population
(a) (b)

FIG. 15. (a) Heatmap of the chain occupation in time showing
the propagation of bath excitations along the chains. (b) Upper eigen-
state population. For high temperature the revival is less pronounced.
The separation between the two sites is R = 30, the speed of sound
is ¢ = 1, the inverse temperature 8 = 1, and & = 0.12.

For higher temperature, as in Fig. 15, the behavior of the
chain is akin to the one we could see for a SBM with an Ohmic
spectral density [34] but duplicated on the chain. As they
propagate on the chain, excitations leave a trail of populated
modes behind them that corresponds to the cones we can see
in the figure.

V. CONCLUSION

Motivated by the ability of biological nanostructures to
coordinate (opto)electronic processes through the relaying
of environmental (structural) signal motions, we have pre-
sented a numerically exact exploration of a model that can
describe these highly non-Markovian effects. To do so, we
have extended the standard thermalized TEDOPA techniques,
in the 1TDVP formulation, to treat the long-range chain
couplings that encode information about spatial correlations.
In doing so, we have proved that for system-bath problems
with spatially correlated interactions, the Hamiltonian matrix
product operator will always have a bond dimension pro-
portional to the number of system states, regardless of the
range of the interactions. Provided that, as in most models
of open systems, the environment is noninteracting, this al-
lows the tensor network approach to be a computationally
powerful method for exploring multisite dynamics where non-
Markovian environmental feedback could lead to functionally
relevant nonequilibrium states and/or transient effects that
could materially alter the outcome of a process, if a certain
set of events precedes it.

In our exploration of this aspect of highly structured
nanoscale dissipation, we have shown, with a model com-
posed of two sites, that one of the simplest conceptual forms
of correlated environments (plane waves in one dimension)
supports strong spatiotemporal feedback effects that intro-
duce new timescales into the dissipative dynamics and show
clear signs of having stored information about the early-time
motion, i.e., after sharp decays, we found sharp revivals.
Moreover, we have also found that periodic behavior with
T = R/c can also be obtained in which each revival acts
as a generator of subsequent revivals, leading to periodic,
but highly anharmonic, energy exchange between the system
states. Finally, we have shown that finite temperatures tend
to broaden and suppress these revival effects, although they
visibly persist for temperatures up to the system energy gap.

These results encouragingly point to the idea that suitably
tailored environments could be coupled to electronic pro-
cesses in order to produce well-defined functional effects at
later times and in distant places in the structure. To explore
this in more detail requires the inclusion of larger, multicom-
ponent systems, and this is something we have shown could
be done with the present method. However, in the majority of
nanostructures, biological or otherwise, the one-dimensional
plane-wave environment is likely to be an oversimplification.
It would therefore be of future interest to consider different
kinds of relationship between mode frequencies and spatial
correlation in the system-bath interactions, such as those that
can be extracted by molecular dynamics simulations of pro-
teins [35,36], normal mode analysis [37,38], or coarse-grained
methods that access the slow large-amplitude motions of com-
plex structures [39,40]. Given that the present method works
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with arbitrarily structured spectral functions and can handle
long-range system-environment interactions in the chain or
tree tensor representations of the problem, we hope that this
work will encourage further examination of the no doubt
rich functional phenomenology of spatially correlated open
quantum systems.
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APPENDIX A: CORRELATION FUNCTION

For a bath operator of the form

B.(t) = / dk(gee™ e g +H.c.), (A1)
as in Eq. (2), and a bath in a Gibbs state
—BH,
o, _ SXP(=BHy) A

Z ’

where Z is the partition function, the bath correlation
function is

Co(r — 1t — 1) EuuglB, 0B (t)ps).  (A3)
Co(r—r',t —1t")
= / dk / dq( k*g;’ eIt (@t a, )
+giglre e T {[ala, + 8k — @lps)).  (Ad)
Co(r—r',t —1t")
- /dk/dq Sk — g gr e ng(ax)
+ g8t ng(wp) + 11}, (AS)
Co(r—ryt —1")
- / kg Pl ()

+ M=kl () + 113, (A6)

= Correlated Environment
s SBM
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FIG. 16. Dynamics of the up state |1,) of a SBM compared with

the dynamics of the upper eigenstate of the correlated environment

model for the corresponding parameters (k. =1, c =1, J =0.25,

and o = 0.2) with a large separation R = 200 between the two sites
of the system. The two dynamics are the same.

Co(r—r',t —1t")
_ / dkj(wk)[coth <%> coslwp(t — 1" —k(r — )]

—isinfwg(t —t') — k(r — r’)]i|, (A7)
with the bath spectral density J(w;) = |gi|*. This bath corre-
lation function has a triple dependence on temperature g, time
t —t', and space r — r'.

APPENDIX B: MAPPING TO SBM FORN =2

The N = 2 case is a specific case where, because of the
symmetry around the midpoint between the two sites, the
problem presented in this paper can be written in the form of a
SBM with an effective spectral density that depends explicitly
on the site separation. Consider the interaction Hamiltonian

~

H;, in Eq. (2) in the case of a two-site system with intersite

1.00

©
J
a

Upper Level Population
o @

0.00

FIG. 17. Upper level population for zero temperature (solid line)
and B = 10° (dashed line). The other parameters are o = 0.03,
J =0.25,¢c=1, and k. = 1. The dynamics obtained with the zero-
temperature and finite-temperature algorithms are identical.
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FIG. 18. (a) Real part of the zero-temperature couplings for the
two sites of the system as a function of the chain modes. (b) Imag-
inary part of the zero-temperature couplings. The negative values
along the x axis correspond to the chain of negative wave vectors
and the positive values to positive wave vectors. The parameters are
a=012,k. =1,c=1,J=0.25andR =5.

distance R, where we have

ke
A= Yl el [ (e + ga)ak B1)
o —ke

ke
=> o) (ol / [g¥ @ +a",) + g (a] + a_p)]dk.
0
o
(B2)
‘We can introduce a new set of vibrational rAnodes, the symmet-
ric mode ¢; and the antisymmetric mode d,
N
Gh=—+, (B3)
V2
~ flk — &,k
dy = ——
V2

Hence, the interaction Hamiltonian becomes

(B4)

kc
Hin =) o) e / [4v2(e + &) + g V26 + &)
a 0

+&V2de - d)) — g V2(d — dD]dk.  (BS)
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FIG. 19. (a) Real part of the finite-temperature couplings for the
two sites of the system as a function of the chain modes. (b) Imag-
inary part of the finite-temperature couplings. The negative values
along the x axis correspond to the chain of negative wave vectors and
the positive values to positive wave vectors. The parameters are the
same as in Fig. 11, and in particular 8 = 0.5.

We choose the origin of position at the midpoint between the
two sites so that

Hi = (I-R/2) (—R/2| + |R/2) (R/2])
ke
x /O 2+/2gk cos (%)(@—i—él)dk
+ (I=-R/2) (—R/2| — |R/2) (R/2])
ke (kRN s 4
x /O 24/2ig sin <7)(dk—dk)dk, (B6)

k
A . KR\ ~:  ~
Hy =15 const + 6. / 24/2ig sin (7)@; — dy)dk.
0
(B7)

Therefore, the system only couples to the antisymmetric
vibration modes and thus corresponds to a SBM with an ef-
fective spectral density Jogr(k) = 8|gx|? sinz(%R ). However, for
larger values of N it is no longer possible to map the system to
a SBM. This is similar to the spin mapping presented in [18].
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FIG. 20. (a) Real part of the finite-temperature couplings for the
two sites of the system as a function of the chain modes at 8 = 10°.
(b) Imaginary part of the zero-temperature couplings at 8 = 10°.
The behavior is identical to that obtained with the zero-temperature
algorithm. The negative values along the x axis correspond to the
chain of negative wave vectors and the positive values to positive
wave vectors. The other parameters are the same as in Fig. 18.

APPENDIX C: LIMIT CASES
1. Large separation

According to the coupling structure presented in Sec. IIT A,
the farther away the two sites of the system are, the less
the second site interacts with the beginning of the chain.
Thus, we can expect that for infinite separation when R — 0o
this system will behave like a SBM. Figure 16 shows the
comparison between the SBM and the infinite-separation
case.

-30 -20 -10 0 10
Chains Modes

@

i0 08 06 04 02
Upper Level Population

FIG. 21. (a) Heatmap showing the propagation of bath excita-
tions along the chains. (b) System eigenstates population for an initial
state in the upper eigenstate. The separation between the two sites
is R = 20, their coupling is J = 0.25, the speed of sound is ¢ = 2,
o = 0.12, and k. = 1. We can definitely see a revival of population
at a time consistent with the amount of time needed for a bosonic
excitation to travel into the bath from one system’s site to the other.

2. Low temperature

The finite-temperature effective spectral density Jg (k) con-
verges toward the zero-temperature one when 8 — oo as its
value for a negative wave vector becomes uniformly null.
Hence, the quantities calculated using this finite-temperature
function should all converge toward their zero-temperature
counterparts when B is increased. Figure 17 shows that the
population dynamics of the zero-temperature case is recov-
ered.

For the same reasons the couplings y,,(R) determined with
the finite-temperature spectral density should become identi-
cal to the zero-temperature ones calculated with the spectral
density J (k). This was already shown in Sec. IV B with the
absolute values of the coupling constants y,(R) as shown in
Fig. 12. The real and imaginary parts of the zero-temperature
coupling constants for the two sites are presented in Figs. 18
and 19. Figure 19 shows the coupling constants at a finite
temperature 8 = 0.5 for comparison. The finite-temperature
couplings for a large B are presented in Fig. 20 and show
that the finite-temperature coupling coefficients converge to
the zero-temperature ones when the limit § — oo is taken.

APPENDIX D: BATH DYNAMICS

The unannotated version of the bath dynamics displayed
in Fig. 7, presenting several consecutive revivals of the up-
per eigenstate population for R = 20 and ¢ = 2, is shown in
Fig. 21.
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