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Multipartite quantum nonlocality and Bell-type inequalities are used to characterize quantum correlations
in an infinite-size bond-alternating spin- 1

2 Heisenberg chain with next-nearest-neighbor interactions. With the
help of powerful tensor-network algorithms, both zero and finite temperatures are considered. First, at zero
temperature, both in the even-Haldane phase and in the odd-Haldane phase, a high hierarchy of multipartite
nonlocality is observed. Nevertheless, in the two phases, the spread of the multipartite nonlocality among the
lattice is different. Thereby, the nonlocality measures are relatively large in one phase and vanish in the other
phase, and provide quite sharp signals for the topological quantum phase transitions (QPTs) between these two
phases. The influence of the next-nearest-neighbor coupling α upon the multipartite nonlocality in the model is
also discussed. Second, we find that the footprints of the QPTs survive at low temperatures. Third, based upon
the scaling behavior of the finite-temperature nonlocality measure, we propose a quantity K to characterize the
finite-temperature nonlocality in the large-n limit. We find that in high-temperature regions, K is reduced linearly
as the temperature rises.
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I. INTRODUCTION

Bipartite quantum entanglement (such as entanglement
entropy and entanglement concurrence) has been widely in-
vestigated in the fields of quantum information and condensed
matter physics for many years [1,2]. As the research goes
deeper, it is realized that bipartite entanglement cannot cap-
ture all the characteristics of quantumness in quantum systems
[3–6]. Recently, based upon Bell-type inequalities, multipar-
tite quantum nonlocality has been proposed to characterize
multipartite quantum correlations in many-body systems
[7–12]. Since it can reveal some valuable information beyond
bipartite entanglement, multipartite nonlocality has attracted
much attention [13–19].

In the field of condensed matter physics, an important
application for multipartite nonlocality is to characterize
quantum phase transitions (QPTs) [20]. QPTs occur at zero
temperature. When a physical parameter λ of a quantum
system (such as the magnetic field in a quantum magnetic
system) changes, the ground state of the system may be in
various quantum phases. At some point λ = λc, the ground
state drastically changes from a phase to another, then a
QPT occurs. Characterization of these quantum phases and
corresponding QPTs is one of the most important topics in
condensed matter physics. There are several traditional ap-
proaches to characterize QPTs, such as local order parameters
and symmetry breaking. However, when multipartite nonlo-
cality is used to characterize these QPTs, some interesting
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results are found [21–27]. For instance, it is observed that
these QPTs are accompanied by a dramatic change of the
hierarchy of multipartite nonlocality. In addition, it is also
observed that the boundary effect of multipartite nonlocality
in the vicinity of the QPT point is quite different from that
in noncritical regions [28]. Thereby, multipartite nonlocality
indeed provides a valuable perspective for us to understand
and characterize QPTs.

In addition to traditional QPTs, recently a novel family
of QPTs has attracted much attention, that is, the nonlocal
topological QPTs [29–32]. Different from traditional QPTs,
topological QPTs could not be characterized by local order
parameters or symmetry breaking. Thereby, various advanced
approaches and tools, which originate from quite differ-
ent areas, have been used to characterize these topological
QPTs, for instance, the global flux [33], Chern number [34],
Wigner-Yanase skew information [35], topological entangle-
ment entropy [36,37], quantum fidelity [38], and nonlocal
string orders [39–43].

It needs to be mentioned that multipartite nonlocality,
which can measure multipartite quantum correlations in n-site
systems, would spontaneously have a nonlocal nature when
n is large enough. Thus, multipartite nonlocality may capture
the underlying changes of the topological orders in the sys-
tems and detect these topological QPTs. In a pioneering work,
Deng et al. [44] have investigated quantum nonlocality in
the Kitaev-Castelnovo-Chamon (KCC) model and have found
that the nonlocality measure is singular at the topological
QPT point. A spin- 1

2 Kitaev chain has also been investigated
recently, and the result suggests that the nonlocality measure
may be used as an order parameter for the topological QPT
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in the chain [45]. Nevertheless, it is still too early to say that
we have built a complete physical picture of the issue. For
instance, in Ref. [44], only two-site subchains are considered
and quantum nonlocality is actually not observed. In Ref. [45],
the authors mainly consider thermal states (T > 0) rather than
the ground states (T = 0), and the concerned state is the
mixed state of low-lying energy states. Consequently, quan-
tum correlations are destroyed by thermodynamic fluctuations
and only the lowest hierarchy of multipartite nonlocality has
been observed. Thereby, the role of multipartite nonlocality in
topological QPTs is still not fully understood.

In this paper, based upon powerful tensor-network al-
gorithms [46], we will investigate multipartite nonlocality
in an infinite-size bond-alternating spin- 1

2 Heisenberg chain
with next-nearest-neighbor interactions. The model exhibits
topological QPTs between an odd-Haldane phase and an
even-Haldane phase. We will show that by analyzing the
multipartite nonlocality measures, quite sharp signals for the
topological QPTs are observed. Explicitly, where odd-bond
subchains are concerned, in the odd-Haldane phase, a high
hierarchy of multipartite nonlocality can be observed, while
in most regions of the even-Haldane phase, the nonlocality
measure is simply zero. The opposite result would be ob-
served where even-bond subchains are concerned. Moreover,
these footprints of the QPTs survive at low temperatures
T � 0. Furthermore, in high-temperature regions, a quanti-
tative analysis about the effect of thermodynamic fluctuation
upon multipartite nonlocality in the model will also be
reported.

This paper is organized as follows. We will introduce the
concepts of multipartite nonlocality and Bell-type inequali-
ties in Sec. II. The model and the numerical details of the
tensor-network solutions will be introduced in Sec. III. Our
results for zero temperature and finite temperatures will be
reported in Secs. IV and V, respectively. A summary and some
discussions can be found in Sec. VI.

II. MULTIPARTITE NONLOCALITY
AND BELL-TYPE INEQUALITIES

A. g-grouping models

A feasible approach to quantify multipartite nonlocality is
to use the g-grouping models [9]. Let us consider a model
consisting of five parties, i.e., a, b, c, d , and e. These parties
may share some kind of nonlocal communication with each
other. Based upon their communication pattern, we can al-
ways divide the model into g groups such that only parties
in the same group are free to communicate with each other.
For instance, suppose all the parties are allowed to commu-
nicate with each other. Then it can be labeled as {abcde}
with a grouping number g = 1. We will call the model a
1-grouping model. Suppose a, b, c, and d can communicate
with each other, and e cannot. Then the model can be labeled
as {abcd|e} with a grouping number g = 2. We will call the
model a 2-grouping model. It needs mention that {abc|de} and
{a|bcde} are also 2-grouping models. Similarly, {ab|c|de},
{a|bcd|e}, and {ab|cd|e} are 3-grouping models, {ab|c|d|e}
and {a|bc|d|e} are 4-grouping models, and {a|b|c|d|e} is a
5-grouping model. It is clear that a model with a smaller

FIG. 1. Illustration of multipartite nonlocality in five-site mod-
els. Only sites in the same group (pink shadow) share nonlocal
correlations with each other. The leftmost figure illustrates a model
with genuine multipartite nonlocality. The rightmost figure illustrates
a model without any form of multipartite nonlocality. From left to
right, the hierarchy of multipartite nonlocality decreases gradually.
For general quantum states, the hierarchy of nonlocality can be
investigated by Bell-type inequalities.

grouping number g contains a higher hierarchy of multipartite
nonlocality (Fig. 1).

In order to characterize the multipartite nonlocality in a
quantum system, we shall try to reproduce its correlations
with these grouping models. First, we design some expression
S and figure out its maximal value (or the upper bound)
permitted by all the grouping models with a fixed grouping
number g, i.e., S � Sg. Then, for the concerned system, let
us evaluate this expression. If the value of S is within the
upper bound, we say that its multipartite nonlocality can
be reproduced by g-grouping models. Nevertheless, if the
value of S turns out to be beyond the upper bound Sg, we con-
clude that its multipartite nonlocality cannot be reproduced by
any g-grouping model. Thus its grouping number is (at most)
g − 1. In other words, some higher hierarchy of multipartite
nonlocality is observed.

For an n-qubit quantum state described by a density ma-
trix ρ̂n, a widely used expression to characterize multipartite
nonlocality is the expectation value of the Mermin-Klyshko
operator, and the corresponding upper bounds are given by
the corresponding Bell-type inequalities.

B. Mermin-Klyshko operators and Bell-type inequalities

The n-qubit Mermin-Klyshko operator is defined as fol-
lows. First, on each qubit k, we define two local operators as
m̂k = ak · σ and m̂′

k = bk · σ, where ak and bk are unit vectors,
and elements of σ are standard Pauli matrices.

Letting M̂1 = m̂1 and M̂ ′
1 = m̂′

1, we can construct the n-
qubit Mermin-Klyshko operator M̂n recursively as [47,48]

M̂n = 1
2 M̂n−1 ⊗ (m̂n + m̂′

n)

+ 1
2 M̂ ′

n−1 ⊗ (m̂n − m̂′
n), (1)

where the operator M̂ ′
n−1 is obtained by exchanging all the

ak and bk in M̂n−1. It is clear that M̂n is an n-qubit operator
depending upon 2n unit vectors.

For a quantum state ρ̂n whose quantum correlations can
be reproduced by g-grouping models, the following Bell-type
inequalities should hold [8–10,16]:

S = max
{...ak ,bk ...}

Tr(M̂nρ̂n) � 2
n−g

2 for n − g even, (2)

S = max
{...ak ,bk ...}

Tr(Ŝnρ̂n) � 2
n−g

2 for n − g odd, (3)

with Ŝn = 1√
2
(M̂n + M̂ ′

n). The optimization with respect
to the unit vectors {. . . ak, bk . . .} is used to remove any
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dependence upon local measures. We mention that these in-
equalities (combined with the optimized unit vectors) provide
feasible measurement settings to carry out Bell-type experi-
ments [49].

When the g-labeled Bell-type inequality is violated, we
can conclude that the quantum correlations in the concerned
quantum state ρ̂n cannot be reproduced by any g-grouping
model. In other words, the grouping number for the state is
(at most) g − 1. For instance, the lowest-rank inequality is
S (ρ̂n) � 2

n−n
2 = 1 (i.e., g = n). If it is violated, we say that the

grouping number is (at most) n − 1. Thus the lowest hierarchy
of nonlocality is observed. On the other hand, the highest-rank
inequality is S (ρ̂n) � 2

n−2
2 (i.e., g = 2). If this inequality is vi-

olated, the grouping number of ρ̂n is just 1. In other words, the
state presents the highest hierarchy of multipartite nonlocality,
i.e., genuine multipartite nonlocality.

It needs mention that the violation of a Bell-type inequality
is just a sufficient condition but not a necessary condition
for the existence of quantum correlations in the state. For
instance, in some specific states, the inequality S � 1 (the
lowest rank one in the whole family) is not violated. Nev-
ertheless, the state may violate some Bell-type inequality
from other families [50], and thus its quantum correlations
may be observed in other Bell-type experiments. Thereby, the
nonviolation of the inequality S � 1 does not mean quantum
correlation is absent in the state. Instead, it just means that
no quantum nonlocality would be observed by the current
Bell-type experiment.

Although the inequalities in Eqs. (2) and (3) may not be
the optimal inequalities for the above-mentioned states, they
offer explicit upper bounds for a full family of multipartite
correlations (Fig. 1). Therefore, they can disclose nontrivial
information about multipartite correlations for general quan-
tum systems, such as the low-dimensional quantum lattices
considered in this paper. Moreover, we are just interested in
the qualitative behavior of multipartite nonlocality in quantum
lattices. Thereby, the parity of n − g would be ignored and we
will just consider Eq. (2).

III. MODEL AND SOLUTION

We will investigate an infinite-size bond-alternating spin-
1
2 Heisenberg chain with next-nearest-neighbor interactions.
The model can be described by [42,43]

Ĥ = J1

∑

odd i

Si · Si+1 + J2

∑

even i

Si · Si+1 + α
∑

i

Si · Si+2.

(4)

The structure of the model is illustrated in Fig. 2. J1 = 1 − δ

and J2 = 1 + δ denote dimerized nearest-neighbor coupling,
with −1 � δ � 1 the dimerization parameter. α � 0 denotes
next-nearest-neighbor coupling.

When α = 0, the model would be reduced to a bond-
alternating Heisenberg chain with a single parameter δ [42].
In the specific situations δ = −1 and δ = 1, this Heisenberg
chain would be further reduced into isolated dimers locat-
ing on the odd bonds (i.e., J1 bonds) and the even bonds
(i.e., J2 bonds), respectively. In fact, the system would be
in an odd-Haldane phase for δ < 0 and an even-Haldane

FIG. 2. Structure of an infinite-size bond-alternating spin- 1
2

Heisenberg chain with next-nearest-neighbor interactions. J1 = 1 −
δ � 0 and J2 = 1 + δ � 0 denote bond-alternating nearest-neighbor
coupling, and α � 0 denotes next-nearest-neighbor coupling. For a
finite fixed α, when δ increases from −1 to 1, a topological quantum
phase transition occurs at δc = 0.

phase for δ > 0. When δ increases from −1 to 1, the
ground state would undergo a continuous (second-order)
QPT at δc = 0. Moreover, the nonlocal string-order parameter
lim|i− j|→∞〈S2ieiπ

∑2 j−2
k=2i+1 Sk S2 j−1〉 changes from a finite value

to zero at δc = 0 [42]. It reveals that this QPT is accompanied
by a change of topological order in the ground state. Thus it is
indeed a topological QPT [42].

For a nonzero α, when α is small enough (i.e., 0 < α �
0.2411), the nature of the QPT does not change. Explicitly,
the ground state still presents a continuous topological QPT at
δc = 0. When α is larger than 0.2411, nevertheless, the QPT
becomes a discontinuous (first-order) topological QPT [51].

In this paper, we will try to characterize these topolog-
ical QPTs with multipartite nonlocality by considering the
reduced density matrices of continuous n-site subchains in
the infinite-size model. Both zero temperature and finite tem-
peratures will be studied. For zero temperature, we will use
infinite-size matrix product states to approximately describe
the ground states. We use the MATRIX PRODUCT TOOLKIT [52]
to do the job and the maximum bond dimension is set as
χ ∼ 100-120. The unit cell of the wave functions consists
of four sites, and the SU(2) symmetry is considered so as
to improve the accuracy of the wave functions. For finite
temperatures, we will use the infinite-size matrix-product-
state purification to approximately describe the thermal-state
density matrix ρ̂T = e−βĤ , with β = 1

T the inverse temper-
ature [53]. The time slice is set as 	τ = 0.05, and we use
a second-order Trotter-Suzuki decomposition to reduce the
error in decomposing the imaginary-time-evolution operator
e−	τ Ĥ . The maximum bond dimension is set as χ = 60.

The calculation of the nonlocality measure S (ρ̂n) is
also quite nontrivial since multivariable optimizations are
involved in the Bell-type inequalities. In order to deal
with large n, one may transform the n-site optimization
max{...ak ,bk ...} Tr(M̂nρ̂n) into a series of two-site optimiza-
tions, i.e., max{a1,b1,a2,b2} Tr(M̂nρ̂n), max{a2,b2,a3,b3} Tr(M̂nρ̂n),
max{a3,b3,a4,b4} Tr(M̂nρ̂n), and so on. Then we sweep the entire
lattice several times until some convergence is obtained. More
technical details can be found in Ref. [24]. In our calcu-
lations, for each set of physical parameters {δ, α, n, T }, 20
independent initial points have been used to carry out the
optimizations. Thereby, the optimization results are reliable.

IV. MAIN RESULTS FOR T = 0

Before reporting our main results, we mention that there
will be two typical ways to select the concerned subchains,
i.e., the “odd-bond subchains” in Fig. 3(a) and the “even-bond
subchains” in Fig. 3(b). The corresponding reduced density
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FIG. 3. (a), (b) Two concerned subchains for calculating the non-
locality measures, where the reduced states are denoted by ρ̂o and
ρ̂e, respectively. Since J1 = 1 − δ and J2 = 1 + δ, we have ρ̂o(δ) =
ρ̂e(−δ). (c)–(e) The nonlocality measures as a function of the dimer-
ization parameter δ (with n = 10 and T = 0). So (dots) corresponds
to the odd-bond subchain in (a), and Se (triangles) corresponds to the
even-bond subchain in (b). For any given δ, we find So(δ) = Se(−δ).

matrices will be denoted by ρ̂o and ρ̂e, respectively. Consider-
ing J1 = 1 − δ and J2 = 1 + δ, one sees that ρ̂o and ρ̂e can
be mapped into each other by changing the sign of δ, that
is, ρ̂o(δ) = ρ̂e(−δ). Consequently, the multipartite nonlocality
measures for the two subchains can also be mapped to each
other by

So(δ) = Se(−δ). (5)

To confirm this property, in Figs. 3(c)–3(e), we have illus-
trated the curves for So(δ) and Se(δ), which are calculated
from completely independent calculations. It is clear that
Eq. (5) indeed holds. Thereby, let us first consider odd-bond
subchains and use So to begin our investigations.

In Fig. 4, we have shown the multipartite nonlocality
measure So as a function of the dimerization parameter δ

for various next-nearest-neighbor coupling parameter α. For
the first glance, one can see that the So(δ) curve presents
some kind of singularity at the QPT point δc = 0. For α =
{0, 0.2}, So is continuous and its derivative dSo

dδ
diverges at

δc = 0, and thus signals the second-order QPTs. For α =
{0.4, 0.5, 0.7, 0.9}, So is discontinuous at δc = 0, and thus
signals the first-order QPTs.

Second, we pay attention to the n dependence of So. In the
even-Haldane phase δ > δc, except for narrow regions near
the QPT point δ = δc, the value of the nonlocality measure is

So = 0. (6)

In fact, when the length of the subchains increases from
n = 10 to n = 20, we have not observed considerable growth
of So.

In the odd-Haldane phase δ < δc, nevertheless, So is rela-
tively large. One can see that as n increases from 10 to 20, So
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FIG. 4. Multipartite nonlocality measure So as a function of the
dimerization parameter δ for various next-nearest-neighbor coupling
parameter α, with n = 10 (black dashed curves) and n = 20 (red
solid curves). The horizontal grid lines represent the threshold of the
Bell-type inequalities S � 1, 2, 4, 8 in Eq. (2). δc = 0 is the quantum
phase transition point.

increases significantly for most δ. We have further calculated
the nonlocality measure So with n up to 50, and the scaling
behavior for several coupling constants is shown in Fig. 5. One
can see that when n is large enough, the logarithm nonlocality
measure presents a linear dependence upon n, i.e.,

log2 So ∼ Kn + b, (7)

with K and b two fitting parameters.
Moreover, at several special points, the nonlocality mea-

sure So is size independent. That is, at δ∗ = −1 in Fig. 4(a),
δ∗ = −0.6 in Fig. 4(b), δ∗ = −0.2 in Fig. 4(c), and δ∗ = 0 in
Fig. 4(d), we always find

So = 1.414, (8)

10 20 30 40 50

0

5

10

FIG. 5. The n dependence of the nonlocality measure So at
zero temperature with various coupling constants. When n is large
enough, we have log2 So ∼ Kn + b. This behavior holds in the en-
tire odd-Haldane phase and in a rather narrow region δ ≈ δ+

c of
the even-Haldane phase (in most regions of this phase, we simply
have So = 0).
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FIG. 6. Two special situations with (a) α = 0, δ = −1 and (b)
α = 0, δ = 1. In (a), ρ̂o is a pure state, for which the nonlocality mea-
sure is So = √

2. In (b), ρ̂o is a mixed state, for which the nonlocality
measure turns out to be So = 0 exactly. (c) A tensor network for fs1s8 ,
which is used to explain why So = 0 for the situation given in (b).

for any finite n. It needs mention that S = √
2 is a typical

value for the singlet state |ψi,i+1〉 = 1√
2
(| ↑↓〉 − | ↓↑〉) [54].

A size-independent value of So = 1.414 strongly suggests that
the ground states of the chains are just the product of these
singlets, i.e., |�〉 = ⊗

i=1,3,5... |ψi,i+1〉. Please see Fig. 6(a).
Further analysis shows that all these size-independent points
locate on the line −2α + δ = −1. Thus, our result confirms
the conjecture that on this line, the ground states are decou-
pled into singlets [43,55]. Moreover, since the quantum state
|�〉 just contains local two-site correlations (rather than other
nontrivial multipartite correlations), the measure So is rather
small. That is why So presents a minimum at δ = δ∗ in the
So(δ) curves in Fig. 4.

Third, we characterize the odd-Haldane phase in δ <

δc with Bell-type inequalities and multipartite nonlocality.
According to Fig. 4, it is quite clear that some Bell-type in-
equalities are violated. Moreover, as n increases, So increases
steadily for most δ < δc. Thus, in the large-n limit, it is ex-
pected that rather high-rank Bell-type inequalities would be
violated. Consequently, high-hierarchy nonlocality would be
observed in the odd-bond subchains.

A detailed analysis about the grouping number g may be in-
teresting. We mention that for g = n, n − 2, n − 4, n − 6, . . . ,
the upper bounds of the nonlocality measure permitted by
g-grouping models are given by the Bell inequalities S �
1, 2, 4, 8, . . . , respectively. In Fig. 4, we have used some
horizontal grid lines to represent these upper bounds. Let us
just pay attention to {α = 0, n = 20} in Fig. 4(a), and other
curves in the figure can be analyzed in a straightforward way.
For δ � −0.73, one sees that the lowest-rank inequality S � 1
is violated. It means that the correlations cannot be reproduced
by (g = n)-grouping models. In other words, the grouping
number is (at most) g = n − 1. As δ increases, in the range

−0.73 � δ � −0.38, the inequality S � 2 is further violated.
Thus the corresponding grouping number is (at most) g =
n − 3.

Then, for −0.38 � δ � −0.14, the inequality S � 4 is also
violated. Thus the grouping number is reduced to be (at most)
g = n − 5.

In the range −0.14 � δ � −0.002, the inequality S � 8
is violated and the grouping number becomes (at most) g =
n − 7.

In the vicinity of the critical point δc = 0, the nonlocality
measure decreases sharply. It indicates that multipartite corre-
lations in the ground states change dramatically in the QPT.

Fourth, we shall turn our attention to multipartite correla-
tions in the even-Haldane phase in δ > δc.

In most regions in this phase, we numerically find So = 0.
To understand these unexpected numerical results, let us con-
sider an exactly soluble point {α = 0, δ = 1}. At this point, all
the α bonds and J1 bonds in the lattice would be broken, and
thus the ground state would be a product state of the singlets
|ψi,i+1〉 on the J2 bonds (or even bonds). Please see Fig. 6(b).

Consequently, the concerned odd-bond subchain (we
take n = 8, for instance) would be in a mixed state.
It is easy to prove that this mixed state is given by
ρ̂o = 1

4

∑
s1s8

|�s1s8〉〈�s1s8 |, where |�s1s8〉 = |s1〉 ⊗ |ψ2,3〉 ⊗
|ψ4,5〉 ⊗ |ψ6,7〉 ⊗ |s8〉 with s1,8 = {↑,↓}. Thereby, the objec-
tive function Tr(M̂nρ̂n) on the left-hand side of the Bell in-
equalities should be expressed as Tr(M̂nρ̂o) = 1

4 ( f↑↑ + f↓↑ +
f↑↓ + f↓↓), with fs1s8 = 〈�s1s8 |M̂n(. . . ak, bk . . .)|�s1s8〉. For
each fs1s8 , we find that the optimal value is just

√
2, but

f↑↑, f↓↑, f↑↓, and f↓↓ cannot achieve
√

2 simultaneously.
Instead, for arbitrary unit vectors {. . . ak, bk . . .}, we can prove
that f↑↑ = − f↓↑ and f↑↓ = − f↓↓,1 and thus we always have
Tr(M̂nρ̂o) = 0. Consequently, for the state ρ̂o in Fig. 6(b), we
have So = max{...ak ,bk ...} Tr(M̂nρ̂o) = 0.

We have figured out an analytic result So = 0 for the
exactly soluble point {α = 0, δ = 1}. It is believed that
the numerical results So = 0, which are widely observed in
the even-Haldane phase in Fig. 4, can also be explained by a
similar process.

We mention that So = 0 does not mean that quantum cor-
relation completely vanishes in the even-Haldane phase. For
instance, in Fig. 6(b), quantum correlations still exist in the
singlets |ψ2,3〉, |ψ4,5〉, and |ψ6,7〉. The violation of some Bell-
type inequality is just a sufficient condition but not a necessary
condition for the existence of quantum correlations in the
systems. Thereby, the nonviolation of a Bell-type inequal-
ity (since So = 0) just indicates that no quantum nonlocality
could be observed by the current Bell-type inequalities and
experiments. Let us resort to the relation So(δ) = Se(−δ).
Then the large values of So in the regions δ < 0 in Fig. 4

1In Fig. 6(c), we have illustrated a tensor network for fs1s8 , where
|�s1s8 〉 and M̂8 are expressed as a matrix product state and a ma-
trix product operator, respectively. Based on this network, fs1s8

can be rephrased as
∑

j〈s1|O(1)
j |s1〉Gj . Then it is straightforward

that f↑s8 + f↓s8 = ∑
j Tr(O(1)

j )Gj . Note that O(1)
1 = m̂k = ak · σ and

O(1)
2 = m̂′

k = bk · σ, both of which are zero-trace operators [45].
Therefore, we shall always have f↑s8 + f↓s8 = 0.
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immediately indicate that Se would present large values in
δ > 0. In other words, when we carry out Bell-type experi-
ments on the even-bond subchains [Fig. 3(b)], high-hierarchy
multipartite nonlocality would be observed in this phase.

We are ready to figure out a conclusion about multipartite
nonlocality and QPTs in the model. Both the even-Haldane
phase and the odd-Haldane phase present nontrivial multipar-
tite nonlocality. Nevertheless, in the two phases, the spread (or
existence form) of multipartite nonlocality among the lattice is
different. When Bell-type experiments are carried out on odd-
bond subchains, the high hierarchy of multipartite nonlocality
can be observed in the odd-Haldane phase but not in the even-
Haldane phase. When even-bond chains are considered, the
result is reversed. In both situations, the nonlocality measure
So (and Se) would be large in one phase and vanish in the other
phase, and offers quite sharp signals for the QPTs.

Finally, we discuss the influence of the next-nearest-
neighbor coupling α upon the multipartite nonlocality in the
model. As we have mentioned, α drastically shapes the sin-
gularity of the So(δ) curves at δ = δc (Fig. 4). That is, ∂So

∂δ
is

divergent for small α, and So itself is discontinuous for large
α. Our other concern is that for a fixed value of δ, would α

have a concise influence upon the value of the nonlocality
measure? Since So(δ) = Se(−δ), we shall just pay attention
to So. We will study two typical situations, i.e., δ = −1 and
δ = δc. First, we consider the situation δ = −1, where the
model would be reduced into a ladder, with J1 = 2 the in-rung
coupling (the blue solid bonds in Fig. 2) and α the in-leg
coupling (the green bonds in Fig. 2). From the result with
n = 20 in Fig. 4, we find that when α is equal to 0, 0.2, 0.4,
0.5, 0.7, and 0.9, the value of So|δ=−1 is equal to 1.414, 2.222,
3.446, 4.239, 6.158, and 8.364, respectively. Thus a mono-
tonic increasing behavior is observed. The physical picture is
quite clear. When α = 0, the model is reduced into isolated
dimers, which merely have So = 1.414. As α increases, these
dimers would be combined into a ladder, and then multipartite
nonlocality can spread along the two legs. That is why α

tends to enhance multipartite nonlocality. Nevertheless, when
we consider the situations δ �= −1, the result becomes rather
complex. In Fig. 2, one can see that the three antiferromag-
netic bonds (labeled J1 = 1 − δ, J2 = 1 + δ, and α) form a
triangle, and thus quantum frustration [56] emerges. Conse-
quently, a classical physical picture no longer exists. In fact,
for the situation δ = −0.005 ≈ δc, when α is equal to 0, 0.2,
0.4, 0.5, 0.7, and 0.9, the value of So is equal to 9.758, 8.698,
4.947, 1.453, 5.571, and 8.033, respectively. Thus, So is not a
monotonic function of α any more. Thereby, the influence of
the next-nearest-neighbor coupling α upon multipartite nonlo-
cality is quite model dependent, and we cannot always figure
out a compact conclusion.

V. MAIN RESULTS FOR FINITE TEMPERATURES

In this section, we report our results of finite-temperature
nonlocality in the model. We pay attention to the influence
of the temperature upon both the S (δ) curves and the scaling
curves log2 S (n). The model with α = 0.2 will be used as
an example for the second-order QPTs and α = 0.4 for the
first-order QPTs. Moreover, considering the relation So(δ) =
Se(−δ), we will just consider the nonlocality measure So.
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FIG. 7. Multipartite nonlocality measure So at finite tempera-
tures. (a),(b) The influence of the temperature T upon the So(δ)
curves. The horizontal grid lines represent the threshold of the Bell-
type inequalities S � 1, 2, 4, . . . in Eq. (2). (c), (d) The logarithm
nonlocality measure as a function of the temperature for various
coupling constants. The length of the subchain is n = 20.

A. So(δ) curves at finite temperatures

In Fig. 7, we have illustrated the So(δ) curves with several
temperatures for (a) α = 0.2 and (b) α = 0.4. Let us first
consider low temperatures, i.e., T = 0.05 and T = 0.1. One
can see that in noncritical regions, the So(δ) curves are quite
consistent with the corresponding zero-temperature curves in
Fig. 4. The mechanics is that there is a finite energy gap above
the ground-state energy level, which prevents low-energy ex-
cited states from contributing to the thermal state ρ̂T = e−βĤ

(and, consequently, So) at low temperatures. In the critical
regions δ ≈ δc, on the other hand, as T rises from 0.05 to 0.1,
the peak of the So(δ) curve presents a considerable decline.
The underlying mechanics is that the system is gapless at the
critical point δ = δc, and thus ρ̂T (and, consequently, So) is
significantly affected by low-lying excited states. Finally, as
can be seen in Fig. 7, the footprints of the QPTs would survive
when the temperature is low enough.

We then consider a relatively high temperature T = 0.4.
One can see that the peak completely disappears in the So(δ)
curve for T = 0.4. This is because, when the temperature is
high enough, too many high-lying excited states incoherently
mix into the thermal state ρ̂T , and thus destroy the quantum
correlations.

In order to offer a quantitative description about the effect
of the temperature, we have illustrated the logarithm measure
log2 So as a function of T in Fig. 7(c) for α = 0.2 and in
Fig. 7(d) for α = 0.4. In the low-temperature regions, log2 So

is robust against thermodynamic fluctuations in noncritical
regions (δ = −0.5 and δ = −1), and is relatively sensitive
to thermodynamic fluctuations in the critical regions (δ =
−0.05). These results are consistent with Figs. 7(a) and 7(b).

B. Scaling at finite temperatures

We then turn our attention to the scaling behavior of
the finite-temperature nonlocality measure. We will just
take the situation with {α = 0, δ = −0.03}, for instance,
where the model is in the vicinity of the critical point δc = 0.
Our results for several temperatures can be found in Fig. 8(a).
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FIG. 8. (a) The n dependence of the nonlocality measure So at
finite temperatures with {α = 0, δ = −0.03}. The scaling behavior
log2 So ∼ Kn + b survives at finite temperatures. (b) As the temper-
ature rises, the slope K presents an approximately linear decline.

It is clear that at finite temperatures, the linear scaling formula
still holds, i.e.,

log2 So ∼ Kn + b, (9)

where b is a quite small number and can be omitted in the
large-n limit.

Since the scaling formula holds both for zero tempera-
ture and finite temperatures, it may be helpful to explain the
physical meaning of the quantity K before we continue our
discussions. Our point is that while the nonlocality measure
S characterizes multipartite nonlocality in general finite-size
systems, the parameter K can characterize multipartite nonlo-
cality in the large-n limit.

It is well known that the upper bound of the Bell-type
inequalities permitted by quantum mechanism is S = 2

n−1
2 , in

other words,

log2 S = 1
2 n − 1

2 . (10)

Thereby, it is clear that for general quantum chains, we should
have K � 1

2 .
For a system, suppose it turns out that K = 1

2 and thus

S ∼ 2
1
2 n+b. It is clear that some highest-rank Bell-type in-

equalities (such as S � 2
n−2

2 and S � 2
n−3

2 ) would be violated.
Moreover, the grouping number g would be a quite small num-
ber (such as 2 and 3, determined by b). Thereby, the system
contains a high hierarchy of multipartite nonlocality. Suppose
the physical parameters (i.e., magnetic field or temperature)
of the system change and thus K is reduced to 1

3 and we

have S ∼ 2
1
3 n+b. Then the Bell-type inequality S � 2

n−g
2 with

g ≈ n
3 would be violated. It means that the upper bound of the

grouping number is about n
3 , and thus a relatively low hier-

archy of multipartite nonlocality would be observed with the
current Bell-type experiment. Suppose K is further reduced
to 1

4 . Then it is straightforward that the upper bound of the
grouping number would become as large as g ≈ n

2 , and thus
the hierarchy of nonlocality observed in the current Bell-type
experiment is even lower. Suppose K turns out to be 0 and
thus S ∼ 2b. Since b is usually quite small, only the lowest-

rank Bell inequalities (such as S � 1 and S � 2) may be
violated. Thereby, merely the lowest hierarchy of nonlocality
can be observed. Finally, suppose K is reduced to be negative.
Then the nonlocality measure S ∼ 2Kn+b would be zero in the
large-n limit and no Bell inequality would be violated. In other
words, no quantum nonlocality could be observed by current
Bell-type experiments.

From the above discussions, we can see that the slope
K ∈ (−∞, 1

2 ] offers us a quite valuable and intuitive tool
to characterize nonlocality in infinite-size chains. Thereby, it
would be interesting to investigate the influence of the tem-
perature upon the slope K in the model.

In Fig. 8(b), we have illustrated the slope K as a function
of the temperature T for the model with {α = 0, δ = −0.03}.
As the temperature rises, it is quite interesting that K presents
an approximately linear decline, i.e.,

K ≈ −pT + q, (11)

with p and q two fitting parameters. According to the above
discussions about the physical meaning of K, this result indi-
cates that in infinite-size chains, as the temperature rises, the
hierarchy of multipartite nonlocality observed in the current
Bell-type experiment is reduced steadily and linearly.

When quantum correlations are used as a resource to carry
out quantum information tasks [57], the threshold temperature
Tc below which quantum correlations can be experimentally
detected is an important quantity. For the multipartite non-
locality considered in this paper, first, it is quite clear that
the threshold condition is K(Tc) = 0, with Tc the threshold
temperature. In fact, according to Eq. (9), one can see that
in the large-n limit, S would vanish if K < 0 and tend to
infinity if K > 0. Thus, K(Tc) = 0 is indeed the threshold
condition. It is quite promising that the linear decline behavior
in Eq. (11) can help us to estimate this threshold temperature.
We have used Eq. (11) to fit the six data points in Fig. 8(b),
and find p = 1.199 and q = 0.266. Thereby, Tc turns out to
be Tc = q

p = 0.222. On the other hand, we have also used the
two data points at T = 0.2 and T = 0.25 to figure out p and
q, which gives Tc = 0.224.

Finally, combined with Eqs. (9) and (11), we shall have

log2 So ∼ −pnT + qn + b. (12)

Thereby, for a finite-size system with a fixed length n, it is
expected that as the temperature rises, the logarithm measure
would decrease linearly. In fact, as can be seen in Figs. 7(c)
and 7(d), when the temperature is not too low, log2 So in
finite-size subchains indeed presents an approximately linear
decline when T rises.

VI. SUMMARY AND DISCUSSIONS

In this paper, we have studied multipartite nonlocality
and Bell-type inequalities in bond-alternating spin- 1

2 Heisen-
berg chains with next-nearest-neighbor interactions, which
undergo topological QPTs at zero temperature.

Our main observation is that multipartite nonlocality can
characterize these topological QPTs quite well. Because of the
symmetry of the model, the nonlocality measure on odd-bond
subchains (i.e., So) and the nonlocality measure on even-
bond subchains (i.e., Se) have a relation So(δ) = Se(−δ), with
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−1 � δ � 1 the dimerization parameter in the model. When
odd-bond subchains are considered, in the odd-Haldane phase
in δ < 0, So is large and a high hierarchy of multipartite
nonlocality is observed, while in most regions of the even-
Haldane phase in δ > 0, the measure So is simply zero. When
even-bond subchains are considered, opposite results would
be observed. Thereby, high-hierarchy multipartite nonlocal-
ity is present in both phases, but the spread of multipartite
nonlocality in the lattice is different. Moreover, at the QPT
point δ = 0, both So and Se present sharp signals for these
QPTs. For the second-order QPTs with α = 0 and α = 0.2,
the derivatives of the two measures diverge at δ = 0. For
the first-order QPTs with α = 0.4, α = 0.5, α = 0.7, and
α = 0.9, the two measures themselves are discontinuous at
δ = 0. These results reveal that these topological QPTs are
accompanied by a dramatic change of multipartite quantum
correlations.

The underlying mechanics of why multipartite nonlocality
can describe these topological QPTs deserves some discus-
sion. It is well known that when a topological QPT occurs,
some nonlocal orders in the entire system change dramati-
cally. Thus, the success of multipartite nonlocality suggests
that it has captured some fundamental change of nonlocal
correlations in the ground states in the model. To clarify
this point, we pay attention to the scaling behavior of the
multipartite nonlocality measures, for instance, So. For the
odd-Haldane phase in δ < 0, as n increases, So increases ex-
ponentially. Thus, So has successfully captured some nonlocal
correlations in the odd-Haldane phase. For the even-Haldane
phase in δ > 0, nevertheless, as n increases from 10 to 20, So

remains zero in most of the regions (Fig. 4). Thus, So has not
captured any nonlocal correlation in the even-Haldane phase.
This sharp difference reveals unambiguously that the nonlocal
correlations in the two phases are different. The fundamen-
tal mechanics for multipartite nonlocality to successfully
characterize these topological QPTs is that (1) multipartite
nonlocality naturally captures nonlocal correlations, while (2)
one of the features of topological QPTs is the change of
nonlocal orders in the systems.

Moreover, we have also considered the influence of the
next-nearest-neighbor coupling (described by α) upon the
multipartite nonlocality in the model. In the situation δ = −1,
we find that α tends to enhance multipartite nonlocality in the
model. For other regions such as δ = −0.005, nevertheless,
the measure S is no longer a monotonic function of α. Thus,
the effect of the next-nearest-neighbor coupling turns out to
be quite model dependent. We would like to mention that
the antiferromagnetic next-nearest-neighbor coupling actually
introduces quantum frustration into the system. Quantum
frustration is an important phenomenon in condensed matter
physics and can be quantified by some advanced methods
[58,59]. Studying the relationship between multipartite non-
locality and quantum frustration (rather than the coupling
parameter α itself) may provide an opportunity to get a more
essential physical picture and we will investigate the issue in
our future work.

In addition to zero temperature, with the help of thermal-
state tensor networks, we have also studied multipartite
nonlocality in the model at finite temperatures. First of all,
we have found that at low temperatures, the So(δ) curves

still present some footprints for the topological QPTs. Then
we have turned our attention to the large-n behavior of the
finite-temperature nonlocality. For the model considered in
this paper, we find the scaling formula log2 So ∼ Kn + b
survives at finite temperatures. Based upon this scaling, we
argue that the slope K is a valuable tool to characterize
finite-temperature nonlocality in the large-n limit. Explicitly,
K → 1

2 indicates the highest hierarchy of nonlocality in the
concerned states ρ̂n→∞, K → 0 indicates the lowest hierarchy
of nonlocality, and K < 0 indicates that no nonlocality would
be detected by the current Bell-type inequalities or experi-
ments. Then we have used K to characterize the influence
of the temperature upon multipartite nonlocality in the model
and found that K ∼ −pT + q, with p and q two fitting param-
eters. This result indicates that in infinite-size chains, as the
temperature rises, the hierarchy of the multipartite nonlocality
observed in the current Bell-type experiment would reduce
steadily and linearly. This linear decline behavior of K can be
used to estimate the threshold temperature Tc below (above)
which multipartite nonlocality can (cannot) be observed by
the current Bell-type experiments. We would like to mention
that the nonlocality measure S has been used to characterize
several finite-size chains or subchains at finite temperatures
[45,60]. This result in the large-n limit is a necessary supple-
ment to previous papers.

It is known that low-dimensional quantum spin models can
be experimentally simulated using some advanced techniques,
such as trapped ions and ultracold atoms [61–64]. Recently,
multipartite nonlocality has also been observed in several
well-designed experiments on trapped ions [49] and photons
[65,66]. It is quite remarkable that in Ref. [49], the nonlocality
measure in n = 7 qubits has been estimated experimentally.
Therefore, it is technically feasible to design some experiment
to realize the main result in this paper. First of all, one may
use trapped ions to simulate the spin chain model defined in
Eq. (4). Second, in order to estimate the nonlocality measure
S (which is a combination of 2n expectation values), we need
to (i) optimize local measurement settings {. . . ak, bk . . .} and
(ii) experimentally estimate each of the 2n expectation values
[49]. From an experimental point of view, both steps are
quite nontrivial. Nevertheless, our theoretical investigations
can help simplify the experimental process. For step (i), we
mention that our numerical results can explicitly provide a
set of optimal measurement settings. For instance, along the
line −2α + δ = −1, we numerically find that the optimal
angles are translation invariant, i.e., ak = bk = (

√
2

2 , 0,
√

2
2 ) for

1 � k � n. For step (ii), one can see that when n is large, it
would be rather inconvenient to measure 2n observables so
as to figure out S . Fortunately, the linear scaling log2 S ∼
Kn + b illustrated in Fig. 5 provides a simplified method to
estimate S for large n. Explicitly, we can first figure out S
experimentally with n up to 7 [49], then use these data to fit
the parameters K and b, and finally estimate the value of S for
large n. Thereby, our theoretical investigations on multipartite
nonlocality can provide valuable guidance for carrying out
corresponding experiments in one-dimensional (1D) quantum
chains.

Finally, we mention that in the vicinity of the critical
points, as δ changes, the multipartite nonlocality measure So

(and Se) is quite sensitive (Fig. 3). In a quite recent paper,
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this kind of sensitivity in the multipartite nonlocality has been
used in quantum-enhanced metrology [67]. Because of the
gaplessness feature at these critical points, the measure So

presents some kind of sensitivity even at finite temperatures
(Fig. 7). Thereby, multipartite nonlocality at finite temper-
atures may be used as a resource for quantum-enhanced
thermometry [68–73]. According to the scaling formula in
Eq. (12), So is an exponential function of the temperature T
as So ∼ 2−pnT , where the exponent n is the number of qubits.
One can see that by increasing n, So would become even more
sensitive, which means that we may obtain a higher preci-
sion in quantum thermometry. This qualitative conclusion that
“increasing the number of qubits can improve the sensitivity
and the achievable precision” is consistent with the results
in [67]. On the other hand, for larger n, because of the 2n

nonlocal collective measures, the experiment would become
more unfeasible [69]. Thereby, there is a fundamental con-
tradiction between the precision and experimental operability,
and we can achieve some trade-off by adjusting n. It would be
interesting to consider this topic in more depth in our future
research.
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