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Enhanced quantumness via non-Markovianity
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In this paper we address the issue of the interplay between non-Markovianity and nonclassicality of a system.
We consider the action of non-Markovian environments on a qubit in terms of two models, a classical noise
model and a quantum microscopic collision model. For both models we use the violation of the Leggett-Garg
inequality (LGI) as a criterion of quantumness, and use the conditional past-future (CPF) correlation to measure
non-Markovianity. Besides for the collision model, we also use violation of the nondiscord generating and
detecting (NDGD) dynamics to indicate the nonclassicality. And LGI, NDGD, and CPF are probed sequentially
by three projective measurements of some observable. In this paper we do not use the assumption of the quantum
regression theorem and especially for the collision model the measurement backaction on the environment is
explicitly considered. We find that compared with the Markovian dynamics the LGI can be violated for a longer
time interval, i.e., non-Markovianity can preserve the quantumness of the system. For the collision model we
find that for a specific measurement process, although the non-Markovianity cannot be detected, the effect of
non-Markovianity of the system dynamics on nonclassicality still exists, and for some specific measurement
operator the violation of both LGI and NDGD will never occur for the Markovian dynamics while with the
enhancement of non-Markovianity the quantumness can appear. We also find that the NDGD can be violated for
a much wider parameter regime than the LGI.
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I. INTRODUCTION

No system is isolated because of unavoidable coupling
to its environment. In the study of open quantum systems,
Markovian approximation [1–3] is usually adopted, and the
evolution of the system density matrix can be given by Lind-
blad equations [4,5], such that the system dynamics is easier
to handle and describe, while in some cases the Markovian
approximation breaks down, such as strong coupling between
system and environment and nonvanishing initial system-
environment correlation [3]. In addition, it has been found
that non-Markovianity can lead to a significant variety of
physical effects in the dynamics of open quantum systems
[6–12] and can serve as a resource in information theory
[13–17]. Recently, the quantification of non-Markovianity has
been widely studied, such as measures based on the mono-
tonicity of trace-distance distinguishability [18–21], positivity
of quantum maps [22–26], the changes of quantum Fisher
information [27], the detection of initial correlations [28],
channel capacities, information flow [29–31], and so forth.

In contrast to previous definitions of non-Markovianity,
an operational criterion of a quantum process introduced in
Ref. [32] is based on the process tensor formalism, which
coincides with the definition of condition probability dis-
tributions in classical Markovian dynamics. The conditional
past-future (CPF) correlation proposed in Ref. [33] relies on a
similar formulation of classical Markovianity, i.e., the statisti-
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cal independence of past and future events when conditioned
on a given state at the present time. Also, an ensemble of
three time-ordered (random) system events provides a mini-
mal basis for detecting classical Markovianity. In the quantum
regime, the three events correspond to the outcomes of three
(system) measurement processes and this approach depends
on postselection techniques [34] and retrodicted quantum
measurements [35,36]. The related CPF correlation becomes
a univocal indicator of departure from a memoryless regime.
And its experimental implementation has been recently real-
ized [37,38].

Since the birth of quantum mechanics the discussion about
the boundary between classical and quantum realms has never
stopped. Central to quantum mechanics are concepts such
as coherence and entanglement caused by the superposition
principle [39,40]. Bell’s inequalities [41] explore the nonlocal
nature of entanglement between spatially separated quantum
systems and have laid the necessary and sufficient conditions
for local realism [42–45]. Different from Bell’s inequality, the
Leggett-Garg inequality (LGI) is about the time correlation
of a system under continuous measurement and has been
developed to test quantum coherence at the macroscopic level
[46,47]. The LGI is based on two assumptions, i.e., macro-
realism per se (MRps), in which the system remains in one
of its macroscopically distinguishable states, and noninvasive
measurability (NIM), in which it is possible to determine the
state of the macrosystem without affecting its subsequent dy-
namics. However, the two assumptions are incompatible with
quantum statistics. Thus, the dynamics of a quantum system
might violate the LGI [48]. A series of theoretical studies has
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been put forward [49–59], and since then many experiments
have supported this conclusion [60–65].

As we know, whether in the study of non-Markovianity or
in observing quantumness for a system mentioned above, the
physics of consecutive measurements on the same quantum
system promises to hold fascinating insights into the nature
of quantum mechanics. Generally it is easy to obtain the mul-
titime statistics by using the master equation for Markovian
dynamics [3,66,67]. But when it comes to the non-Markovian
cases, a multitime statistics has to be obtained by referring
to the full system-environment dynamics. Only in this way
can we trace the correlations between the open quantum
system and its environment which affect the subsequent dy-
namics of the open system, but it is very difficult to handle
mathematically. Some authors [68,69] tried to deal with this
problem with the assumption of the quantum regression theo-
rem (QRT) [67,70–72], while for non-Markovian dynamics
the QRT is not always satisfied. A stochastic Hamiltonian
model and a central spin model have been studied without the
assumption of QRT [33,73], but a simple situation, where all
spins of the environment start in the same state and all the cou-
plings between each spin of the environment and the qubit are
equal, was considered. By using the collision model [74–77],
where the environment is modelled by an ensemble of indi-
vidual ancillas with which the system sequentially interacts,
we can solve this problem. Moreover, for a collision model,
various ways of the system-environment and environment-
environment interactions can result in both Markovian and
non-Markovian dynamics. A non-Markovian collision model
consists of local interactions between system and subenvi-
ronment interspersed with subenvironment-subenvironment
coupling [75]. But a memoryless collision model assumes that
the reservoir consists of a large number of noninteracting sub-
units [74–76]. It is not difficult for a collision model to obtain
multitime statistics due to its ability to tackle its environment,
and the reduced system state can be obtained easily. And
also collision models provide a physically transparent way to
introduce measurement for the open system.

Recently, much attention has been paid to the quantum-to-
classical transition in open quantum systems [55,68,69,78].
In the non-Markovian dynamics, Ref. [68] provided a direct
connection between nonclassicality and a nondiscord gen-
erating and detecting (NDGD) of the system-environment
dynamics. Besides there were a few studies on the quantum-
to-classical transition for some specific open quantum systems
in the non-Markovian environment. Reference [79] consid-
ered a qubit embedded in a leaky cavity and controlled by
a classical field and drew a conclusion that the enhancement
of quantumness is usually accompanied by a disappearance
of non-Markovianity, while for a system in a non-Markovian
dephasing environment [80] a completely different conclusion
from above was obtained.

In the previous studies of quantumness and non-
Markovianity, the master equation was generally adopted,
which means that the measurement backaction on the envi-
ronment has been ignored. In this paper, we consider a qubit
interacting with two kinds of environments, a classical noise
model and an environment consisting of a collection of iden-
tical ancillas (collision model). We choose CPF correlation
to describe the quantum memory effects and the violation of

LGI to indicate the nonclassicality of the system. In addition,
we also use the NDGD to discuss the quantumness for the
collision model, and make a comparison between the NDGD
and the LGI. It is noted that CPF correlation, LGI, and NDGD
are all based on the system dynamics interrupted by three
consecutive measurements. It is found that in the Markovian
dynamics the LGI can be violated only within a short time in-
terval between two measurements. But for the non-Markovian
dynamics, the LGI can be violated even for longer time in-
tervals owing to the information backflow from the system
to the environment, i.e., non-Markovianity can preserve the
quantumness of the system. In addition, for the microscopic
collision model, we find that the violation of NDGD can
survive longer than LGI. Above we study the relationship
between nonclassicality and non-Markovianity for the whole
dynamical process; specifically, we take the maximum value
of CPF and maximum violations of LGI and NDGD for three
measurement operators σx, σy, and σz and different initial
system states. Then for the microscopic collision model we
investigate CPF correlation, LGI, NDGD, and the relationship
among them for a specific measurement process, i.e., for the
same measurement operator and the same initial state. Gen-
erally the above conclusions for the whole dynamics are still
valid for most of the specific measurement process. But in
some special cases, the conclusion is different. For a given
measurement process, when the initial state is the eigenstate of
the measurement operator, Cp f = 0 while quantumness is not
affected. In other words, Cp f depends on the initial state, while
δLG does not. Thus the non-Markovianity cannot be detected
by Cp f in this case, and the effect of non-Markovianity on
quantumness will not change with this undetectability. But
when the measurement operator is σz, neither the violation of
LGI nor the violation of NDGD will occur for the Markovian
dynamics, while with the enhancement of non-Markovianity
the quantumness can appear.

II. CPF CORRELATION AND LGI

Now we introduce CPF correlation and LGI. A measure-
ment of observable M that acts on the system only at three
successive times ta < tb < tc obtains outcomes a, b, and c. The
corresponding measurement operators are defined as Ma, Mb,
and Mc, respectively, satisfying

∑
a M†

a Ma = ∑
b M†

b Mb =∑
c M†

c Mc = I , where I is the identity matrix in the system
Hilbert space, and the sum indices run over all possible out-
comes at each stage. The system and environment evolve
between consecutive measurements, and the corresponding
evolving operator between measurement times ti and t j is
expressed as Ui, j . For a Markovian dynamics, the probability
of the future outcome only depends on the latest measurement,
being independent of the earlier operations. The transition
between Markovian and non-Markovian regimes can be vi-
sualized by CPF correlation, which is defined as [33]

Cp f =
∑

ca

[P(c, a|b) − P(c|b)P(a|b)]ac. (1)

The indices a and c run over all the possible outcomes
occurring at times ta and tc correspondingly, and b is a def-
inite particular outcome of the second measurement. And
the CPF correlation can be considered as an indicator of
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non-Markovianity. For a Markovian system Cp f = 0, and non-
Markovian effects break CPF correlation independence and
are present whenever Cp f �= 0. In general, the probability of
previous outcome a and future outcome c with the given
present outcome b can be expressed as

P(c, a|b) = P(c|b, a)P(a|b)

= Tr
[
McUb,cρ

SE
b U †

b,cM†
c

]

× Tr
[
MbUa,bMaρ

SE
0 M†

aU †
a,bM†

b

]
∑

a′ Tr
[
MbUa,bMa′ρSE

0 M†
a′U

†
a,bM†

b

] , (2)

where P(a|b) is a retrodicted quantum probability of outcome
a given b, ρSE

0 is the initial system-environment state, and
ρSE

b is the system-environment state after a measurement Mb

on the system only at tb. And P(c|b) = ∑
a P(c, a|b), and

P(a|b) = ∑
c P(c, a|b).

For a macroscopic system with two ontic states undergoing
an arbitrary dynamic process, the system will evolve from one
state to the other and at any particular moment the system is
found to be in a definite macroscopic state. Based on MRps
and NIM, i.e., a dichotomic observable M can produce definite
outcomes +1 or −1 and the confirmation of the macrosystem
state will not influence the state itself and its subsequent dy-
namics, the standard LGI is obtained to test the microrealism
in the view of quantum mechanics:

δLG = 〈MaMb〉 + 〈MbMc〉 − 〈MaMc〉 � 1, (3)

where

〈MiMj〉 =
∑

i j

P(i, j)MiMj

= Tr
[
MjUi, jMiρ

SE
i M†

i U †
i, jM

†
j

]
MiMj, (4)

and ρSE
i is the joint state of system and environment at time ti.

III. CLASSICAL NOISE MODEL

Now we consider a classical noise model. It is known that
the interaction between a qubit and its environmental extra
degrees of freedom can be mimicked by a classical colored
noise [81]. In Ref. [73], a classical noise model ignoring the
free Hamiltonian of the qubit has been considered. In this
paper, we consider the free Hamiltonian of the qubit itself,
therefore the Hamiltonian of the system can be described by

H = [ξ (t ) + ω]σz, (5)

where ξ (t ) is a classical noise, ω is the qubit frequency, and σz

is the system Pauli matrix in the z direction. Thus, the system
evolves under this Hamiltonian following the dynamics,

dρst
t

dt
= −i[ξ (t ) + ω]

[
σz, ρ

st
t

]
, (6)

and the system state ρt can be obtained from averaging ρst
t

over all the noise realizations ξ (t ), i.e., ρt = ρst
t . For a pure

initial system state, it can be described by a wave function
|ψt 〉, and ρst

t = |ψt 〉〈ψt |, thus the evolution of the system can
be rewritten as

d

dt
|ψt 〉 = −i[ξ (t ) + ω]σz|ψt 〉. (7)

In this section, we suppose that the initial system state is in
its ground state, i.e., |ψ (0)〉 = |0〉, and all the three measure-
ments Ma, Mb, and Mc project the system state onto |±〉 =
|0〉±|1〉√

2
, i.e., Ma = Mb = Mc = �±1 and �±1 = |±〉〈±|. For

our initial state after the first measurement, the system state
turns into |ψa(0)〉 = |0〉+a|1〉√

2
, and the probability with the mea-

surement outcome a is Pst (a) = 〈ψ (0)|�a|ψ (0)〉 = 1
2 , where

a = ±1 is the outcome of the first measurement. After evolv-
ing for a time interval t , the state of the system becomes

|ψx(t )〉 = e−i(
∫ t

0 dt ′ξ (t ′ )+ωt )|0〉 + ei(
∫ t

0 dt ′ξ (t ′ )+ωt )a|1〉√
2

. (8)

After the second measurement, the probability of outcomes
b = ±1, given the previous outcomes a, is

Pst (b|a) = 〈ψa(t )|�â=b|ψa(t )〉
= 1

2 {1 + baRe
[
e−2i(

∫ t
0 dt ′ξ (t ′ )+ωt )

]}. (9)

From Eq. (9), it is easy to find that the conditional probability
Pst (b|a) depends on each particular noise realization. For the
initial state |0〉, the joint probability of outcomes a and b is

Pst (a, b) = Pst (b|a)Pst (a)

= 1
4

{
1 + baRe

[
e(−2i(

∫ t
0 dt ′ξ (t ′ )+ωt )

]}
. (10)

After the second measurement, the wave function changes
into |ψab(t )〉 = |0〉+b|1〉√

2
. It is noted that |ψab(t )〉 is only depen-

dent on the outcome b, but is irrelevant to t and the particular
noise realization. In the next step, after a time interval τ , the
system state evolves into

|ψab(t + τ )〉 = e−i(
∫ t+τ

t dt ′ξ (t ′ )+ωτ )|0〉 + ei(
∫ t+τ

t dt ′ξ (t ′ )+ωτ )b|1〉√
2

.

(11)
The conditional probability of the third measurement out-
comes c = ±1, given the previous outcomes a and b, is

Pst (c|b, a) = 〈ψab(t + τ )|�z|ψab(t + τ )〉
= 1

2

{
1 + cbRe

[
e−2i(

∫ t+τ

t dt ′ξ (t ′ )+ωτ )
]}

. (12)

From Eq. (10), we get Pst (b) = ∑
a Pst (b, a) = 1

2 , and from
Bayes’s rule the retrodicted probability can be written as

Pst (a|b) = Pst (b|a)Pst (a)

Pst (b)

= 1
2

{
1 + baRe

[
e−2i(

∫ t
0 dt ′ξ (t ′ )+ωt )

]}
, (13)

and

Pst (c, a|b) = Pst (c|b, a)Pst (a|b)

= 1
4

{
1 + baRe

[
e−2i(

∫ t
0 dt ′ξ (t ′ )+ωt )

]}
{
1 + cbRe

[
e−2i(

∫ t+τ

t dt ′ξ (t ′ )+ωτ )
]}

. (14)
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From Eq. (1), the CPF correlation can be obtained:

Cp f =
∑

ac

[P(c, a|b) − P(c|b)P(a|b)]MaMc

= f (t, τ ) − f (t ) f ′(τ ), (15)

where

f (t ) = Re
[
e−2i(

∫ t
0 dt ′ξ (t ′ )+ωt )

]
, (16)

f ′(τ ) = Re
[
e−2i(

∫ t+τ

t dt ′ξ (t ′ )+ωτ )
]
. (17)

In this paper we consider the stationary noise, which implies
f ′(τ ) = f (τ ). Finally,

f (t, τ ) = Re
[
e−2i(

∫ t
0 dt ′ξ (t ′ )+ωt )

]
Re

[
e−2i(

∫ t+τ

t dt ′ξ (t ′ )+ωτ )
]
. (18)

Thus Eq. (15) can be written as

Cp f = f (t, τ ) − f (t ) f (τ ). (19)

Notably, the CPF correlation is conditional on the definite
outcome b. Analogous to Cp f , the left-hand side of Eq. (3)
can be written as

δLG = − f (t + τ ) + f (t ) + f (τ ). (20)

Now, we consider the Gaussian noise as a specific example
to study the connection between the nonclassicality and the

non-Markovianity. In order to calculate f (t ) and f (t, τ ) we
first introduce the characteristic noise function [71]:

G[k] = exp

[
i
∫ ∞

0
k(t ′)ξ (t ′)dt ′

]
, (21)

where k(t ) is an arbitrary test function. For a Gaussian noise
with ξ (t ) = 0, Eq. (21) can be written as

G[k] = exp

[
−1

2

∫ ∞

0
dt2

∫ ∞

0
dt1k(t2)k(t1)χ (t2, t1)

]
, (22)

where χ (t2, t1) ≡ ξ (t2)ξ (t1) = χ (|t2 − t1|) is the noise cor-
relation function. For the Gaussian noise f (t ) and f (t, τ )
can be determined through the characteristic noise function
G[k]. Using Re[a] = (a + a∗)/2 from Eqs. (21) and (22)
f (t ) in Eq. (16) can be obtained with k(t ′) = θ (t − t ′), and
f (t, τ ) in Eq. (18) can be obtained by taking k(t ′) = θ (t +
τ − t ′)θ (t ′ − t ) ± θ (t − t ′) [73]. For an exponential correla-
tion noise, χ (t2, t1) = g2exp(−|t2 − t1|/τc), where τc is the
characteristic correlation time of the noise, and g2 measures
its initial width, we obtain

f (t ) = cos(2ωt )e−4(gτc )2[ t
τc

−(1−e− t
τc )], (23)

f (t, τ ) = 1
2 cos[2ω(t + τ )]e4(gτc )2(− t+τ

τc
+1−e− t+τ

τc ) + 1
2 cos[2ω(t − τ )]e4e− t+τ

τc (gτc )2[−e
t+τ
τc ( t+τ

τc
−3)+1−2e

t
τc −2e

τ
τc ].

And based on Eqs. (19), (20), and (23) the expressions of Cp f

and δLG can be obtained. And from Eq. (23) it can be seen that
the CPF and LGI functions are symmetric in the t-τ plane. For
the white noise, χ (t2, t1) = γ δ(t2 − t1), we can obtain

f (t ) = cos(2ωt )e−2γ t , f (t, τ ) = f (t ) f (τ ). (24)

Then we can obtain Cp f = 0, and

δLG = − cos[2ω(t + τ )]e2γ (t+τ ) + cos(2ωτ )e−2γ τ

+ cos(2ωt )e−2γ t . (25)

In this case, the Markovian limit is obtained. Then we consider
another case of infinite correlation-time noise, χ (t2, t1) = g2,
and obtain

f (t ) = cos(2ωt )e−2(gt )2
, f (t, τ ) = 1

2 [ f (t + τ ) + f (t − τ )].
(26)

Therefore, we can obtain

Cp f = 1
2 e−2g2(t+τ )2{cos[2ω(t + τ )]

− 2 cos(2ωt ) cos(2ωτ )}
+ 1

2 e−2g2(t−τ )2
cos[2ω(t − τ )], (27)

δLG = − cos([2ω(t + τ )]e−2g2(t+τ )2 + cos(2ωτ )e−2g2τ 2

+ cos(2ωt )e−2g2t2
. (28)

Note that in the limit τc → 0, Eq. (23) gives the white-noise
limit. And in the limit τc → ∞, Eq. (23) reduces to Eq. (26).

This means that, in the limit τc → 0, Cp f and δLG reduce to
those in the case of white noise, and in the limit τc → ∞ the
results of the infinite correlation-time limit are obtained.

We plot Cp f as a function of time t for equal time τ = t in
Fig. 1. Different values of correlation time τc are chosen for
fixed γω = 2g2τc = 0.1. From Fig. 1, we can find that with the
increase of τc the amplitude of CPF correlation increases and
its decay will slow down as expected; i.e., the bigger τc is, the
stronger the non-Markovianity is. Specifically, for small cor-
relation times (ωτc = 0.001), CPF correlation rapidly reaches
its maximum, then vanishes quickly, while for larger corre-
lation time (ωτc = 2) the CPF correlation is not null even
for longer time intervals between two measurements. From
Fig. 1(c), the violation of CPF will last a very long time
interval for large correlation times ωτc = 1000. In fact, in the
limit ωτc → ∞, the corresponding CPF correlation reduces
to

Cp f = 1
2 [cos(4ωt ) + 1] − [cos(2ωt )]2,

and will not decay. In Fig. 2, δLG is plotted with the same
parameters as in Fig. 1. From Fig. 2, it can be seen that
LGI can always be violated for a short time interval ωt , and
the longer the correlation time τc the longer the duration of
the violation of LGI. Moreover, when the correlation time
τc → ∞, δLG becomes

δLG = − cos(4ωt ) + 2 cos(2ωt ),
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FIG. 1. Cp f for the classical noise 2( g
ω

)2(τcω) = 0.1 with differ-
ent characteristic correlation times (a) ωτc = 0.001, (b) ωτc = 2, and
(c) ωτc = 1000.

thus the violation of LGI (δLG > 1) will always exist. From
Fig. 2, we notice that LGI can be violated both in Marko-
vian and in non-Markovian regimes for a short time interval
because the coherence of the system has not flowed to the
environment completely, but it does not mean that the nonclas-
sicality is irrelevant to the non-Markovianity. Conversely, in
the non-Markovian case, the range of violation of LGI will in-
crease due to the backflow of coherence from the environment
to the system, so the connection between nonclassicality and
non-Markovianity is built. In addition, it should be noted that
due to the oscillatory nature of δLG the dynamics of the system
can also be quantum even though LGI is not violated in some

0 5 10 15 20
t

-2

-1
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1

2

LG

(a)
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t

-3

-2

-1

0

1

2

LG

(b)

0 50 100 150
t
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FIG. 2. δLG for the classical noise with different characteris-
tic correlation times for 2( g

ω
)2(τcω) = 0.1 and (a) ωτc = 0.001,

(b) ωτc = 2, and (c) ωτc = 1000.

time intervals. In order to clearly show this, we introduce the
Leggett-Garg-type inequalities [78,82,83]:

L+ = −〈MaMb〉 − 〈MbMc〉 − 〈MaMc〉 � 1, (29)

L− = δLG = 〈MaMb〉 + 〈MbMc〉 − 〈MaMc〉 � 1. (30)

It should be noted that L− = δLG. Figure 3 displays the
Leggett-Garg-type inequalities L+ and L− as functions of ωt
for the two-level system introduced in Eq. (5) but ignoring the
effect of classical noise. It can be seen from Fig. 3 that L+
and L− are complementary; i.e., if one of them is not violated,
the other is violated and vice versa. However, the effect of
classical noise leads to a damping of the oscillations of δLG,
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FIG. 3. Leggett-Garg-type inequalities L+ (blue dashed line) and
L− (orange solid line) as a function of time ωt for a two-level system
in the absence of noise.

and after a certain maximal measurement interval no further
violations of LGI can be observed, and the dynamics of the
system will be classical. In addition, it is noted that for the
coherent evolution of the isolated system δLG is periodic and
the amplitude of its oscillations will not decay (see Fig. 3).

IV. COLLISION MODEL

Now we explore the relationship between nonclassicality
and non-Markovianity by focusing on a qubit interacting with
a large number of subunits, i.e., the collision model. The free
Hamiltonian of the qubit system is the same as that of the
classical noise model, i.e., Hs = ωσz. The corresponding free
evolution operator is U0(θ ) = e−iθσz , where θ = ωδt and δt
is the free evolution time of the system. In Fig. 4, we give
the operational definition of the collision model [20] used in
this paper: The system undergoes a unitary evolution U0(θ ),
it interacts with E1, and E1 interacts with E2. In the next step,
the system moves forward, it undergoes a unitary evolution
U0(θ ), it interacts with E2, E2 interacts with E3, and so on.

FIG. 4. Schematic of the collision model with S-E and E -E in-
teraction. In the nth step of the dynamics, after local dynamics given
by unitary operator U0, S collides with En, which can be described
by Vs,n, the next En collides with En+1 with the nearest-neighbor E -E
collision denoted by Wn,n+1, then S shifts by one site. In the next
step, S has local unitary dynamics, then collides with En+1, and En+1

collides with En+2, and at the end of this step S moves forward and
so on.

Next, we concentrate on the condition that all the elements of
the environment are dichotomous systems with logical states
{|0〉, |1〉} and assume that they are initialized at the ground
state |0〉.

The collision between the system and the nth element of
the environment is assumed to be described by a unitary
operator

VS,n(γ ) = cos γ IS,n + i sin γ SS,n, (31)

where IS,n is the identity operator, γ ∈ R is the dimensionless
interaction strength, and a swap gate SS,n in the eigenbasis of
the system and the nth subenvironment is introduced:

SS,n =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠. (32)

After the interaction of the system and nth subenvironment,
the nearest-neighbor interaction between the nth and (n +
1)th subenvironment is considered and the unitary evolution
governing this interaction dynamics is chosen:

Wn,n+1(δ) = cos δIn,n+1 + i sin δSn,n+1. (33)

It is noted that the collisions between subenvironments in-
troduce a memory mechanism. As for δ = 0, the interaction
between subenvironments (E -E interaction) is switched off
so that the quantum process has no information backflow
from the environment and the dynamics is fully Markovian.
For δ = π

2 , the fresh subenvironment that the system will
interact with at the nth step carries full information obtained
at n − 1 collisions. Thus the joint system of S and E appears
like an iterated two-qubit system and a strong non-Markovian
dynamics is obtained. The interactions introduced above can
also be expressed as dynamic maps:

�S,n[ρ] = VS,n(γ )ρV †
S,n(γ ), (34)

�n,n+1[ρ] = Wn,n+1(δ)ρW †
n,n+1(δ), (35)

where ρ is an arbitrary state. Furthermore, in this paper we re-
tain the nth subenvironment freedom until the system interacts
with the (n + 1)th subenvironment, i.e., the correlation estab-
lished after S has collided with En−1 is erased only after En−1

has collided with En. The S-E initial state ρSE
0 is supposed

be a factorized product state. Here, in order to simplify later
discussion, let us first introduce a concatenation of dynamics
maps {�n−1,n} to characterize the evolution of a composite
system composed of a system and the environment between
the time tn−1 and tn:
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ρSE
n,n+1 = �n−1,n

(
ρSE

n−1,n

) = �n,n+1
(
�S,n

{
U0(θ )

[
Trn−1

(
ρSE

n−1,n

) ⊗ (|0〉〈0|)n+1
]
U0(θ )†

})
, (36)

where ρSE
n−1,n is the joint state of the system En−1 and En after the interaction between En−1 and En, Trn−1(·) means that En−1 is

traced out prior to the collision between S and En, and U0(θ ) is defined at the beginning of this section. In this way, the reduced
state of the system after the collision with the nth subenvironment can be obtained:

ρS
n = Trn+1,n

[
�n−1,n

(
ρSE

n−1,n

)] = Trn+1,n
[
�n,n+1

(
�S,n

{
U0(θ )

[
Trn−1

(
ρSE

n−1,n

) ⊗ (|0〉〈0|)n+1]U0(θ )†
})]

. (37)

Through simple calculations, we find that unlike classical
noise, in the collision model, neither Cp f nor δLG is symmet-
rical in the plane of the time interval t between the first two
measurements and the time interval τ between the last two
measurements. This is because in the case of classical noise
we suppose it to be stationary, while in the case of the micro-
scopic collision model the process is transient. Moreover the
backaction of measurement is explicitly considered. In Fig. 5,
we plot Cp f against n for θ = π/2, γ = 0.1π/2, and different
E -E interaction strengths (δ = 0.1π/2, 0.5π/2). We consider
the system state is initialized at |+〉, and the three successive
measurements are chosen as projective ones, being performed
in the y direction. For convenience we assume that the time
interval between the first two measurements and that between
the last two measurements are equal. It is noted that in this
model E -E interaction strength δ quantifies the information

FIG. 5. The n dependence of CPF correlation for the collision
model with θ = π/2, γ = 0.1π/2, and different E -E interaction
strengths (a) δ = 0.1π/2 and (b) δ = 0.5π/2.

backflow from the environment to the system. From Fig. 5,
we can find that both the time interval for Cp f �= 0 and its
amplitude increase with the E -E interaction strength δ. For
δ = 0.1π/2, the time interval for Cp f �= 0 is small. For larger
δ = 0.5π/2, the time interval for Cp f �= 0 is larger than the
former. With the increasing of δ, the time interval for Cp f �= 0
increases. And in the limit of an E -E complete swap δ = π/2,
Cp f will not vanish no matter how large the time interval is.
In Fig. 6, for the same parameters as in Fig. 5, we plot δLG

as a function of n. From Fig. 6 we can see that with the in-
crease of E -E interaction strength δ the violation range of LGI
(δLG > 1) will increase. For small E -E interaction strength
(δ = 0.1π/2), LGI is violated only for short time interval
while it can be violated for a longer time interval for a larger
E -E interaction strength δ. For example, for δ = 0.5π/2, the
violation of LGI will exist for a longer time by comparing with

FIG. 6. The n dependence of δLG for the collision model with θ =
π/2, γ = 0.1π/2, and different E -E interaction strengths (a) δ =
0.1π/2 and (b) δ = 0.5π/2.
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δ = 0.1π/2. In addition, in the limit of a complete swap, no
matter how large the time interval is, the LGI will always be
violated in this circumstance. In addition, it should be noticed
that we choose θ = π/2 as an example to demonstrate the
properties of CPF and LGI in Figs. 5 and 6, respectively. In
fact, for any definite value of θ , the conclusion that both the
violations of Cp f and δLG will be stronger with the increasing
of E -E interaction strength δ still holds.

By comparing Figs. 5 and 6, similar to the classical noise
model, we can find that LGI can be violated in a short period
of time from the beginning due to the initial coherence of
the system whether the system dynamics is Markovian or
non-Markovian. Moreover, with the increase of n, the infor-
mation of the open system will flow into its environment and
LGI will oscillate with a damped amplitude. However, for the
non-Markovian process, the decrease of δLG will slow down
owing to the information backflow from the environment to
the system. Especially on the condition of an E -E full state

swap (δ = π/2), δLG oscillates periodically and will not decay
with n.

Recently, a link was built between NDGD and the non-
classicality of the multitime statistics in the non-Markovian
dynamics [68]. If the process is NDGD, for a classical
observer, doing nothing cannot be distinguished from a mea-
surement in the classical basis averaging over the outcome
at any point in time. The quantum-to-classical transition can
also fully be quantified by a new physical quantity generating
and detecting (DGD). The calculation of NDGD needs to
consider the overall evolution of system and environment,
and in general the master equation is hard to deal with. In
this case the discrete nature of the collision model together
with their tractability make it standout. A vanishing DGD
dynamics cannot create discord that can be detected by the
observer at the next time [68], concretely; for the collision
model used in this paper a NDGD dynamics is defined as

∑
n

(Mn

⊗
Ie) ◦ �m,n ◦

∑
m

(Mm

⊗
Ie) ◦ �l,m ◦

∑
l

(Ml

⊗
Ie)

=
∑

n

(Mn

⊗
Ie) ◦ �m,n ◦ Ise

m ◦ �l,m ◦
∑

l

(Ml

⊗
Ie) ∀tn � tm � tl , (38)

with

Mi[ρ] = MiρM†
i , (39)

where �m,n = �n−1,n ◦ �n−2,n−1 ◦ . . . ◦ �m+1,m+2 ◦ �m,m+1 is
defined as the dynamical map of the total system evolution
between any two times tm and tn, �n−1,n has been defined
in Eq. (36), “◦′′ represents the composition of maps, {Mi}
is a positive operator-valued measure on the system alone

satisfying
∑

i M†
i Mi = I where the sum indices run over all

possible measurement outcomes at each stage, Ie represents
the identity channel of the environment space only, and Ise

m
represents the identity channel on the joint state of the system
and environment. Then the DGD can be quantified by �DGD,
which is defined as the trace distance between the left-hand
side and right-hand side of Eq. (38) acting on an arbitrary
discord-zero S-E state ρSE :

�DGD =
∥∥∥∥∥

∑
n

(Mn

⊗
Ie) ◦ �m,n ◦

∑
m

(Mm

⊗
Ie) ◦ �l,m ◦

∑
l

(Ml

⊗
Ie)[ρSE ]

−
∑

n

(Mn

⊗
Ie) ◦ �m,n ◦ Ise

m ◦ �l,m ◦
∑

l

(Ml

⊗
Ie)[ρSE ]

∥∥∥∥∥
1

. (40)

For a classical dynamic process, �DGD = 0 can be ob-
tained. As long as �DGD �= 0, the process is nonclassical. We
plot �DGD as a function of n in Fig. 7, where the initial system
state, environment state, and measurement operator are the
same as those introduced above, and the remaining parameters
are the same as those in Fig. 6. Comparing Figs. 7(a) and 7(b),
we find that when δ = 0.5π/2 the violation of NDGD will
survive for a longer time interval than δ = 0.1π/2, i.e., a large
E -E interaction strength δ corresponds to a larger violation
range of NDGD. Thus a conclusion that nonclassicality can
be maintained by non-Markovianity is obtained. Also, the
violation of NDGD exists for a longer time interval than the
violation of LGI as shown in Figs. 6(b) and 7(b). For exam-
ple, for δ = 0.5π/2, NDGD can be violated for n = 450–600
where LGI is not violated, i.e., NDGD can be violated for a
wider parameter regime than the LGI.

According to the definition of CPF correlation for a dy-
namics process, non-Markovianity is defined as the existence
of at least one set of measurement processes such that the CPF
correlation does not vanish. In the above discussion, we focus
on the non-Markovianity, the quantumness, and the interplay
between them for the dynamics of the system. This means
that in the calculation of Cp f , δLG, and δDGD we take the
maximum values of them over three measurement operators
σx, σy, and σz, respectively. And it is found that, for this
collision model, the non-Markovianity and quantumness are
maximized when the measurement operator is the eigenstate
of σy(σx ) and the corresponding initial system state is the
eigenstate of σx(σy), which we have used in the above dis-
cussion. In this sense we conclude that non-Markovianity can
enhance the quantumness of the system, while it should be
noted that the CPF correlation, LGI, and NDGD all depend
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FIG. 7. The n dependence of �DGD for the collision model
with θ = π/2, γ = 0.1π/2, and different E -E interaction strengths
(a) δ = 0.1π/2 and (b) δ = 0.5π/2.

on a quantum process along a definite evolution interrupted
by three time-ordered successive measurements. And now we
are interested in the relationship among the CPF correlation,
LGI, and NDGD for a specific quantum process, i.e., for the
same initial state and the same specific measurement operator.
As we will see in the following, for a particular measurement
operator and initial state in some measurement time interval,
the non-Markovianity of the dynamics might not be detected
by CPF correlation although the dynamics is definitely a
non-Markovian one. For a given measurement operator, Cp f

depends on the initial state and from its definition it can be
found that when the initial system state is the same as the
eigenvector of the corresponding measurement operator Cp f

will equal to zero, which means that the non-Markovianity
cannot be detected in this case. If the initial state is orthog-
onal to the eigenvector of the corresponding measurement
operator, Cp f arrives at its maximum value. Therefore, the
non-Markovianity of a dynamics process should not be de-
termined by the Cp f of a particular measurement process but
should take all possible measurement operators and initial sys-
tem states. However, from our numerical calculation, we find
that when measuring the system in x, y, and z directions the
initial state of the system does not affect the violation of LGI
while NDGD remains qualitatively unchanged despite the
quantitative differences. In an experiment about a definitely
non-Markovian dynamics for a fixed measurement setting,
although the non-Markovianity cannot be detected, the impact

of non-Markovianity of the system dynamics on quantumness
of the system will not change. In addition, when measuring
the system in the z direction, compared with measuring in
the x and y directions, the values of Cp f , δLG, and δDGD are
smaller. Especially for E -E interaction strength δ = 0, neither
the violation of LGI nor the violation of NDGD will occur.
This can be explained as follows: The measurement operator
σz commutes with the system Hamiltonian, and the interaction
between the system and the element of the environment does
not create any coherence of the system. Thus, for this mea-
surement process there is no coherence to be produced. And
in the case of δ = 0, which means a Markovian dynamics, the
non-coherence-generating-and-detecting dynamics is satisfied
and the process is classical [69]. However, when δ �= 0, the
violation of NDGD can be observed. Different from δ = 0
where the system collides with a new ancilla of the envi-
ronment at a vacuum state, when δ �= 0, the system collides
with a new ancilla with some coherence due to the interaction
between the subunits of the environment, so nonclassicality
appears. This means that for the specific measurement process
the non-Markovianity can make the nonclassicality appear.
And when δ is small the violation of LGI cannot occur and
only δ is large enough, and the violation of LGI begins to
appear. A similar conclusion to that for the whole dynamics
as discussed above can be obtained: If NDGD is violated, the
violation of LGI is obtained, i.e., in some cases, quantumness
cannot be detected by δLG but can be detected by δDGD.

V. CONCLUSION

In this paper, we have considered a qubit coupled to two
different environments, i.e., a classical noise model and a
collision model, and investigated the relationship between
nonclassicality and non-Markovianity. We have characterized
the non-Markovianity of dynamics by the CPF correlation and
the nonclassicality by the LGI. In addition, another measure-
ment of nonclassicality, NDGD, has been introduced for the
collision model. It is noted that an ensemble of three time-
ordered (random) system events provides a minimal basis for
all CPF correlation, LGI, and NDGD.

For both models we have found that in the Markovian
regime the LGI can be violated when the time interval be-
tween the two sequence measurements is short, while when
the degree of non-Markovianity increases the LGI can be
violated for a longer time interval because of the information
backflow from the environment to the system. So we have
obtained a conclusion that the non-Markovianity can enhance
the nonclassicality of the system. In previous studies the mas-
ter equation was usually used, and sometimes the QRT was
adopted, so the measurement backaction on the environment
cannot be explicitly considered. All the CPF correlations,
LGI, and NDGD are related to a multitime statistics, and for a
non-Markovian dynamics in order to obtain such statistics the
whole system-environment dynamics should be considered. In
general, a measurement on a system inevitably changes the
system dynamics between consecutive measurements, which
brings difficulties to the evaluation of the CPF correlations,
LGI, and NDGD. By using the microscopic collision model
we can trace the correlations between the open quantum
system and its environment, which affect the subsequent dy-
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namics of the open system, and the measurement backaction
on the environment can be explicitly considered. The above
conclusion that the non-Markovianity can enhance the non-
classicality of the system is for the dynamics of the system,
which means that when we evaluate the CPF correlation, LGI,
and NDGD we take the maximum values of them over three
measurement operators σx, σy, and σz, respectively. For the
collision model, we have also considered the CPF correlation,
LGI, and NDGD for a specific measurement process, i.e., for
the same measurement operator and initial state. The CPF
correlation is related to the initial state of the system, and
when the initial state of the system is the eigenstate of the
measurement operator the non-Markovianity of the system
cannot be detected by the CPF correlation, while the effect
of non-Markovianity of dynamics on quantumness will not
be affected by this initial state. And when the measurement
operator is in the eigenstate of σz neither LGI nor NDGD will
be violated in the Markovian dynamics, and as the degree of

the non-Markovianity increases the violation of NDGD and
LGI can be detected. This means that for this special case the
non-Markovianity can make the nonclassicality of the system
appear. We have also found that the violation of NDGD is
more likely to occur than that of LGI: For the measurement
operator σz, for very weak non-Markovianity, the violation
of NDGD can occur, while only when the non-Markovianity
becomes strong enough the violation of LGI begins to occur.
Generally the NDGD can be violated for a much wider pa-
rameter regime than the LGI, which means that the violation
of NDGD is tighter for detecting the nonclassicality than
the LGI.
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