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Optical theorem for light scattering from a linear atomic chain

P. R. Berman * and A. Kuzmich
Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 2 July 2021; accepted 15 October 2021; published 29 October 2021)

The radiation pattern of light scattered from a chain of atoms having J = 0 ground states and J = 1 excited
states is calculated in the weak driving field approximation. It is shown that, in general, for arbitrary orientation
of the driving field to the chain axis, it is not possible to treat the atoms in a two-level approximation owing
to cooperative effects. In the limit of large detuning, however, all cooperative decay effects can be neglected in
calculating the scattered spectrum. Nevertheless, even in this limit, in order to ensure conservation of energy, it
is still necessary to include cooperative decay when calculating the energy lost by the driving field. For arbitrary
detunings, conservation of energy can be expressed in the form of a generalized optical theorem.
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I. INTRODUCTION

Light scattering of radiation by particles having dimen-
sions much smaller than the wavelength of the radiation being
scattered was analyzed in the pioneering work of Rayleigh
[1]. An early discussion of light scattering by atoms can be
found in the book by Heitler [2]. Both Rayleigh and Heitler
understood that Rayleigh scattering is an elastic process and
cannot be described, in general, as absorption and reemission
by the scatterers. For weak incident fields, light scattering
is essentially a two-photon process in which radiation from
the incident field is scattered into previously unoccupied
modes of the vacuum field. For stationary atoms (the only
case considered in this work), the two-photon transition is
between the same ground-state level—as a consequence the
frequency of the scattered radiation is identical to that of
the driving field. Heitler’s calculation was carried out for the
scattering of the incident field by a single atom, whereas
Rayleigh considered independent scattering by an ensemble
of dielectric spheres, allowing him to calculate an extinction
coefficient.

The problem of light scattering by two atoms was dis-
cussed in a seminal paper by Richter using a two-level
approximation [3]. A generalized theory of light scatter-
ing from regularly spaced atomic arrays in one, two, and
three dimensions was given by Nienhuis and Schuller [4].
The modification of single-atom scattering resulting from a
ground-state hyperfine structure has been considered by a
number of authors [5–9]. Even for weak incident fields and
a single ground-state level having total angular momentum
J > 0, the scattering is no longer purely elastic, as it is for
J = 0 ground states. Müller et al. [9] went on to consider
multiple scattering for these systems but adopted a model
in which optical pumping and ground-state light shifts were
neglected.

There has been a revival of interest in light scattering in
the context of Bose condensates and quantum information.
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For example, light scattering has been used to probe atomic
interactions in Bose condensates [10]. Along with postselec-
tion, light scattering has also been used to create entangled
states in atomic ensembles [11] which, in turn, could then be
used in quantum information protocols. With an eye towards
applications in quantum information, there have been studies
of light scattering from linear atomic chains [12] and planar
arrays [13].

Most treatments of light scattering by atomic chains are
limited to or focused on situations in which the propagation
vector of the incident field is either perpendicular or parallel
to the axis chain. In such cases, the two-level approximation
remains valid for a J = 0 to J = 1 transition. Scattering by
a one-dimensional lattice of a field incident along the axis
chain was studied experimentally by Glicenstein et al. [14],
who found that the maximum scattered intensity as a function
of the incident field frequency was red-shifted owing to atom-
atom interactions.

In this paper we study light scattering from a one-
dimensional chain of J = 0 to 1 atoms for an arbitrary
direction of the incident field propagation vector. Experimen-
tal studies of light scattering in this limit have revealed both
Bragg scattering from a three-dimensional atomic lattice (that
acted effectively as a one-dimensional regular array) [15] and
reflective scattering from a one-dimensional atomic lattice
[16]. In addition to obtaining the scattered intensity, we cal-
culate the energy lost by the driving field in the scattering
process, a subject that is not discussed in many of these pre-
vious studies. We show explicitly how the scattered intensity
is equal to the rate at which energy is being depleted from the
incident field by deriving an optical theorem for the scattering.
As expected, we show that energy is conserved, but there
is a novel aspect to the result. If the atom-field detuning is
sufficiently large, all cooperative effects between the atoms
can be neglected in calculating the scattered field. On the
other hand, if we neglect cooperative decay in calculating the
energy lost by the incident field in this limit, we get the wrong
result. In other words cooperative decay can be neglected in
calculating the scattered field for sufficiently large detunings
but not for the energy loss of the incident field.
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FIG. 1. Atom-field geometry. The propagation vector of the lin-
early polarized incident field lies in the x-z plane and makes an angle
θ0 with the z axis. Two or more atoms are located on the z axis and
scattter the incident radiation into a direction (θ, φ).

II. TWO ATOMS

To establish the notation and some of the concepts, we first
consider scattering by two atoms. The atom-field geometry is
indicated schematically in Fig. 1. Atom 1 is located at posi-
tion R1 = −(Z0/2)uz and atom 2 at position R2 = (Z0/2)uz,
with R21 = R2 − R1 = Z0uz, where uz is a unit vector. The
incident field is taken to be a classical plane-wave field,

E(R, t ) = 1
2εE0ei(kL ·R−ωLt ) + c.c., (1)

where ωL = kLc and “c.c.” stands for “complex conjugate.”
The propagation vector

kL = kL(cos θ0uz − sin θ0ux ) (2)

defines the plane of incidence and the polarization,

ε = cos θ0ux + sin θ0uz, (3)

is chosen to lie in this plane, although the calculation can be
modified easily to allow for an arbitrary complex polarization
(see the Appendix). Each atom has a J = 0 ground state
denoted g and a J = 1 excited state denoted e. The transition
frequency between the two levels is ω0 and the excited-state
decay rate is denoted γ2.

The Hamiltonian for the atom-field system, written in a
field-interaction representation within the rotating-wave ap-
proximation, is

H (t ) = h̄δ

2

∑
j=1,2

1∑
m=−1

σ ( j)
mm − 1

2
E0

∑
j=1,2

1∑
m=−1

μmg · εeikL ·R j σ̃ ( j)
mg

− i
∑
k,λ

(
h̄ωk

2ε0V

)1/2

×
∑
j=1,2

1∑
m=−1

σ̃ ( j)
mg μmg · ε

(λ)
k akλ

eik·R j e−i(ωk−ωL )t

+ adjoint, (4)

where

δ = ω0 − ωL (5)

is the atom-field detuning,

μmg = 〈m|μ j |g〉 (6)

is a ( j-independent) dipole matrix element, |m〉 is a ket corre-
sponding to the m sublevel of the excited state,

σ̃ ( j)
mg (t ) = σ ( j)

mg eiωLt , (7)

σ
( j)
mg is a raising operator to state m in atom j, σ

( j)
mm is an

excited-state population operator for atom j in excited-state
sublevel m, akλ

is a lowering operator for the quantized field
for a mode having propagation vector k = kr̂ and polarization

ε(θ ) = cos θ cos φx̂ + cos θ sin φŷ − sin θ ẑ, (8a)

ε(φ) = − sin φx̂ + cos φŷ, (8b)

ωk = kc, and V is the quantization volume for the vacuum
field.

The vacuum field leads to spontaneous decay of the excited
states and coupling between the excited-state levels of one
atom and those of the other. Explicitly, one can show that,
owing to this coupling, the probability amplitudes cm;g for
atom 1 to be in state m and atom 2 to be in the ground state
and cg;m for atom 2 to be in state m and atom 1 to be in the
ground state evolve as [4,17,18]

ċg;m = −γ cg;m − γ (pm + iqm)cm;g, (9a)

ċm;g = −γ cm;g − γ (pm + iqm)cg;m, (9b)

where

p±1(ξ ) = 3

2

{
sin ξ

ξ
+

(
cos ξ

ξ 2
− sin ξ

ξ 3

)}
, (10a)

q±1(ξ ) = 3

2

{
−cos ξ

ξ
+

(
sin ξ

ξ 2
+ cos ξ

ξ 3

)}
, (10b)

p0(ξ ) = −3

(
cos ξ

ξ 2
− sin ξ

ξ 3

)
, (11a)

q0(ξ ) = −3

(
sin ξ

ξ 2
+ cos ξ

ξ 3

)
, (11b)

γ = γ2

2
= 2

3
√

3

ω3
Lμ2

4πε0 h̄c3
, (12)

ξ = kLR21 = kZ0, (13)

and μ (assumed real) is the reduced matrix element of the
dipole operator between the excited and the ground state.
Since the atoms are on the z axis, the vacuum coupling is diag-
onal in the index m, but the coupling for m = 0 states differs
from that for m = ±1 states. It has been assumed for simplic-
ity that the shifts qm are sufficiently small, that is, much less
than ω0, to justify our use of the rotating-wave approximation.
In addition, it has been assumed that γ R21/c � 1; otherwise
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we would have to allow for the fact that ċg;m(t ) depends on
cm;g(t − R21/c).

There are two, independent complex decay parameters.
In contrast, in a two-level approximation such as the one
used by Richter, there is only a single linear combination

of magnetic substates excited by the classical field in atom
1 and this linear combination is coupled to the same linear
combination in atom 2. For the atom-field geometry of this
problem, the values of p and q in the two-level approximation
are

pTL(θ0) = 3

2

{
cos2 θ0

sin ξ

ξ
+

(
cos ξ

ξ 2
− sin ξ

ξ 3

)
[1 − 3 sin2 θ0]

}
, (14a)

qTL(θ0) = 3

2

{
− cos2 θ0

cos ξ

ξ
+

(
sin ξ

ξ 2
+ cos ξ

ξ 3

)
[1 − 3 sin2 θ0]

}
. (14b)

Note that pTL(0), qTL(0) = p±1, q±1 and pTL(π/2),
qTL(π/2) = p0, q0, corresponding to polarization perpen-
dicular and parallel to R̂21.

A. Scattered field intensity

The calculation of the scattered field intensity can now be
carried out in a straightforward fashion. A convenient way
to do this is to use source field theory [19]. The positive
frequency of the field operator is written as

E+(r, t ) = E(0)
+ (r, t ) + E(Source)

+ (r, t ), (15)

where E(0)
+ (r, t ) is the field operator in the absence of the

source atoms and E(Source)
+ (r, t ) is the field operator associated

with the sources. If the input field is a coherent state, the
operator E(0)

+ (r, t ) can be replaced by its classical counterpart,
1
2εE0ei(kL ·r−ωLt ). Moreover, in calculating the scattered field
intensity for a J = 0 to J = 1 transition, it is possible to
replace the source field operator by its average value, provided
saturation effects can be neglected [8].

As a consequence, we can write the total average field as

〈E+(r, t )〉 = 1
2εE0ei(kL ·r−ωLt ) + 〈

E(Source)
+ (r, t )

〉
, (16)

where 〈E(Source)
+ (r, t )〉 in the radiation zone, as calculated from

Eq. (19.68) in Ref. [19], is given by

〈
E(Source)

+ (r, t )
〉 = sgn(μ)

√
h̄ω0γ2

√
3

16πε0c

ei(kLR−ωLt )

R

×
∑
j=1,2

1∑
m=−1

∑
λ=θ,φ

e−ik·R j P(λ)
m (θ, φ)ε(λ)

〈
σ̃ ( j)

gm

〉
,

(17)

with

P(θ )
m (θ, φ) = −

(
eiφδm,1 − e−iφδm,−1√

2

)
cos θ − δm,0 sin θ,

(18a)

P(φ)
m (θ, φ) = i√

2

(
eiφδm,1 + e−iφδm,−1

)
, (18b)

and

k = kL r̂. (19)

The differential scattered field intensity in each of the polar-
ization modes is calculated as

Iθ (r̂) = 2ε0cR2
∣∣〈E(Source)

+ (r, t )
〉 · ε(θ )

∣∣2
, (20a)

Iφ (r̂) = 2ε0cR2
∣∣〈E(Source)

+ (r, t )
〉 · ε(φ)

∣∣2
, (20b)

and the total differential scattered intensity is

I (r̂) = Iθ (r̂) + Iφ (r̂). (21)

The problem reduces to solving for the 〈σ̃ ( j)
gm 〉 for j = 1, 2.

From the Hamiltonian, (4), it follows that the evolution equa-
tions of these quantities are

d
〈
σ̃ (1)

gm

〉
/dt = −(γ + iδ)

〈
σ̃ (1)

g;m

〉 − γ (pm + iqm)
〈
σ̃ (2)

g;m

〉 − S1m,

(22a)

d
〈
σ̃ (2)

gm

〉
/dt = −(γ + iδ)

〈
σ̃ (2)

g;m

〉 − γ (pm + iqm)
〈
σ̃ (1)

g;m

〉 − S2m,

(22b)

where

S jm = iχ fmeikL ·R j , (23)

fm = −
(

δm,1 − δm,−1√
2

)
cos θ0 + δm,0 sin θ0, (24)

and

χ = − μE0

2
√

3h̄
(25)

is (one) half of an effective Rabi frequency associated with the
incident field–atom interaction. Retardation times correspond-
ing to the time it takes for light propagation between the atoms
have been neglected under the assumption that γ Z0/c � 1.

Equations (22) are solved easily at steady state to yield

〈
σ̃ (1)

g;m

〉 = −iχ fmeikL ·R1 Am/γ , (26a)〈
σ̃ (2)

g;m

〉 = −iχ fmeikL ·R2 Bm/γ , (26b)
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where

Am = 1

2

[
1 + eikL ·R21

(1 + pm) + i(δ/γ + qm)
+ 1 − eikL ·R21

(1 − pm) + i(δ/γ − qm)

]
, (27a)

Bm = 1

2

[
1 + e−ikL ·R21

(1 + pm) + i(δ/γ + qm)
+ 1 − e−ikL ·R21

(1 − pm) + i(δ/γ − qm)

]
. (27b)

Note that A1 = A−1. Combining Eqs. (20), (17), and (26), we then find that the differential scattered intensity for each
polarization may be written as

Iλ(r̂) = 3

8π
h̄ωLγ2

|χ |2
γ 2

∣∣∣∣∣
1∑

m=−1

P(λ)
m (θ, φ) fm

(
Am + ei(kL−k)·R21 Bm

)∣∣∣∣∣
2

(λ = θ, φ), (28)

and the total scattered intensity as

I =
∫

I (r̂)d =
∫

[Iθ (r̂) + Iφ (r̂)]d

= h̄ωLγ2
|χ |2
γ 2

1∑
m=0

f 2
m

[
(1 + pm)(1 + cos α)

[(1 + pm)]2 + (δ/γ + qm)2 + (1 − pm)(1 − cos α)

[(1 − pm)]2 + (δ/γ − qm)2

]
, (29)

with

α = kLZ0 cos θ0. (30)

These solutions agree with those of the two-level approxima-
tion [3] for θ0 = 0 or π/2 but not for arbitrary θ0.

In Fig. 2, the dimensionless total differential scattered in-
tensity (solid red curve)

IN (θ, φ) = 8πγ 2

3h̄ωLγ2|χ |2 I (r̂) = 8πγ 2

3h̄ωLγ2|χ |2 [Iθ (r̂) + Iφ (r̂)]

(31)
is plotted as a function of θ for θ0 = 0.5, δ/γ = 1, kLZ0 = 1,
and φ = 0. The dashed blue curve is the two-level approxima-
tion result for these parameters and the dotted black curve is
twice the dimensionless intensity scattered by a single atom.
In Fig. 3, the dimensionless total scattered intensity

IN = γ 2

h̄ωLγ2|χ |2 I (32)

FIG. 2. Graphs of the dimensionless differential scattered inten-
sity as a function of θ for θ0 = 0.5, δ/γ = 1, kLZ0 = 1, and φ = 0.
The solid red curve is our result, the dashed blue curve is the two-
level result, and the dotted black curve is (twice) the single-atom
result.

is plotted as a function of δ/γ for θ0 = 0.5 and kLZ0 = 1
(solid red curve). The dashed blue curve is the two-level
approximation result for these parameters. In our expression
for I , there are two pairs of resonances at δ = ±γ q1,±γ q0,
whereas the two-level approximation theory predicts a sin-
gle pair of resonances at δ = ±γ qTL(θ0). For example, if
θ0 = 0.5, we find resolved resonances at δ = ±1.3γ ,±4.2γ ,
whereas the two-level approximation theory predicts unre-
solved resonances at δ = ±0.02γ . The resonances are evident
in Fig. 3. Note that the maximum value of IN in these units
for two noninteracting atoms is equal to 2 for δ = 0, obtained
by setting pm = qm = 0 in Eq. (29). By plotting IN (δ = 0),
given by Eqs. (32) and (29), as a function of kLZ0 and θ0,
it can be shown that an upper bound for IN (δ = 0) is 2.24,
occurring for (θ0 = 0, kLZ0 = 5.0), whereas the upper bound
in the two-level approximation result is 3.07, occurring for
(θ0 = 0.527, kLZ0 = 0.729). Figures 2 and 3 provide clear
evidence for the breakdown of the two-state approximation.
If we had taken θ0 = 0 and φ = 0, the maximum differential
scattered intensity would occur at θ = 0, π , while for θ0 =
π/2 and φ = 0, it occurs at θ = π/2; in both these limits,

FIG. 3. Graphs of the dimensionless total scattered intensity as a
function of δ/γ for θ0 = 0.5 and kLZ0 = 1. The solid red curve is our
result and the dashed blue curve is the two-level result.
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the two-level approximation is valid. The value θ0 = 0.5 has
been chosen somewhat at random to illustrate the differences
between the exact results and those corresponding to the two-
level approximation.

An interesting limit is |δ| � γ q1, γ q0, γ (note that to have
|δ|/γ � q1, q0, it is necessary that ξ−3 � |δ|/γ ). In that limit
cooperative effects play no role, the two-level approximation
is valid, and

I (r̂) ∼ [2s(r̂)]
3

8π
h̄ωLγ2

|χ |2
δ2

{1 + cos [(kL − k) · R21]},
(33a)

I ∼ 2h̄ωLγ2
|χ |2
δ2

[1 + pTL(θ0) cos α], (33b)

where

s(r̂) = 1 − (ε · r̂)2 = 1 − (cos θ0 sin θ cos φ + sin θ0 cos φ)2

(34)

is the (dimensionless) differential scattering cross section of
a single atom and pTL(θ0) is given by Eq. (14a). When ξ =
kLZ0 � 1 (but still greater than [γ /|δ|]1/3), the radiation pat-
tern I (r̂) is essentially the same as the single-atom radiation
pattern but with four times the intensity. The total scattered
intensity I is also four times that of a single atom. On the other
hand, for ξ � 1, the radiation pattern has superimposed on it
a number of Bragg maxima and minima, with the Bragg max-
ima having four times the intensity of single-atom emission.
In this case, when integrated over solid angle, the combined
maxima and minima lead to a total scattered intensity that is
approximately equal to twice that of a single atom.

Since we have assumed that |δ| � γ q1, γ q0, γ to arrive at
Eq. (33b), cooperative effects play no role in this result. Nev-
ertheless, the cooperative decay scaling parameter pTL(θ0),
defined in Eq. (14a), appears in Eq. (33b). It has arisen from
the integration over solid angle and not from any inclusion
of cooperative decay. The total scattered intensity reflects the
fact that there can be constructive or destructive interference
of the radiation scattered by the two atoms as a function
of the scattering angle, even if atom-atom interactions are
neglected. A complementary process occurs in the emission
pattern from two phased dipoles [20]. In that case, the correct
phase-matched emission can be calculated neglecting coop-
erative decay if the atoms are separated by greater than a
wavelength. However, there is a problem with energy con-
servation; the total energy radiated in all directions is greater
or less than the energy stored originally in the atoms. It is
necessary to include modifications of the dipole decay rates
resulting from cooperative emission to restore conservation of
energy. In the scattering problem considered in this work, we
also run into a problem with energy conservation—that is, if
cooperative decay is neglected, the scattered radiation energy
is not equal to the energy lost by the driving field. To restore
energy conservation, it is necessary to include cooperative
decay when calculating the energy lost by the driving field.
It is to such a calculation that we now turn our attention.

B. Energy lost by the incident field

Within this source field approach it is a simple matter to
calculate the energy lost by the field. It follows from Eq. (16)
for the average field amplitude that the total intensity is given
by

Itot = I0 + I + Ix, (35)

where I0 is the intensity of the incident field, I is the intensity
of the scattered field given by Eq. (29), and

Ix = ε0cR2E0e−iωLt lim
R→∞

R2
∫

deikL ·r〈E(Source)
+ (r, t )

〉 · ε

+ c.c. (36)

We can write 〈E(Source)
+ (r, t )〉 in the form

〈
E(Source)

+ (r, t )
〉 = kLR

4π

ei(kLR−ωLt )

R2
G(Source)

+ (θ, φ, t ), (37)

where

G(Source)
+ (θ, φ, t ) = 4π

kL
sgn(μ)

√
h̄ω0γ2

√
3

16πε0c

2∑
j=1

1∑
m=−1

×
∑

λ=θ,φ

e−ik·R j P(λ)
m (θ, φ)ε(λ)

〈
σ̃ ( j)

gm

〉
. (38)

From Eqs. (36) and (37), it can be seen that the integrand in
the expression for Ix contains an exponential factor,

exp [i{kLR[1 − (cos θ0 cos θ − sin θ0 sin θ cos φ)]}],
that is rapidly varying in all but the kL direction (θ = θ0, φ =
π ). As a consequence all terms in the integrand can be
evaluated at (θ = θ0, φ = π ), except for terms appearing in
this lead exponential. The integral over the solid angle can
then be performed easily if the z axis is redefined along
the kL direction, such that the exponential factor reduces to
exp{i[kLR(1 − cos θ )]} and

lim
R→∞

kLR

4π

∫
d exp {i[kLR(1 − cos θ )]} = − 1

2i
, (39)

leading to

Ix = − Im
[
ε0cE0G(Source)

+ (θ0, π, t ) · ε
]
, (40)

which is an expression of the optical theorem for this problem.
Using Eqs. (40), (17), (18), (26), (3), (12), (24), and (25), we
obtain

Ix = −h̄ωLγ2
|χ |2
2γ 2

1∑
m=0

f 2
m[(Am + Bm) + c.c]. (41)

In the limit that cooperative effects are negligible,

[(Am + Bm) + c.c] ∼ 4

1 + (δ/γ )2 , (42)

implying that

Ix ∼ −2h̄ωLγ2
|χ |2

γ 2 + δ2
, (43)

twice the single-atom result. Equation (43) is not consistent
with Eq. (33b), which was derived neglecting cooperative ef-
fects but allowed for interference effects between the radiation
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scattered from the two atoms. In other words, in the limit that
cooperative effects can be neglected, the expressions for Ix

and I do not satisfy energy conservation since Ix 
= −I . On
the other hand, if we include cooperative effects,

Ix ≈ −h̄ωLγ2
|χ |2
γ 2

1∑
m=0

f 2
m

[
(1 + pm)(1 + cos α)

[(1 + pm)]2 + (δ/γ + qm)2

+ (1 − pm)(1 − cos α)

[(1 − pm)]2 + (δ/γ − qm)2

]
, (44)

consistent with Eq. (29) for any value of δ/γ .

III. GENERALIZATION TO N ATOMS ON A LINE

It is not overly difficult to extend the calculation to one
in which there are N atoms located at positions R j = Zjuz.
Equations (22) are replaced by

d
〈
σ̃ ( j)

gm

〉
/dt = −(γ + iδ)

〈
σ̃ ( j)

g;m

〉
− γ

N∑
j′ 
= j=1

[pm(ξ j j′ ) + iqm(ξ j j′ )]
〈
σ̃ ( j′ )

g;m

〉
− iχ fmeikL ·R j , (45)

where ξ j j′ = kL|Zj − Zj′ |, pm(ξ j j′ ), and qm(ξ j j′ ) are given in
Eqs. (10) and (11), and j runs from 1 to N . It is convenient to
set 〈

σ̃ ( j)
g;m

〉 = −iχ fmγ b( j)
m eikL ·R j , (46)

where the N-dimensional vector bm having components b( j)
m

satisfies the vector differential equation

dbm/dt = −�mbm + 1, (47)

in which �m is an N × N matrix having elements

(�m) j j = 1 + iδ/γ , (48a)

(�m) j j′ = [pm(ξ j j′ ) + iqm(ξ j j′ )]e
−ikLZ j j′ cos θ ; j 
= j′.

(48b)

The steady-state solution of Eq. (47) for the components of
bm is

b( j)
m =

N∑
j′=1

[(�m)−1] j j′ . (49)

The calculation then proceeds as in the two-atom case and
we find a differential scattered field intensity,

Iλ(r̂) = 3

8π
h̄ωLγ2

∣∣∣∣χγ
∣∣∣∣
2
∣∣∣∣∣

1∑
m=−1

P(λ)
m (θ, φ) fm

N∑
j=1

F ( j)(θ )b( j)
m

∣∣∣∣∣
2

,

(50)

I (r̂) = Iθ (r̂) + Iφ (r̂), (51)

where

F ( j)(θ ) = e−ikLZ j (cos θ−cos θ0 )

and P(λ)
m is defined in Eqs. (18). It is possible to carry out the

integration over the solid angle to obtain the total scattered

FIG. 4. Dimensionless differential scattered intensity as a func-
tion of θ for δ/γ = 5, φ = 0, θ0 = 0.5, and 10 atoms placed at
random positions on a line having length L = 200/kL . The curve
corresponds to an average over 400 trials. The dashed black curve
is 10 times the single-atom scattered intensity.

intensity,

I = h̄ωLγ2
|χ |2
γ 2

1∑
m=−1

f 2
m

N∑
j, j′=1

pm(ξ j j′ )e
ikLZ j cos θ0 b( j)

m

[
b( j′ )

m

]∗
.

(52)
For detunings much larger than any decay rates or shifts,

I (r̂) ∼ 3

8π
s(r̂)h̄ωLγ2

|χ |2
δ2

S (53)

and

I ∼ h̄ωLγ2
|χ |2
δ2

⎡
⎣N + 2pT L(θ0)

N∑
j, j′ = 1 j′ < j

cos (kL · R j j′ )

⎤
⎦,

(54)
where the structure factor S is defined by

S =
∣∣∣∣∣

N∑
j′=1

exp {i cos [(kL − kL r̂) · R j]}
∣∣∣∣∣
2

. (55)

The same procedure can be used to calculate the energy
lost by the field. The only difference is that the sum over j in
Eq. (38) now goes from 1 to N . Using Eqs. (40), (38), (25),
(12), (3), (8), and (46), we find that

Ix ≈ −h̄ωLγ2
|χ |2
γ 2

Im

[
i

1∑
m=−1

fmP(λ)
m (θ0, π )

N∑
j=1

b( j)
m

]
, (56)

which is a statement of the optical theorem for the ensemble
of scatterers. It has been assumed that any propagation effects
can be neglected; that is, the incident field is assumed to prop-
agate through the medium without distortion and the energy
lost to scattering represents a small fraction of the energy in
the pulse. We have verified numerically that Ix, as given by
Eq. (56), is the negative of the scattered intensity I given by
Eq. (52).

In Fig. 4, we plot the dimensionless total differential scat-
tered intensity as a function of θ for δ/γ = 5, φ = 0, θ0 =
0.5, and 10 atoms placed at random positions on a line having
length L = 200/kL . The curve corresponds to an average over
400 trials. For these parameters the average spacing of the
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FIG. 5. Dimensionless total scattered intensity as a function of
δ/γ for θ0 = 0.5 and 10 atoms placed at random positions on a line
having length L = 5/kL . The curve corresponds to an average over
400 trials.

atoms is Zavg = 20/kL . Since kLZavg = 20, cooperative effects
play a minor role, but the interference from different atoms
leads to numerous resonance peaks. On averaging over many
trials, however, the only resonance that remains is for phase-
matched reflection with θ = θ0, as found experimentally by
Tamura et al. [16]. The dashed black curve is 10 times the
single-atom scattered intensity. At θ = θ0 the scattered phase-
matched intensity is approximately 94 times that of a single
atom (it is slightly less than 100 owing to the fact that coop-
erative effects are not totally negligible, even with an average
spacing of 20/kL). In Fig. 5, we plot the dimensionless total
scattered intensity as a function of δ/γ for the same parame-
ters, except the length, which is now taken as L = 5/kL, where
cooperative effects play a role (kLZavg = 0.5). The wings
of this curve, extending well beyond |δ/γ | = 1, arise from
the cooperative shifts. Owing to the fact that the shifts q±1,
which are positive for kLRj j′ � 1, are weighted more heavily
for θ0 = 0.5 than the negative shifts, q0, there is an overall
asymmetry in this curve favoring negative values of δ. This
asymmetry would be more severe if we had chosen θ0 = 0
since the cooperative shifts at small separation are positive,
whereas the asymmetry would be reversed if we had θ0 = π/2
since the cooperative shifts at small separation are negative.
Moreover, the peak of the curve is shifted slightly to the blue
for the same reason, in contrast to the red shift that would
occur for θ0 = 0, as found by Glicenstein et al. [14].

IV. SUMMARY

We have developed a formalism that allows us to calculate
the intensity of radiation scattered by a linear chain of atoms,

including cooperative decay. We have shown that a general-
ization of the optical theorem holds for the scattering; that
is, the total energy scattered by the atoms is related to the
average forward scattered field amplitude. If both the scattered
intensity and energy lost by the field are calculated neglecting
cooperative effects, there is a violation of energy conservation.
To restore energy conservation in this limit, corrections to the
energy lost by the field must be included to lowest order in
the cooperative effects. Although the calculation was limited
to 10 atoms, it is generalized easily to any number of atoms.
The calculation can also be generalized to atoms placed in a
two- or three-dimensional array. In that case, it is necessary
to use a more general approach to consider cooperative ef-
fects, in which the cooperative coupling of the excited-state
magnetic sublevels is no longer diagonal in the index m [18].
For level schemes involving a higher angular momentum,
optical pumping must be taken into account. Even for the
simple atom-field geometry studied in this work and for a
J = 0 to J = 1 transition, we have shown that a two-level
approximation, sometimes employed by other authors, is not
valid for arbitrary directions of the incident field.
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APPENDIX: ARBITRARY POLARIZATION

The calculation is generalized easily to allow for arbitrary
polarization of the input field,

ε = β‖(cos θ0x̂ − sin θ0ẑ) + β⊥ŷ, (A1)

where β‖ and β⊥ are arbitrary complex numbers satisfying

|β‖|2 + |β⊥|2 = 1. (A2)

The only change in the calculation is that the quantities fm

given in Eq. (24) are now replaced,

fm = −
(

δm,1 − δm,−1√
2

)
β‖ cos θ0 + δm,0β‖ sin θ0

+ i

(
δm,1 + δm,−1√

2

)
β⊥, (A3)

and f 2
m is replaced by | fm|2 wherever it appears.
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