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Storing vector-vortex states of light in an intra-atomic frequency-comb quantum memory
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Photons are a prominent candidate for long-distance quantum communication and quantum information
processing. Certain quantum information processing tasks require storage and faithful retrieval of single photons,
preserving the internal states of the photons. Here we propose a method to store orbital angular momentum
and polarization states of light which facilitates the storage of the vector-vortex states in the intra-atomic
frequency-comb-based quantum memory. We show that an atomic ensemble with two intra-atomic frequency
combs corresponding to �m = ±1 transitions of similar frequency is sufficient for a robust and efficient quantum
memory for vector-vortex states of light. As an example, we show that Cs and Rb atoms are good candidates for
storing these internal modes of light.
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I. INTRODUCTION

Efficient quantum computation and quantum information
processing require quantum systems with a long coherence
time and high degree of control. Although there are several
suitable candidates such as nuclear spins, quantum dots, su-
perconducting qubits, and trapped ions, photons are among
the strongest candidates for long-distance quantum communi-
cation and quantum computation [1]. Linear optical quantum
computation [2], quantum key distribution [3], quantum tele-
portation [4,5], and quantum repeaters [6] are a few of the
examples where photons have shown dominance. The choice
of photons for quantum communication is natural as they can
travel great distances without much trouble.

Some of the most notable degrees of freedom (DOFs) of
photons that are used for quantum information processing
(QIP) tasks are polarization, time bins, and orbital angu-
lar momentum (OAM) [1]. While the polarization space is
two-dimensional, the time bins and OAM space are poten-
tially infinite-dimensional, which enables a high information
carrying capacity in individual photons. One of the biggest
challenges in photonic quantum information processing tasks
is to store and retrieve the photons while preserving their
internal states in an efficient and controllable way. There
are several such protocols [7,8], e.g., electromagnetically
induced transparency (EIT) [9–11], controlled reversible in-
homogeneous broadening (CRIB) [12–14], atomic frequency
combs (AFCs) [15–17], intra-atomic frequency combs (I-
AFCs) [18], gradient echo memory [19–21], and Raman
memory [22–24]. In all these protocols, a photon is made
to interact with an ensemble of atoms or atomlike systems,
carefully tuned to maximize the absorption of the photons. A
controlled sequence of pulses can switch on and off the in-
teraction between the photon and the atomic ensemble, hence
resulting in a controlled storage.

*skgoyal@iisermohali.ac.in

Typically, in atomic-ensemble-based quantum memories,
the atoms are tuned to interact with a single polarization.
Therefore, one cannot store polarization states of light in such
systems. To overcome this problem a number of solutions
have been implemented. For example, in EIT-based quantum
memories the orthogonal polarization states of the input light
are mapped to two distinguished paths with the same polar-
izations and absorbed in the atomic ensemble. Finally, when
the light is retrieved, the paths are mapped to the polarization
states at the output [11,25–28]. A similar technique is used in
AFC-based quantum memory to store the polarization DOF
of light [29–32]. The EIT- and AFC-based quantum mem-
ories have been shown to store transverse modes [33–42];
however, only EIT is extended to store polarization and OAM
simultaneously [43,44].

Apart from these two techniques, an atom-cavity system is
used to implement polarization storage [45,46]; nevertheless,
the cavity protocols have the drawback of trapping single
atoms and the requirement of feedback pulses for the deter-
ministic storage [46] or optimization of control pulses for
storage and retrieval of polarization qubits [45].

A CRIB protocol with two orthogonal transitions is also
proposed to store polarization [47,48] which requires re-
versing detunings in a controlled fashion and applying a
position-dependent phase for efficient retrieval.

Another protocol for quantum memory based on I-AFCs
has been shown to be robust and efficient [18,49]. In an I-
AFC, the frequency comb is constructed from the transitions
between hyperfine energy levels from individual atoms. Since
each of the atoms contains a frequency comb, I-AFC-based
quantum memory is robust against phase fluctuations and
uniformity in the comb structure [49].

Here we propose a scheme to store the vector-vortex (VV)
states of light using I-AFCs. VV states are the quasientangled
states between polarization and OAM DOFs of light and are
very useful for QIP tasks and quantum metrology [50–52]. We
show that the I-AFC is a natural candidate to store VV states
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FIG. 1. (a) I-AFC with comb spacing � interacting with an input
pulse of width γp. (b) Typical photon echo after a time delay of
2π/�.

by showing that it can individually store the polarization and
OAM modes efficiently. Unlike EIT-based quantum memory,
the I-AFC does not require high optical depths and elongated
atomic traps to store VV states of light. An I-AFC can easily
be realized by Zeeman splitting the hyperfine levels in atoms
and possesses all the necessary features of a typical AFC [18].
This makes the I-AFC a feasible tool to implement protocols
using OAM and polarization qubits. We also show that I-AFCs
in Cs and Rb atoms can be employed to store VV states.

This article is organized as follows: we start with the rele-
vant background in Sec. II, where we discuss the I-AFC-based
quantum memory, Laguerre-Gauss (LG) modes, VV beams,
and the effects of the Doppler shift on the LG modes. In the
Sec. III, we present the results of storing VV states of light
in ideal I-AFC systems. We also discuss factors which might
affect the quality of the storage. Finally, we show numerically
that an ensemble of Cs and Rb atoms is capable of storing VV
states efficiently under appropriate conditions. We conclude
in Sec. IV.

II. BACKGROUND

In this section, we introduce the concepts and techniques
relevant for our results. We start with I-AFC-based quantum
memory. We also discuss the LG modes of light and VV
beams and the effect of Doppler shift on the LG modes.

A. I-AFC-based quantum memory

The I-AFC is a frequency comb constructed from the
dipole-allowed transitions between the hyperfine levels of the
ground state and the excited state of an atom. The degeneracy
in the hyperfine levels of the ground and excited states is lifted
by applying an external magnetic field. All these transitions
between the ground level and the excited level collectively
result in the I-AFC [Fig. 1(a)].

For an ensemble of atoms with each atom constituting a
frequency comb, if a weak electromagnetic pulse E (z, t ) with
spectral width γp is passed through it, the dynamics of the
state ρ(z, t ) of the atomic ensemble and the electromagnetic
field amplitude E (z, t ) can be written as [18](

∂

∂z
+ 1

c

∂

∂t

)
E (z, t ) = iωL

2ε0c
P (z, t ), (1)

∂ρnm(z, t )

∂t
+

(
i�nm + γ

2

)
ρnm(z, t ) = i

dnmE (z, t )

2h̄
ρmm. (2)

Here �nm is the difference between the |en〉 ↔ |gm〉 transition
frequency and the mean frequency of light ωL. γ is the natural
linewidth of the atomic transitions which we are considering
to be the same. The initial population in the ground state |gm〉
is ρmm, whereas ρnm ≡ 〈en| ρ |gm〉 is the matrix element of
state ρ. dnm is the transition dipole moment between |en〉 ↔
|gm〉. Since a typical dipole-allowed atomic transition absorbs
and emits light in accordance with the transition selection
rules �m = 0,±1, we write dnm in the spherical basis; hence,
the dipole matrix element dnm is always real [53].

The induced polarization P of the atomic ensemble can be
written as a function of the atomic state ρ as

P (z, t ) = 2N
∑
n,m

d∗
nmρnm, (3)

where N is the atomic number density. Since dnm is real, the
asterisk (∗) in Eq. (3) can be omitted.

On solving Eqs. (1) and (2), one gets the following expres-
sion for the output electric field in the frequency domain [18]:

Ẽ (z, ω) =e−Dze−iωz/cẼ (0, ω), (4)

where Ẽ (0, ω) is the input electric-field amplitude and D is
given by

D =
∑
n,m

gmm[
i(�nm + ω) + γ

2

]d2
nm, gmm = ωLNρmm

2ch̄ε0
. (5)

In the ideal case, when the comb spacing �nm and the
dipole matrix elements dnm are the same for all the neigh-
boring transitions, a photon echo is observed in the output at
times which are multiples of 2π/� [Fig. 1(b)], and negligible
light is emitted between the echoes. In nonideal cases, when
the frequency comb is nonuniform, the photon echo may be
observed at 2π/�′ for some effective comb spacing �′ [49]
with lower efficiency. In this way, the I-AFC system behaves
like a delay line. To achieve on-demand quantum memory, the
excitation is transferred from the excited level to a long-lived
spin level by applying an appropriate π pulse. Another such
pulse will transfer the excitation back to the excited level,
which will cause the photon echo.

The quality of the quantum memory can be expressed in
terms of two parameters: storage efficiency η and the fidelity
F between the input and output states of light. The storage
efficiency of the quantum memory in the I-AFC protocol is
defined as the ratio of the output intensity in the first echo to
the total input intensity of light and reads [18]

η =
∫ 3π/�

π/�
dt |E (z = L, t )|2∫

dt |E (z = 0, t )|2 , (6)

where L is the length of the atomic ensemble.
The fidelity of the quantum memory describes the amount

of overlap between the input state |
in〉 and the output state
|
out〉 and can be formally written as

F = |〈
in|
out〉|2. (7)

Since in the I-AFC, the output electric field comes out at time
2π/�, the fidelity in the I-AFC scheme between the input
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electric field Ein(t ) and the first echo is given as

F =
∣∣∫ 3π/�

π/�
dt 〈E in(t − 2π/�)|Eout(t )〉∣∣2

[
∫

dt 〈E in|E in〉][
∫

dt 〈Eout|Eout〉] . (8)

The most general state of light including the
polarization and the transverse profile can be written

as

E (t ) =
[
E+(x, y, t )
E−(x, y, t )

]
, (9)

where E+ (E−) corresponds to the right (left) polarization
component of the electric field and x and y are the transverse
coordinates. In such cases, the expression for the fidelity be-
tween the input and output can be written as

F =
∣∣∫ 3π/�

π/�
dt

∫
dx dy [E∗

in+(x, y, t − 2π/�)Eout+(x, y, t ) + E∗
in−(x, y, t − 2π/�)Eout−(x, y, t )]

∣∣2

[
∫

dt
∫

dx dy (|Ein+|2 + |Ein−|2)][
∫

dt
∫

dx dy (|Eout+|2 + |Eout−|2)]
. (10)

B. LG modes and VV beams

The LG modes are the eigenmodes of the paraxial wave
equation [54,55]. They are also the eigenmodes of angular
momentum operators. Hence, the LG beams possess certain
OAM. In the cylindrical coordinates, the expression for the
LG modes reads

L�
p(r, φ, z)

= C

w(z)

( √
2r

w(z)

)|�|
L|�|

p

(
2r2

w(z)2

)
exp

( −r2

w(z)2

)

× exp

(
ikr2

2z̄

)
exp[−i(2p + |�| + 1)ψ (z)] exp (i�φ)

≡ f p
� (r, z) exp(i�φ), (11)

where

w(z) = w0

√
1 +

( z

zR

)2
, z̄ = z2 + z2

R

z
, (12)

and ψ (z) = tan−1( z
zR

) is the Gouy phase. Here ω0 is the beam
waist at z = 0, zR = πw2

0/λ represents the Rayleigh range, C
is the normalization constant, L|�|

p is the associated Laguerre
polynomial, p � 0 is the radial index, and −∞ < � < ∞ is
the azimuthal index. �h̄ is the OAM per photon for a given
LG mode.

Transverse LG modes along with the polarization will give
the general state of the paraxial light, which can be written as

E (r⊥) =
∑
�,p

[
α�,pL�

p(r⊥) |R〉 + β�,pL�
p |L〉 ]

. (13)

Here |R〉 (|L〉) corresponds to the right (left) circular polariza-
tion, and α�,p, β�,p ∈ C such that

∑
�,p(|α�,p|2 + |β�,p|2) = 1.

In this work, we set p = 0 and represent L�
0 by |�〉. Fur-

thermore, we keep to only ±� values of OAM and consider
the states of the form

E (r⊥) = [α |�〉 |R〉 + β |−�〉 |L〉]. (14)

These states are called VV beams [43,56], and they exhibit a
location position polarization in the transverse plane. In Fig. 2
we show two such VV states for different choices of α and β.

C. Effect of Doppler shift on OAM states of light

Light carrying nonzero OAM interacts differently with an
atomic ensemble. It has been shown that the OAM modes
of light can impart torque on the atoms which can be used
for optical tweezers [54,57,58]. Furthermore, a moving atom
interacting with a light beam carrying �h̄ OAM experiences
an �-dependent Doppler shift in the azimuthal direction apart
from the usual longitudinal Doppler shift kvz. This azimuthal
Doppler shift is entirely due to the OAM modes of light.
The total Doppler shift for OAM state |�〉 with an arbitrary
polarization is given by [59,60]

δLG = vz

(
−k + kr2

(
z2 − z2

R

)
2
(
z2 + z2

R

)2 − (|�| + 1)zR(
z2 + z2

R

)
)

− vr

(
kr

z̄

)
− vφ

(
�

r

)

= δz + δr + δφ,

(15)

where vr , vφ , and vz are the radial, azimuthal, and longitudinal
components of the velocity v of the atom.

Here the term kvz is the usual Doppler shift along the
propagation direction and will be the only term for a plane
wave. The term ∝ (|�| + 1) is due to the Gouy phase of the
LG mode, and the terms including vz and vr are due to the
transverse profile of the LG modes along the radial direction
[59]. The final �-dependent term which is directly propor-
tional to the OAM of the LG mode accounts for the azimuthal
Doppler shift. Typically, kvz is the leading term, dominating

FIG. 2. Polarization distribution in VV states for states
(a) 1√

2
[|�〉 |R〉 + |−�〉 |L〉] and (b) i√

2
[|�〉 |R〉 − |−�〉 |L〉].
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by a factor 104 [61] compared to the radial and azimuthal
Doppler shifts. The above �-dependent Doppler shift yields
an �-dependent phase in the paraxial light which might affect
the fidelity of the OAM modes upon storage. In Sec. III C 2 we
include the above Doppler shift δLG to incorporate the effect
of temperature on the storage of OAM modes.

III. RESULTS

In this section, we show that the VV states of light can be
stored efficiently in an appropriately designed I-AFC-based
quantum memory. Here we start with storing the LG modes
of a paraxial light in an I-AFC. We show that if the number
density N of the atomic ensemble is homogeneous, then the
LG modes can be stored perfectly at low temperatures. At
high temperatures the Doppler shift may affect the quality of
storage. In order to store polarization states of light, we need
to prepare an ensemble which contains two frequency combs,
corresponding to two orthogonal polarizations. We show that
if the two frequency combs are identical, then the storage of
the polarization states is perfect. Nonidentical combs might
result in imperfect storage. The I-AFC system capable of
storing both LG modes and the polarization states can be
employed to store VV beams. As an example, we show that
I-AFCs in Cs and Rb atoms are capable of storing VV modes.

A. Storing LG modes in an I-AFC

LG modes are the eigenmodes of the paraxial wave equa-
tion in free space. However, in an atomic ensemble they might
get affected by the presence of induced atomic polarization P ,
especially if the medium is inhomogeneous. In this section,
we show that an atomic ensemble possessing an I-AFC can
be used to store LG modes of light. In order to do so, we
will solve the propagation of the LG modes through such an
atomic ensemble and show that we observe a photon echo
at time 2π/� with high efficiency, which is a signature of
the I-AFC-based quantum memory. Further, we show that the
fidelity between the input and output states of light is nearly
perfect for the idealized case.

The Hamiltonian of the atomic ensemble interacting with a
classical electromagnetic field can be written as

H =
Ne∑

n=1

h̄ωe
n|en〉〈en| +

Ng∑
m=1

h̄ωg
m|gm〉〈gm|

− h̄
∑
n,m

(�nm|en〉〈gm|e−iωLt + H.c.),

(16)

where h̄ωe
n is the energy of the nth state in the excited level,

h̄ω
g
m is the energy of the mth state in the ground level, and

�nm = dnmE (r⊥,z,t )
2h̄ . Here the electric field E (r⊥, z, t ) has the

mean frequency ωL.
The paraxial wave equation inside a medium can be written

as [62][
∇2

⊥ + 2ik

(
∂

∂z
+ 1

c

∂

∂t

)]
E (r, t ) = −k2

ε0
P (r, t ), (17)

where P is the induced atomic polarization. This equation can
be solved formally for a spatially homogeneous medium (see

the Appendix), and the expression for the output field reads

E (r⊥, z, t ) =
∫

M(r⊥ − r′
⊥, z)

×
[∫

N (t − τ, z)E
(

r′
⊥, 0, τ − z

c

)
dτ

]
d2r′

⊥,

(18)

where

M(r⊥, z) = 1

2π

∫
eiq·r⊥e−iq2z/2kd2q, (19)

N (t, z) = 1

2π

∫
eiωt e−D(ω)zdw. (20)

If the input light is in a pure LG mode Ll
0(r⊥) with a

temporal profile given by E (0, t ), then the expression for the
input electric field E (r⊥, 0, t ) reads

E (r⊥, 0, t ) = E (0, t )Ll
0(r⊥). (21)

In this case, the output field E (r⊥, z, t ) will be

E (r⊥, z, t ) =
(∫

M(r⊥ − r′
⊥, z)Ll

0(r′
⊥) d2r′

⊥

)

×
(∫

N (t − τ, z) E (0, τ − z/c)dτ

)
. (22)

Interestingly, the evolution of the electric field E (r⊥, 0, t )
splits into two parts, one which drives the transverse evolution
and one which drives the time evolution. On close inspec-
tion, we can see that the evolution in the transverse plane is
identical to the one in vacuum (A5). Since LG modes are
the eigenmodes of the paraxial wave equation, the pure LG
modes remain unaffected in this evolution except for acquiring
an overall phase, i.e., the Gouy phase, given by exp[−i(|�| +
1) tan−1(z/zR)] [Eq. (11)]. In our numerical calculations, we
have considered the length of the medium to be 5 cm and
the transverse dimensions to be ∼8 mm, as can be found in
some magneto-optical traps setups at low temperatures [63].
Therefore, the beam waist w0 will be of the order of mil-
limeters. These parameters result in z/zR = zλ/πw2

0 ∼ 10−4.
Therefore, the Gouy phase becomes negligible, which allows
us to store a superposition of LG modes.

Furthermore, the information about the I-AFC is com-
pletely contained in the kernel N which controls the time
evolution of the state. Therefore, the temporal part in Eq. (22)
is identical to the ordinary I-AFC evolution which results in
a photon echo at times which are multiples of 2π/�, with-
out affecting the transverse part. Therefore, an I-AFC in the
homogeneous atomic ensemble is fully capable of storing LG
modes of light.

In Fig. 3 we plot the numerically obtained reemission of
LG modes from an ideal I-AFC. The comb spacing � here is
400 MHz, and peak width γ is 5 MHz. We choose L1

0, (L1
0 +

L−1
0 )/

√
2, and (L1

0 + iL−1
0 )/

√
2 modes with a Gaussian tem-

poral profile. As expected, the LG modes rephase after
time 2π/� while preserving the transverse profile. The first
transverse profile in Fig. 3 at ∼0.23 ns corresponds to the
probability of the photon being unabsorbed, while the sec-
ond transverse profile at ∼2.7 ns represents the photon echo
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FIG. 3. Storing OAM in I-AFC. Photon echoes for the ideal comb for OAM states (a) |1〉, (b) (|1〉 + |−1〉)/
√

2, and (c) (|1〉 + i |−1〉)/
√

2.
The first and second transverse profiles in the plots correspond to the probability of the photon being unabsorbed and the probability of the
photon echo, respectively. All the calculations are done at 0 K.

corresponding to the input LG mode. The brightness of the
transverse profile is proportional to the probability of the pho-
ton emission, which clearly indicates the higher probability of
the first echo relative to the noise at ∼0.23 ns. The optimized
efficiency and fidelity are found to be 53.44% and 100%.

Since for the parameters we have considered the Gouy
phase is very small, one can store an arbitrary superposition
of higher-dimensional LG modes (within a reasonable range
of � values) without affecting the fidelity. In Fig. 4 we show
rephasing of the (L1

0 + L−5
0 + L10

0 )/
√

3 state with ∼100%
fidelity.

Note that the storage of the LG modes was made possible
by the assumption that the atomic number density N (r⊥) is
homogeneous in the transverse plane, which made the kernel
N independent of transverse coordinates r⊥. Inhomogeneity in
the atomic ensemble will affect the LG modes, and the storage
fidelity will not be perfect. We will discuss this in detail in
Sec. III C.

B. Quantum memory for polarization qubit

In order to store polarization states of light, the system of
interest must be capable of interacting with two orthogonal
states of light identically. Here we propose a scheme to store
polarization states using I-AFC-based quantum memory. For
that purpose, we consider atoms with degenerate ground and
excited states. The external magnetic field to lift the degen-

FIG. 4. Photon echo for the ideal comb for OAM state (|1〉 +
|−5〉 + |10〉)/

√
3.

eracy is applied in the z direction. Therefore, the transitions
between the ground states and excited states satisfy the se-
lection rules �m = ±1. The Hamiltonian for such a system
interacting with a light pulse of mean frequency ωL reads

H =
Ne∑

n=1

h̄ωe
n|en〉〈en| +

Ng∑
m=1

h̄ωg
m|gm〉〈gm|

− h̄
∑
n,m

(�nm|en〉〈en|gm|e−iωLt + H.c.), (23)

where

�nm = dnm · E (z, t )

2h̄
, (24)

with dnm = d+
nmê+ + d−

nmê− ≡ [d+
nm

d−
nm

] being the transition dipole
moment vector between the nth excited state |en〉 and the mth
ground state |gm〉 where the elements of the vector correspond
to �m = ±1 transitions.

The electric-field vector E (z, t ) in a superposition of the
two polarizations can be written as [53]

E (z, t ) = E+(z, t )ê+ + E−(z, t )ê− ≡
[
E+
E−

]
, (25)

where ê± are the unit vectors along the left and right circular
polarizations and interact with the transition corresponding to
�m = ±1.

The dynamics of the electric field and the atomic ensemble
is given by Maxwell-Schrödinger equations [Eqs. (1) and (2)].
Solving the dynamics for the electric-field vectors results in
an expression for the output electric field Ẽ in the frequency
domain,

∂Ẽ
∂z

= − iω

c
Ẽ − ωLN

2ch̄ε0

∑
n,m

dnm(dnm · Ẽ )[
i(�nm + ω) + γ

2

]ρmm, (26)

where ρmm is the population of the mth energy level. On
using Eqs. (25) and (26), the equations for the two orthogonal
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polarization components can be written as

∂

∂z

[
Ẽ+
Ẽ−

]
=

[−iω/c − D+(ω) −G(ω)
−G(ω) −iω/c − D−(ω)

][
Ẽ+
Ẽ−

]
(27)

≡ A

[
Ẽ+
Ẽ−

]
. (28)

From Eq. (27) we can calculate the output electric field,
which reads Ẽ (z, ω) = eAzẼ (0, ω). Here D±(ω) and G(ω) are
defined as

D±(ω) =
∑
nm

gmm[
i(�nm + ω) + γ

2

]d±2
nm , (29)

G(ω) =
∑
nm

gmm[
i(�nm + ω) + γ

2

]d+
nmd−

nm. (30)

For the case when the magnetic quantum number m is not
a good quantum number for atomic states, both the transi-
tion dipole moments d±

nm between the nth excited state and
the mth ground state might not vanish. This will result in a
nonzero G(ω) term which is responsible for the mixing of
the two polarizations. On the other hand, the terms D±(ω) in
Eq. (27) are the propagators corresponding to the two I-AFCs
corresponding to �m = ±1 transitions. For the case when the
off-diagonal term vanishes, the two orthogonal polarizations
propagate independently through the I-AFC.

Note that if D±(ω) is the same for both polarizations and
G = 0, then the matrix A is proportional to the identity matrix.
Hence, the propagation of the light inside the I-AFC will
be independent of the polarization, resulting in polarization-
independent storage. In such cases, the I-AFC-based quantum
memory can store the polarization efficiently. However, in
physical systems the propagators for the two combs may
not always be equal. Different propagators D± may result
in different photon-echo times and different efficiencies for
orthogonal polarizations, which in turn may result in lower
fidelity between the input and output states of light if the input
light is in some superposition of the two polarizations.

In conclusion, an atomic ensemble containing two identical
I-AFCs corresponding to two orthogonal polarizations can
store polarization states of light efficiently. Since the OAM
states of light (LG modes) are independent of polarization,
if the atomic ensemble is homogeneous, it can also be used
to store these states efficiently. Therefore, one can store VV
states of light in I-AFC-based quantum memory.

C. Factors affecting the quality of quantum memory

So far we have discussed the storage of VV modes only
in ideal systems. There are several factors which might affect
the quality of the storage. In this section, we discuss a few
of those factors, such as temperature and the nonhomoge-
neous number density, and their effects in detail. Although
the nonuniformity in the frequency comb can also affect the
efficiency of the quantum storage [49], it seldom affects the
fidelity of the stored light. Therefore, in this section we re-
strict our analysis to ideal combs. We consider examples of
the nonideal and nonuniform frequency combs in Sec. III D,
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FIG. 5. The efficiency (dashed curve) and the fidelity (solid
curve) for different values of w′

0 (a) as a function of � for the
input state |�〉 and (b) as a function of temperature for OAM state
(|1〉 + |−1〉)/

√
2. For these plots, we consider an ideal comb con-

sisting of nine peaks with uniform comb spacing � = 400 MHz and
peak width γ = 5 MHz.

where we show the storage of VV beams in Cs and Rb
atoms.

1. Effects of the nonhomogeneous number density
on the storage of LG modes

As we have noticed in the case of storing LG modes
in homogeneous systems, the evolution of the electric field
decouples in two parts [Eq. (22)]; one corresponds to the
evolution in the transverse plane, and the other corresponds to
the time evolution. However, if the atomic number density is
not homogeneous, this separation is not guaranteed. To study
the adverse effect of the nonhomogeneous number density on
the quality of the quantum memory, we consider a simple
case in which the number density is a function of |r⊥| ≡ r⊥ =√

x2 + y2 in the transverse plane. For simplicity, we choose
a Gaussian distribution of atomic density in the transverse
plane, i.e., N ′(r⊥) = N0 exp[−(x2 + y2)/2w′2

0 ], where w′
0 is

the width of the distribution and N0 is a constant.
In order to calculate the effect of the nonhomogeneous

number density, we need to solve Eq. (A14), which can be
done numerically. The efficiency of the photon echo and the
fidelity between the input and output states of the electric field
can be calculated using the relations given in Eqs. (6) and (10).
In Fig. 5(a) we plot the efficiency η and the fidelity F as a
function of the � value of the LG modes for different values
of w′

0 for a fixed beam waist w0 while keeping p = 0.
As expected, the nonhomogeneity of the atomic ensemble

affects the quality of the quantum memory more for the larger
values of �. This result can be explained by noticing that the
size of the transverse profile of the LG modes increases with
increasing the � value. Hence, the beams with a large � value
see fewer atoms, which results in a lower absorption rate and
hence lower efficiency. Furthermore, the LG modes are not
the eigenmodes inside the nonhomogeneous medium. This
explains the drop in the fidelity.

2. Effects of temperature on the storage of LG modes

Besides the nonhomogeneous number density, thermal ef-
fects can also affect the quality of the storage of OAM states of
light. To study the effect of the temperature on the OAM stor-
age, we consider a homogeneous atomic ensemble in thermal
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equilibrium at temperature T . The atomic velocity distribution
in such an ensemble can be written as

p(v)d3v=
( m

2πkbT

)3/2
exp

[ − m
(
v2

x + v2
y + v2

z

)
/2kBT

]
d3v,

(31)

where m is the mass of the atom; vx, vy, and vz are the veloc-
ities of the atom along the x, y, and z directions, respectively;
and kB is the Boltzmann constant.

As we discussed in Sec. II C, an atom moving with veloc-
ity v and interacting with light with a nonzero OAM value
experiences a change in the detuning from � to � + δLG(v)
due to the Doppler shift. Hence, the modified expression for
the atomic polarization P̃ (r⊥, z, ω, v) after incorporating the
Doppler shift can be written as

P̃ (r⊥, z, ω, v) = 2N
∑
n,m

id2
nmẼ (q, z, ω)ρmm

2h̄
{
i[�nm + δLG(v) + ω] + γ

2

} .

(32)

The net atomic polarization can be calculated by averaging
P̃ (r⊥, z, ω, v) over all the velocities [18,64], i.e.,

P̃ (r⊥, z, ω) =
∫

P̃ (r⊥, z, ω, v)pvd3v. (33)

To calculate the analytical expression from Eq. (33), the Gaus-
sian distribution pv ∝ exp[−mv2

i /2kBT ] is approximated
by the corresponding Lorentzian distribution Lv = a

π (a2+v2
i )

,

where a ∝
√

kBT
m [18]. The proportionality constant for a is

obtained using the numerical curve fitting and is found to be
close to 0.76. The final expression for the average macro-
scopic polarization can be written as

P̃ (r⊥, z, ω) =2N
∑
n,m

id2
nmẼ (q, z, ω)ρmm

2h̄
[
i(�nm + ω) + γ

2 + a f (r⊥, z)
] ,

(34)

where the function f (r⊥, z) reads

f (r⊥, z) = k(x + y)

z̄
+ �(x − y)

x2 + y2
− (|�| + 1)zR

z2 + z2
R

− k(x2 + y2)

2z̄2

(
z2 − z2

R

)
z2

+ k. (35)

From Eq. (34), it is clear that the effect of the temperature
shows up as the broadening of the peak width γ by a factor
a f (r⊥, z), where ka is the leading-order term. This leading
term results in lowering the finesse of the frequency comb
and results in lower efficiency of the quantum memory [18].
Other subleading terms in the broadening are � dependent
and position dependent due to the transverse profile of the
field. The � and position dependence of these terms will yield
different efficiencies for different LG modes, which will affect
the fidelity of the quantum memory.

To study the effect of the Doppler shift δLG due to the
transverse profile of light, we numerically solve the dynamical
equations for the atomic coherence (A7) and the electric field
(A11) by replacing (i�nm + γ

2 ) with [i�nm + γ

2 + a f (r⊥, z)]
in (A11). The variation of the optimized efficiency and the

corresponding fidelity with the temperature for the ideal comb
are shown in Fig. 5(b). In Fig. 5(b), we consider an ideal comb
with nine teeth and tooth spacing � = 400 MHz. The peak
width γ = 5 MHz. We see that the efficiency of the quantum
memory drops as we increase the temperature, falling below
10% for T = 20 K. However, the fidelity appears to be un-
affected. This shows that the contribution from the ka term is
much stronger than the contribution from the subleading terms
in the Doppler shift.

3. Factors affecting polarization storage

Unlike the LG modes, polarization states of light do not de-
pend on the spatial coordinates as long as the transverse plane
is well defined. Therefore, the nonhomogeneity in the number
density has very little effect on polarization storage. However,
factors such as unequal D propagators and the nonoverlapping
frequency combs corresponding to two orthogonal polariza-
tions can affect the quality of the quantum memory. Here we
will discuss a few of those factors and study their effects. For
simplicity, we will assume G = 0 throughout this section as
most real systems exhibit this property.

The most common factor that can affect the quality of
the quantum memory for polarization states is the unequal D
propagators, i.e., D+ �= D−. This will result in different echo
times and efficiencies for the two orthogonal polarizations. By
choosing a wave plate appropriately, one can compensate for
the unequal storage times for the two polarizations. However,
the different efficiencies of the two polarization components
can affect the fidelity of the output polarization states. This
can be compensated by choosing the mean frequency of
light ωL lying exactly in the middle of the two combs or
by selectively absorbing light corresponding to a particular
polarization, which will result in overall lower efficiency but
higher fidelity.

In some cases, even if the frequency combs corresponding
to two polarizations are identical, they might be displaced
with respect to each other [Fig. 6(a)]. This factor can also
adversely affect the storage of polarization states. In such
cases, the photon echoes for both polarizations occur at the
same time, but an additional phase is attributed to them due to
the shifted combs. This can be understood as follows: consider
a comb shifted by ±λ/2 so that the detuning �nm becomes
→ �nm ± λ/2 for two combs. Solving Eqs. (1) and (2) in the
frequency domain yields

Ẽ±(z, ω±) =e−D±ze−iωz/ce∓iλz/2cẼ (0, ω±), (36)

where Ẽ (0, ω±) is the input electric-field amplitude, ω± =
ω ± λ/2, and D is given by

D±(ω±) =
∑
n,m

gmm[
i(�nm + ω±) + γ

2

]d2
nm. (37)

Hence, the output fields get equal and opposite phase e∓iλz/2c

for the two combs. For a small shift λ, the fidelity drop is also
small, whereas the drop increases as the value of λ increases.

We consider an I-AFC for polarization storage such that
the frequency combs corresponding to two orthogonal polar-
izations are ideal but displaced with respect to each other by a
magnitude λ. In Figs. 6(b) and 6(c), we plot the effect of the
relative shift λ on the efficiency of the quantum memory and
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FIG. 6. Storing polarization in I-AFC. (a) Storing polarization states using I-AFC. The two orthogonal polarization components couple
separately to two nonoverlapping frequency combs (solid red and dashed blue) according to the transition selection rule �m = ±1. (b) Varia-
tion of the optimized efficiency η with respect to the input width and the corresponding fidelity F . (c) Variation of the storage efficiency η and
the corresponding fidelity F as a function of separation between two combs at a fixed input width of 2.4 GHz. Both frequency combs consist
of 11 peaks with fixed comb spacing of 400 MHz and peak width of 5 MHz. Here the input field is taken to be E (0, t ) = e−ω2/(2b2 ).

the fidelity of the output polarization state with respect to the
input state. In these results, each of the frequency combs has
11 teeth with comb spacing � = 400 MHz and peak width
γ = 5 MHz. Hence, the total size of each comb is 4 GHz.
These parameters are close to the 6s1/2 ↔ 8p3/2 transition in
the Cs atom.

Here we consider two cases to study the effect of λ. In the
first case, the intensity is optimized over the spectral width and
the mean frequency of the incoming light, and the correspond-
ing fidelity is obtained as shown in Fig. 6(b). From Fig. 6(b),
we can see that efficiency η is close to 54% when the two
combs are perfectly overlapping. This is the maximum effi-
ciency that can be achieved in I-AFCs for forward propagating
modes. This feature persists as long as the separation between
the two combs is λ < 4 GHz. After that point the efficiency
starts to decrease. Interestingly, the drop in the efficiency is
sharp. The value of η drops from ∼54% at λ = 3.6 GHz to
below 24% at λ = 4.4 GHz. On the other hand, the fidelity
F shows a smooth behavior as we increase λ. It starts with
fidelity F = 100% at λ = 0 and shows damped oscillations
as we increase λ.

In the second case, the optimization is done over the mean
frequency of input while keeping the spectral width of the
input fixed [see Fig. 6(c)]. In Fig. 6(c) the input width is fixed
at 2.5 GHz. Contrary to the previous case, here we can see a
smooth variation in the efficiency as we increase λ. However,
since the spectral width is fixed, the efficiency η ∼ 40% at
λ = 0 GHz, which is considerably lower than the maximum
possible, i.e., 54%. Similarly, the fidelity F ∼ 84% at λ = 0.

Apart from these factors, temperature may also affect the
storage efficiency and fidelity. However, those effects are
generally independent of the polarization and affect only the
overall efficiency, not the fidelity. In conclusion, I-AFC-based
quantum memory for VV states of light is robust and efficient
against prominent environmental factors.

D. I-AFC in cesium and rubidium atoms

In this section we show that the cesium and rubidium atoms
can be a feasible system to store both the polarization and

OAM modes of light. Hence, these atoms are suitable for
storing VV states of light.

We consider the 6s1/2 ↔ 8p3/2 transitions for Cs atoms
and the 5s1/2 ↔ 6p3/2 transition for Rb atoms. In both atoms,
the atomic transitions are such that only one of the transition
dipole moments, d+

nm or d−
nm, is nonzero, thus giving G(ω) = 0,

which results in an independent propagation of the two polar-
ization components. In both atoms, the frequency combs are
not uniform, and the combs corresponding to �m = ±1 are
shifted with respect to each other [see Figs. 7(a) and 7(b)].

In Fig. 7(c) (Cs) and Fig. 7(d) (Rb), we show numerically
obtained photon echoes for the polarization storage. The

FIG. 7. I-AFC in Cs and Rb atoms. (a) and (b) The frequency
combs in Cs and Rb atoms. Here the 6s1/2 ↔ 8p3/2 and 5s1/2 ↔
6p3/2 transitions are considered for Cs and Rb atoms, respectively.
The degeneracy is lifted by applying external magnetic field of
strengths 0.05 and 0.06 T, respectively, for the two cases. (c) and
(d) The photon echoes corresponding to the �m = +1 and �m =
−1 transitions in Cs and Rb atoms, respectively.
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optimized fidelity and efficiency (F , η) for the Cs
and Rb atoms are found to be (88.23%, 41.3%) and
(87.46%, 41.16%), respectively. Since the D±(ω)
propagators are not identical for both Cs and Rb atoms,
the efficiency and fidelity in these cases are lower than in the
ideal cases. Similarly, we observe the rephasing of the LG
modes in Cs and Rb atoms. The optimized parameters, (F , η)
in this case, are found to be (98.7%, 51.96%) for Cs and
(97.91%, 51.84%) for the Rb atoms, and the photon-echo
plots are similar to Fig. 3.

We also show the effects of nonhomogeneous number den-
sity on the OAM storage in the case of Cs and Rb atoms
in Fig. 8(a), where N ′(r⊥) = N exp[−(x2 + y2)/2w′2

0 ], with
w′

0 = 0.71w0. It is clear that the Cs and Rb atoms show a
similar drop in the efficiency and fidelity as in the ideal case
discussed in Sec. III C 1 [Fig. 5(a)]. Figure 8(b) shows the
effect of the temperature on storing OAM modes in Cs and
Rb, and the results are similar to those of an ideal comb [see
Fig. 5(b)].

The atomic number densities N for Cs and Rb atoms in the
above calculations are ∼1018 and ∼1017 m−3, respectively,
and the length of the cell is taken to be 5 cm [63]. These
parameters are feasible at low temperatures (T ∼ 100 μK) in
magneto-optical traps [65–68].

Since cesium and rubidium atoms are capable of storing
both the polarization and OAM modes, we expect them to
store the VV beams.

IV. CONCLUSION

Storing internal states such as polarization and OAM
modes and the VV states of light is essential for long-
range quantum communication and quantum information
processing. In this paper, we proposed I-AFC-based quantum
memory to store the VV beams of light. We showed that an
atomic ensemble with the I-AFC and a homogeneous number
density in the transverse plane is capable of storing the LG
modes of light efficiently. Moreover, the ensemble of atoms
with dual I-AFCs in which the two frequency combs have
similar mean frequencies is capable of storing the polarization
states of light efficiently. These two features together result
in quantum memory for VV beams. We discussed the factors
which might affect the quality of the quantum memory and
showed that I-AFC-based quantum memory for VV beams

is robust. Further, we showed that Cs and Rb atoms serve as
good candidates for storing VV states of light.
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APPENDIX: PROPAGATION OF LG MODES

1. In free space

LG modes are the eigensolutions of the paraxial wave
equation given by [55,69][

∇2
⊥ + 2ik

(
∂

∂z
+ 1

c

∂

∂t

)]
E (r⊥, z, t ) = 0, (A1)

where ∇2
⊥ ≡ ∂2

x + ∂2
y . Equation (A1) can be written in integral

form by taking Fourier transforms in the transverse position
(r⊥ → q), and the solution for the Fourier-transformed elec-
tric field Ẽ (q, z, t ) reads

Ẽ (q, z, t ) = exp

(
q2

2ik
z

)
Ẽ
(

q, 0, t − z

c

)
. (A2)

Now, taking the inverse Fourier transform (q → r⊥), we get

E (r⊥, z, t ) = F−1

[
exp

(
q2

2ik
z

)]
∗ F−1

[
Ẽ
(

q, 0, t − z

c

)]
,

(A3)

where the asterisk (∗) represents the convolution operation.
Using the definition for convolution of two functions

f (x) ∗ g(x) =
∫ ∞

−∞
f (x′)g(x − x′) dx′, (A4)

we can write the formal expression for E (r⊥, z, t ) as

E (r⊥, z, t ) =
∫

M(r⊥ − r′
⊥, z)E

(
r′
⊥, 0, t − z

c

)
d2r′

⊥, (A5)

where

M(r⊥, z) = F−1

[
exp

(
q2

2ik
z

)]
= 1

2π

∫
eiq.r⊥e−iq2z/2kd2q.

(A6)

Equation (A5) represents the electric-field evolution in vac-
uum, which does not affect the transverse profile of the field.
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2. Propagation of LG modes inside a medium

The generalized paraxial wave equation inside a medium
reads [70][

∇2
⊥ + 2ik

(
∂

∂z
+ 1

c

∂

∂t

)]
E (r, t ) = −k2

ε0
P (r, t ), (A7)

where P is the induced atomic polarization. The Fourier
transform of Eq. (A7) in the transverse plane and the time
coordinate result in

∂ Ẽ (q, z, ω)

∂z
= 1

2ik

[(
q2+ 2wk

c

)
Ẽ (q, z, ω)− wLk

cε0
P̃ (q, z, ω)

]
.

(A8)

The atomic polarization amplitude P in terms of atomic co-
herence ρnm between the atomic transitions |n〉 ↔ |m〉 can be
written as [18]

P (r⊥, z, t ) = 2N (r⊥)
∑
n,m

dnmρnm(r⊥, z, t ), (A9)

where N (r⊥) is the atomic distribution function in the trans-
verse plane. The same equation can be written upon taking
the Fourier transform in the transverse plane and time, which
reads

P̃ (q, z, ω) =2Ñ (q) ∗
∑
n,m

dnmρ̃nm(q, z, ω). (A10)

The dynamical equation for the atomic coherence corre-
sponding to the Hamiltonian in Eq. (16) can be written as

∂ρnm(r⊥, z, t )

∂t
+

(
i�nm + γ

2

)
ρnm(r⊥, z, t )

= i
dnmE (r⊥, z, t )

2h̄
ρmm. (A11)

We can solve for ρnm(q, z,w) by taking the Fourier transform
of Eq. (A11) with respect to t and r⊥. The expression for the
Fourier transform of ρnm(q, z,w) reads

ρ̃nm(q, z,w) = idnmẼ (q, z, ω)ρmm

2h̄
[
i(�nm + w) + γ

2

] . (A12)

Substituting Eq. (A12) in Eq. (A10) yields

P̃ (q, z, ω) = 2Ñ (q) ∗
∑
n,m

id2
nmẼ (q, z, ω)ρmm

2h̄
[
i(�nm + w) + γ

2

] . (A13)

Substituting the above in Eq. (A8) gives

∂ Ẽ
∂z

=
(

q2

2ik
− iω

c

)
Ẽ (q, z, ω) − Ñ (q) ∗ D′(ω)Ẽ (q, z, ω),

(A14)

where

g′
mm = ωLρmm

2ch̄ε0
, D′(ω) =

∑
nm

g′
mm[

i(�nm + ω) + γ

2

]d2
nm.

(A15)

Solving Eq. (A14) will yield the solution for the propagation
of electric field through a medium. However, in general, solv-
ing this equation is difficult.

A simple scenario is the homogeneous medium, where N
is a constant. In this case, the equation can be simplified, and
the solution reads

Ẽ (q, z, ω) = exp

[(
q2

2ik
− iω

c
− D(ω)

)
z

]
Ẽ (q, 0, ω),

(A16)

where D(ω) = ND′(ω) follows from Eq. (5). Again, taking
the inverse Fourier transform (w → t)

Ẽ (q, z, t ) = exp

(
q2z

2ik

)
F−1[exp (−D(ω)z)]

∗ F−1
[
exp

(
− iωz

c

)
Ẽ (q, 0, ω)

]
,

and applying convolution gives

Ẽ (q, z, t ) = exp

(
q2z

2ik

)[
N (z, t ) ∗ Ẽ

(
q, 0, t − z

c

)]
,

= exp

(
q2z

2ik

)[∫
N (z, t − τ )Ẽ

(
q, 0, τ − z

c

)
dτ

]
,

(A17)

where

N (t, z) = F−1{exp[−D(ω)z]} = 1

2π

∫
eiωt e−D(ω)zdw.

(A18)

Now, taking the inverse Fourier transform (q → r⊥) gives

E (r⊥, z, t ) =F−1

[
exp

(
q2z

2ik

)]

∗ F−1

[∫
N (t − τ, z)Ẽ

(
q, 0, τ − z

c

)
dτ

]

=M(r⊥, z) ∗
[∫

N (t −τ, z)E
(

r⊥, 0, τ − z

c

))
dτ

]

=
∫

M(r⊥ − r′
⊥, z)

[∫
N (t − τ, z)E

(
r′
⊥, 0, τ − z

c

)
dτ

]
d2r′

⊥.

(A19)
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