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Biphoton topology in a quadratic nonlinear waveguide array under the Su-Schrieffer-Heeger model
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We demonstrate the generation of a stable topologically nontrivial biphoton state with a high degree of
quantum entanglement by the bosonic Bogoliubov Hamiltonian in a quadratic nonlinear waveguide array
(QNWA) under the Su-Schrieffer-Heeger model. Analysis of its energy spectrum and eigenmode spectra verifies
that this biphoton state is a topological nontrivial edge state characterized by the nonzero Berry phase at 1/4 and
3/4 fillings. The changes of Berry phase at 1/4 and 3/4 fillings indicate the topological quantum transition. The
topological robustness of the biphoton edge state can be demonstrated by the spatial correlation under random
disorders in propagation constant of the QNWA. It is also shown that the Rényi entanglement entropy of this
topologically nontrivial biphoton state can approach high values. The robustness of this topologically nontrivial
property suggests the promising application of this highly entangled biphoton state in quantum computing and
information.
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I. INTRODUCTION

Topological photonics has attracted a considerable amount
of attention since Haldane and Raghu first applied topol-
ogy to photonics in 2008 [1,2]. In the succeeding years,
a series of theoretical and experimental studies have been
carried out [3]. The wave property of light enables itself a
perfect candidate for mimicking topological effects such as
quantum Hall effect [4], time-reversal invariant topological
insulators [5], and Floquet topological insulators [6,7]. At the
same time, the application of topological features allows for
the novel fabrication of integrated photonic devices, such as
reflection-free waveguides, robust delay lines, spin-polarized
switches, and nonreciprocal devices [8]. Topological methods
have been used in photonics applications involving a variety
of materials [9–12], dimensionalities [13–15], and regions
of electromagnetic spectrum [5,16,17]. As a simple model,
the Su-Schrieffer-Heeger (SSH) model has been extensively
studied in both condensed matter physics and topological
photonics, and various aspects of SSH models have been used
to explore new phenomena [17]. Recently, SSH models have
attracted a significant amount of attention as tools for under-
standing the structures of numerous topological phenomena
and for facilitating both research and manufacturing [18–22].
however, further research is needed, particularly in the field of
quantum topological photonics [23].

Optically nonlinear topologies were reported during the
research of solitons [24–26] under a topological band. The
resulting research has focused considerable theoretical and
experimental interest in the topological phenomena of in-
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teracting photons [27–31], including a parametric process
generated by the second-order nonlinear susceptibility χ (2),
in which the photon number is no longer conserved and the
bosonic Bogoliubov Hamiltonian is gapless at zero energy but
has nonzero gaps with topological edge state [32]. The suscep-
tibility χ (2) is the key parameter of spontaneous parametric
down-conversion (SPDC) in the generation of biphotons in
quantum optics. Quadratic nonlinear waveguide arrays (QN-
WAs) have shown a unique advantage in the manipulation of
biphoton states [33–38] arising from the fact that the combi-
nation of SPDC and evanescent coupling produces additional
quantum interference in these states [39]. The distribution of
the biphoton in QNWAs also enables an entirely different
quantum walk [40]. Recently, QNWAs have been utilized
to mimic lattice topologies [41] and to produce Anderson
localization [42], suggesting the possibility of applications in
topological photonics and quantum simulation. The inherently
wave-particle duality of biphotons endows itself a greater
superiority than the classical light with only wave property as
simulators in topological photonics [23,43–45], and biphotons
have also drawn great attention in terms of their robustness as
quantum topological edge states in quantum information and
computation.

In this paper, a stable topologically nontrivial biphoton
state with high quantum entanglement is demonstrated the-
oretically in a quadratic nonlinear waveguide array (QNWA)
under the SSH model. We show that, if all of the waveguide
channels are excited by pump light as an initial condition, the
eigenvalues of the energy spectrum will all be real, thereby
avoiding the parametric instabilities caused by the possible
presence of complex eigenvalues in the bosonic Bogoliubov
Hamiltonians. By analyzing the energy spectrum and eigen-
mode spectra, the topological nontrivial biphoton state and its
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FIG. 1. Sketch of the QNWA under the SSH model is given. The
green areas show waveguide channels dimerized under SSH model;
the brown indicates domain reversal region of the SPDC process.
Both pump light and biphotons propagate along the Z axis.

topological transition can be verified. It is also demonstrated
that, as a result of its spatial correlation, the topological non-
trivial biphoton state is intensively located in the first and
last waveguide channels of the QNWA and, therefore, that
the biphoton eigenmode indicates a biphoton edge state. This
biphoton edge mode is shown to be preserved under the ran-
dom disorder of propagation constant β0, which also strongly
suggests a topologically protected biphoton state.

II. MODEL

Figure 1 gives a sketch of the QNWA under the SSH model.
The array is designed by applying a binary coupling strength
between waveguide channels, based on the binary distance
between adjacent waveguide channels as show in Fig. 1. A
binary coupling, namely two different coupling strengths, is
designed to achieve a dimerized SSH model. In this array,
there are two different distances (a binary distance) between
adjacent waveguide channels, so that the biphoton can hop
to the left channel and right channel with two different cou-
pling strengths. The QNWA material can be lithium niobate
(LN) and fabricated into waveguides by using either a proton-
exchange or titanium-diffusion method. By this model, the
SPDC process can be achieved in, for example, periodically
poled lithium niobate (PPLN). We take the PPLN as a method
to achieve the SPDC process in QNWA and the perfect phase
matching is significant in the SPDC process. As discussed by
other researchers [33,41], there are two kinds of the phase
mismatch, namely, the spectral phase mismatch in a single
waveguide channel and the space phase mismatch induced by
the dispersion of the QNWA. In the following discussion, the
type-0 degenerate SPDC process is considered, which means
the signal and idler photons share the same frequency and
polarization and therefore that the spectral phase mismatch
satisfying the zero-order phase mismatch can be set to zero
theoretically. Once the dispersion of the QNWA is identi-
fied, the possible momentum correlations of the biphoton are
given by the space phase mismatch, and the final momentum
correlations of the biphoton are determined by which corre-
lation is selected by the initial distribution of pump light, as
discussed in [34,38]. The domain reversal region covers all

2N waveguide channels. Under the SSH model, the biphoton
Hamiltonian in the QNWA can be described by using the
Schrödinger formulation as follows:

H = HSSH + HSPDC,

HSSH =
2N∑

q,α=s,i

β0Ĉ
†
q,αĈq,α + (κ0 + (−1)qδκ )Ĉ†

q+1,αĈq,α

+ H.c.,

HSPDC =
2N∑
q

χ (2)Ĉ†
q,s(i)Ĉ

†
q,i(s) + H.c., (1)

where HSSH and HSPDC are the SSH model and SPDC Hamil-
tonians, respectively. β0 is the propagation constant of each
waveguide channel, and Ĉ†

q,α (Ĉq,α ) is the creation and annihi-
lation operators, respectively, for the signal (α = s) and idler
(α = i) photons in the qth waveguide channel. χ (2) = ideff

is the second order nonlinear susceptibility and deff is the
effective nonlinear coefficient. In addition, κ0 + (−1)q δκ , the
binary coupling strength in a one-dimensional (1D) dimerized
SSH model [46], can be easily achieved experimentally by bi-
nary distant shift between adjacent waveguide channels [47].
The waveguide channels are assumed to be single mode for
biphoton, as well as the binary coupling strength, so the pump
light will not couple in this array and only the biphoton can
hop between channels since the wavelength of the biphoton is
twice that of the pump light in the type-0 degenerate SPDC
process.

From i dÂ†

dt = [Â†, H ], the Heisenberg equation of the cre-
ation operator of the signal (idler) photon in the qth waveguide
channel can be given as

i
∂Ĉ†

q, s(i)

∂z
= β0Ĉ

†
q,s(i) + [κ0 − (−1)qδκ]Ĉ†

q+1,s(i)

+ [κ0 + (−1)qδκ]Ĉ†
q−1,s(i) +

2N∑
q

χ (2)∗Ĉq,i(s).

(2)

The entire biphoton Hamiltonian, including the SPDC, can
then be transformed into a wave-vector-dependent one for
both signal and idler photons. To simplify this transformation,
the biphoton Hamiltonian can be rewritten as

HSSH =
N∑

r,α=s,i

[β0(Â†
r,αÂr,α + B̂†

r,αB̂r,α ) + κ−Â†
r,αB̂r,α

+ κ+Â†
r+1,αB̂r,α] + H.c.,

HSPDC =
N∑
r

χ (2)Â†
r,s(i)Â

†
r,i(s) + B̂†

r,s(i)B̂
†
r,i(s) + H.c., (3)

where Â†
r,α (B̂r,α ) is the creation and annihilation operators for

biphotons on A(B) subwaveguide array (sub-WA) standing
for the odd and even numbered waveguide sets as labeled in
Fig. 1. κ− = κ0 − δκ and κ+ = κ0 + δκ are the binary cou-
pling strengths. δκ is the dimerized coupling strength. In this
QNWA model, each waveguide channel qth can be considered
as a source of biphotons if the pump light is excited in this
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channel. We assume all channels are excited, which means the
SPDC process (the generation of biphotons) occurs in every
channel of the QNWA along the propagation direction. This
assumption can be achieved by the summation of all channels
in the array of HSPDC in both Eqs. (1) and (3), namely there are
2N terms in HSPDC. By performing the Fourier transformations
â+

kα
= 1√

N

∑
r eikα ·rd Â+

α,r and b̂+
kα

= 1√
N

∑
r eikα ·rd B̂+

α,r , where d
is the waveguide structure period in the QNWA transverse
direction and kα is the transverse wave vector of the signal
and idler photons, the bosonic Bogoliubov Hamiltonian can
be obtained in reciprocal space. During this transformation,
all waveguide channels are assumed to be excited with pump
light, i.e., the SPDC process occurs in every channel of the
QNWA along the propagation direction. This initial condition
requires that, for the transverse wave vectors of the signal
and idler photons, δ(ks + ki ) = 0, that is, that ks = −ki when
r → ∞. Assuming that ks = −ki = k, the bosonic Bogoli-
ubov Hamiltonian in reciprocal space can be described by
introducing the operator Ĉ†

k = (â†
k, b̂†

k, â−k, b̂−k ),

H = 1

2

∑
k

Ĉ†
k H (k)Ĉk

with

H (k) =

⎛
⎜⎜⎜⎜⎝

β0 κ∗ χ∗ 0

κ β0 0 χ∗

χ

0

0

χ

β0 κ∗

κ β0

⎞
⎟⎟⎟⎟⎠

, (4)

where κ = κ− + κ+e–ikd .

III. SPECTRUM ANALYSIS

The energy spectra ε of biphotons under the open bound-
ary condition (OBC) and period boundary condition (PBC)
with a fixed nonlinear coefficient deff = 1.5 are shown in
Figs. 2(a) and 2(b), respectively. The parameters κ0 = 1, δκ =
[−1–1], β0 = 0, and 2N = 64 were used in carrying out
these simulations (all energy parameters are scaled by κ0, thus,
dimensionless). A comparison between OBC and PBC spectra
reveals that, when the dimerized coupling strength δκ > 0,
in-gap edge modes are present, a hallmark of the nontrivial
topological properties of the system. Because ks = −ki under
the assumed initial conditions, it is not difficult to show that
all of the eigenvalues in the energy spectrum are real, allowing
for the use of the bosonic Bogoliubov Hamiltonian in Eq. (3)
and obeying the particle-hole symmetry and more stable topo-
logical edge states shown in Fig. 2(c). As demonstrated in
Fig. 2(d), the biphoton eigenmodes tend to locate at the two
ends of the array (δκ = 0.7), a typical topological edge state
behavior under OBC. To further determine the topological
properties of these two biphoton states, the Berry phases of
the biphoton edge states can be calculated [48]. For 1/4 and
3/4 filling cases, the Berry phases are both equal to 0.5 (in
the unit of 2π ) as shown in Figs. 3(a) and 3(b), respectively,
verifying the presence of the nontrivial biphoton states. The
topological phase transition occurs at δκ = 0. It is clear that
the introduction of χ (2) to the Hamiltonian provides an “in-
teraction” between the signal and idler photons; therefore,

FIG. 2. Biphoton energy spectra ε under (a) OBC and (b) PBC
(deff = 1.5, κ0 = 1, δκ = [−1–1], β0 = 0 and 2N = 64). (c) Eigen-
mode spectra ε of biphoton at δκ = 0.7 under OBC. (d) Distribution
of biphoton eigenmodes with the same simulation parameters in (c) .

their propagation in the WA cannot be considered to reflect
the independent particle hopping behavior of pairs of single
particles but rather must be accounted for as interactional
particle hopping behavior in the SSH lattice.

IV. SPATIAL CORRELATION

We next consider the spatial correlation of the biphoton
states under the OBC. The bosonic creation operators in the
nth waveguide channel at position z along the propagation
direction can be described as

â†
n(z) =

∑
m

Unm(z)â†
m(0), (5)

where Unm(z) = e–iHz is a unitary transformation matrix in
real space induced by the time-dependent evolution of the
Hamiltonian in Eq. (1) [49], which provides the amplitude
of the biphoton state in the nth waveguide channel when the
mth waveguide channel is excited by the pump light. Since

FIG. 3. The Berry phase (in units of 2π ) of the biphoton states
for (a) 1/4 filling and (b) 3/4 filling cases corresponding to δκ vary-
ing from −1 to 1 with other simulation parameters set as deff = 1.5,
κ0 = 1, and β0 = 0.
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FIG. 4. Spatial correlation of biphotons in real space (ns and ni

are the waveguide channels for signal and idler photon, respectively)
in (a) topologically trivial (δκ = − 0.7) and (b) nontrivial biphoton
states (δκ = 0.7) with deff = 1.5, κ0 = 1, β0 = 0, z(a.u.) = 10, and
2N = 64.

all of the channels are excited, the total number of excited
channels is 2N. The spatial correlation, namely, the second-
order correlation function in real space, is


si = 〈â†
s â†

i âiâs〉 = |〈0|âiâsâ
†
mâ†

n|0〉|2

=
∑

m

|UsmUim + UimUsm|2. (6)

In the QNWA, the photon pairs generated at different
positions along the direction of propagation in identical
waveguide channels exhibit coherence, which makes it the-
oretically and experimentally possible to achieve various
biphoton quantum states [36,50–52]. Because the photon pairs
produced in different waveguide channels are incoherent, it is
possible to make an incoherent superposition of the individ-
ual second-order correlation functions produced by different
pump light-excited waveguide channels as shown in Eq. (5).
A numerical simulation of the spatial correlation of biphoton
states with the parameter settings deff = 1.5, κ0 = 1, β0 = 0,
z(a.u.) = 10, and 2N = 64 is shown in Fig. 4. ns and ni are
the waveguide channels for signal and idler photon, respec-
tively. The figure shows (a) topologically trivial (δκ = −0.7)
and (b) topologically nontrivial (δκ = 0.7) biphoton states. In
the former [Fig. 4(a)], the signal and idler photons tend to
scatter into the WA, even though the transverse wave vector
of the biphotons in reciprocal space shows anticorrelation
(ks = −ki) because each waveguide channel is excited by
pump light in real space. As the biphoton state is transmitted
from a topologically trivial state to a nontrivial state, both the
signal and idler photons tend to remain in the 1st and 64th

waveguide channels, verifying the presence of a topologically
nontrivial biphoton edge state as shown in Fig. 2(d).

In general, the edge states are topologically protected
against disorders to preserve chirality under the SSH model.
To verify this, a random disorder can be introduced to the
propagation constant β0. The disorder we introduced is a
random change of the propagation constant β0, namely, β0 is
no longer a constant for every channel in array (each channel
qth has a fixed βq). The ratio 50% (90%) refers to βq varying
from 0 to 0.5 (0 to 0.9) randomly, since all energy parameters
are scaled by κ0, thus, dimensionless. Figure 5 shows the
spatial correlations of the topologically trivial [δκ = −0.7 in
Figs. 5(a) and 5(b)] and nontrivial [δκ = 0.7 in Figs. 5(c)
and 5(d)] biphoton states under 50% [Figs. 5(a)–5(c)] and

FIG. 5. Spatial correlation and probability amplitudes in real
space (ns and ni are the waveguide channels for signal and idler
photon, respectively) of trivial and nontrivial biphoton states in the
presence of a random disorder in propagation constant. (a), (b) and
(c), (d) show the spatial correlation of topologically trivial and non-
trivial biphoton states under 50% and 90% disorder, respectively.
Other simulation parameters are deff = 1.5, κ0 = 1, z(a.u.) = 10 and
2N = 64.

90% [Figs. 5(b)–5(d)] disorder, respectively. The other sim-
ulation parameters are deff = 1.5, κ0 = 1, z(a.u.) = 10 and
2N = 64. Figures 5(a) and 5(b) demonstrate the spatial cor-
relation of trivial biphoton state under 50% and 90% disorder,
respectively. These distributions of the spatial correlation are
skewed with respect to those without disorder shown in Fig.
4(a), since the propagation constant βq in each qth channel is
not homogeneous but biased. For a nontrivial biphoton state,
Figs. 5(c) and 5(d) demonstrate the spatial correlation under
50% and 90% disorder, respectively. This time, both the signal
and idler photons remain in the 1st and 64th waveguide chan-
nels under 50% and 90% disorder, implying the robustness
against disorders to preserve chirality. By comparison, the
signature of topological protection is prominent in nontrivial
biphoton states with disorders.

In the proceeding discussion, we verified that the biphoton
states generated in the QNWA of the SSH model are topo-
logically nontrivial edge states. It is also worth determining
if the quantum entanglement of these biphoton states is also
associated with their topological properties. To assess this,
we calculate the Rényi entanglement entropy [43,53]. The
biphoton wave function in real space can be given as

|ϕ〉 =
∑

n

αnn|1n1n〉 +
∑
m �=n

αmn|1m1n〉, (7)

where αnn(αmn) are the probability amplitudes of the signal
and idler photons located at the identical waveguide channel
nth and different mth and nth waveguide channels, respectively.
The Rényi entanglement entropy can be defined as

S = −log2Trρ2
1 , (8)
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FIG. 6. Rényi entanglement entropies S corresponding to
δκ =[−1–1] with deff = 1.5, κ0 = 1, z(a.u.) = 10, and 2N = 64 .

where ρ1 = Tr2ρ is the reduced density matrix obtained by
tracing out the second photon variables from the biphoton
density matrix ρ = |ϕ〉〈ϕ|. From this, we obtain

Trρ2
1 = 4

2N∑
n=1

|αnn|4 + 8
2N∑

n=1

fn|αnn|2 + 4
2N∑

n=1

f 2
n , (9)

fn =
n−1∑
m=1

|αmn|2, (10)

which are in accordance with Eqs. (23) and (24) in [43].
Figure 6 shows the results of a numerical simulation of the
Rényi entanglement entropy corresponding to δκ = [−1–1]
with deff = 1.5, κ0 = 1, z(a.u.) = 10, and 2N = 64. In the
trivial zone (δκ < 0), the entanglement entropy changes to an
insignificant degree and stabilizes at 12, after which (δκ > 0)
it declines to 10. The Rényi entanglement entropy of biphoton
states in real space shows a clear change around the topo-
logical transition point. The value of the Rényi entanglement
entropy is primarily determined by the probabilities of the
biphoton states, e.g., |αnn|2 and |αmn|2, which can be obtained
experimentally by carrying out spatial coincidence counts in
the QNWA during the spatial correlation measurement [52].
This makes it possible to read topological transitions directly
through the experimental measurement of spatial correlation
in real space. We also note that the effect of topological tran-
sition on the Rényi entanglement of the biphoton states is not
extraordinary, as the rate of change of entanglement entropy
during the topological transition is only 16.7%. As a result, the
biphoton states, generated in the QNWA of the SSH model,

are not only topologically nontrivial but also highly entangled,
making them potentially useful in quantum computing and
information applications.

V. CONCLUSION

In this paper, a stable topological nontrivial biphoton state
with a high degree of quantum entanglement is demonstrated
by bosonic Bogoliubov Hamiltonian in the QNWA under the
SSH model. The choice of an initial condition, in which
all waveguide channels are excited by pump light, makes it
possible to avoid those parametric instabilities that can be
caused by complex eigenvalues in the bosonic Bogoliubov
Hamiltonian. Analysis of the energy spectrum, eigenmode
spectra, and biphoton state distributions revealed that the topo-
logical transition point is identical to that under the general
SSH model at δκ = 0. The Berry phases for the 1/4 and 3/4
filling cases are both equal to 0.5, conforming the presence
of the topologically nontrivial biphoton states and, therefore,
the establishment of a stable topologically nontrivial biphoton
state. A comparison of the spatial correlations in the trivial
and nontrivial zones under 50% and 90% random disorders
confirmed the robustness of the biphoton edge mode. Using
the Rényi entanglement entropy, it was shown that, although
the influence of topological transition on the entanglement
of the biphoton states is not significant, the states can be
both highly entangled and topologically nontrivial. The ro-
bustness of topologically nontrivial property makes biphoton
states more stable and protects them from decoherence during
transmission [23,44]. Besides, some quantum photonic de-
vices that are topologically protected, including topological
beam splitters [54], quantum amplifiers [55], and quantum
walks [56], have been realized recently. Comparing to those
above applications, the topological biphoton states generated
by our protocol can be highly entangled, which demonstrates
itself as a promising candidate for applications in quantum
computing and information.
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