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Field-induced magnetic dipolar interaction for general boundary conditions
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By properly considering the propagation dynamics of the dipole field, we obtain the full magnetic dipolar
interaction between two quantum dipoles for general situations. With the help the Maxwell equation and the
corresponding Green function, this result applies for general boundary conditions and naturally unifies all
the interaction terms between permanent dipoles, resonant or nonresonant transition dipoles, and even the
counter-rotating interaction terms altogether. In particular, we study the dipolar interaction in a rectangular
three-dimensional cavity with discrete field modes. When the two dipoles are quite near to each other and far
from the cavity boundary, their interaction simply returns the free-space result; when the distance between the
two dipoles is comparable to their distance to the cavity boundary and the field mode wavelength, the dipole
images and near-resonant cavity modes bring in significant changes to the free-space interaction. This approach
also provides a general way to study the interaction mediated by other kinds of fields.
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I. INTRODUCTION

Electric and magnetic dipolar interactions widely exist in
many microscopic systems, such as a Josephson qubit inter-
acting with dielectric defects [1–4], a nitrogen-vacancy (NV)
interacting with the nuclear spins around it [5,6], and dipolar
interactions in many chemical and biological molecules [7–9].
In principle, the electromagnetic interactions between parti-
cles are indirectly induced by their local interaction with the
field. Thus, it is possible to engineer the dipolar interaction by
properly controlling the mediating electromagnetic (EM) field
[10–18].

But in the literature, the magnetic dipolar interaction be-
tween two quantum dipoles with distance R has three different
descriptions.

(i) Direct exchange. In free space, the classical dipolar
interaction between two static magnetic dipoles is (eR is the
unit directional vector of the distance R) [19]

V0 = μ0

4πR3
[ �m1 · �m2 − 3( �m1 · eR)( �m2 · eR)], (1)

and thus the quantum dipolar interaction is usually obtained
by simply replacing the classical dipole moments with quan-
tum operators m̂i. Here the mediation effect of the EM field
is not explicit, and the frequencies of the quantum dipoles do
not appear [5,6,20] .

(ii) Master equation correction. The dynamics of two
dipoles weakly interacting with the EM field can be de-
scribed by a Markovian master equation, where the sys-
tem Hamiltonian contains an interaction correction V̂12 =
V (ω) τ̂+

1 τ̂−
2 + H.c., where τ̂±

1,2 are the transition operators,

*yanglp710@nenu.edu.cn

and [21–24]

V (ω) = μ0

4πR3

{
�m1 · �m2[(1 − η2) cos η + η sin η]

− 3( �m1 · eR)( �m2 · eR)

[(
1 − η2

3

)
cos η + η sin η

]}
.

(2)

Here η := ωR/c, and ω is the transition frequency of the
two resonant dipoles. The interaction strength V (ω) exhibits
an oscillating decay with the distance R and returns Eq. (1)
when ωR/c → 0. However, since the rotating-wave approxi-
mation (RWA) must be applied in a tricky way when deriving
this master equation, this approach could only give the in-
teraction term between two resonant transition dipoles with
equal frequencies, while the other interaction terms cannot
be obtained, e.g., those between nonresonant dipoles [25],
permanent dipoles, and the counter-rotating terms. Besides,
this approach cannot be applied when the field modes are
discrete, e.g., in an ideal lossless cavity.

(iii) Mode elimination. Considering the two dipoles (fre-
quency ω1,2) both interacting with one common field mode
(frequency ν), e.g., V̂ = â†(g1τ̂

−
1 + g2τ̂

−
2 ) + H.c., the medi-

ating field mode can be eliminated by the Fröhlich-Nakajima
transform [10,26–29], which gives V̂12 � β̃ τ̂+

1 τ̂−
2 + H.c.,

with (see Appendix A)

β̃ = 1

2

[
g1g∗

2

ω1 − ν
+ g2g∗

1

ω2 − ν

]
. (3)

In more realistic cases, usually more field modes should be
involved.

These approaches are not always equivalent to each other,
with different application conditions, and it is not quite clear
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how these approaches are connected with each other. In this
paper, we make a general approach which unifies all the
above results together in the same framework. The existence
of one dipole would generate a dipole field propagating to
the other one, and then the dipolar interaction would be gen-
erated [30,31]. The dynamics of this dipole field is given
by the Maxwell equation and the corresponding Green func-
tion [14–16,32,33]. Based on this idea, we obtained the full
dipolar interaction for two quantum magnetic dipoles for gen-
eral boundary conditions. Our result naturally includes all
the interaction terms between permanent dipoles, resonant or
nonresonant transition dipoles, and even the counter-rotating
interaction terms altogether [31]. These terms are crucial for
the delicate control in microscopic systems under the proper
driving field, especially for magnetic dipolar interactions,
since one magnetic dipole operator usually contains both
nonzero transition and permanent dipole moments. Under
proper conditions, our result well reduces to all the above
three cases.

In particular, we study the dipolar interaction between two
magnetic dipoles inside a rectangular three-dimensional (3D)
cavity made of ideal conductors, where the field modes are
fully discrete. It turns out, when the two dipoles are quite
near to each other and far from the boundaries, the interaction
always returns to the static dipolar interaction (1) in free
space; when the dipoles are close to the cavity boundary,
the dipole field propagation is strongly restricted due to the
conductor boundary, which further influences the dipolar in-
teraction generated.

The paper is arranged as follows. In Sec. II, we show the
derivation for the dipolar interaction for general situations.
In Sec. III, we study how the Green function is evaluated in
a rectangular 3D cavity. In Sec. IV, we show the numerical
results for the dipolar interaction. In Sec. V, we discuss the
possible application of these results in different physical sys-
tems.

II. DIPOLE FIELD PROPAGATION

We consider that two magnetic dipoles are placed in
the EM field. The Hamiltonian of each dipole is Ĥα =∑

u E (α)
u |u〉α〈u|, where E (α)

u and |u〉α are the eigenenergy and
the corresponding eigenstate of dipole-α (α = 1 and 2).

The two magnetic dipoles interact with the EM field via
their local interactions V̂α = −m̂α · B̂(rα ), where rα is the
position of dipole-α, and m̂α := ∑

uv �muv
α τ̂ uv

α is the dipole op-
erator, with �muv

α := 〈u|m̂α|v〉α and τ̂ uv
α := |u〉α〈v| (see Fig. 1).

Usually, one dipole operator m̂α contains both nonzero per-
manent dipoles (the diagonal terms �muu

α |u〉α〈u|) and transition
dipoles (the off-diagonal terms �muv

α |u〉α〈v| with u �= v) to-
gether [30]. Hereafter, these vector operators are denoted as
�muv

α |u〉α〈v| := m̂uv
α , and thus m̂α = ∑

uv m̂
uv
α .

The existence of one magnetic dipole changes the EM field
dynamics, and when such field changes propagate to the other
dipole, the interaction is generated between the two dipoles
[30,31]. Here we first consider the dipole field generated by
dipole-1 interacting with dipole-2. Notice that the quantized
magnetic field B̂(r, t ) also follows the Maxwell equation
(Appendix B)[

1
c2 ∂

2
t − ∇2

]
B̂(r, t ) = μ0∇ × Ĵ1(r, t ), (4)

FIG. 1. Demonstration for the dipole field propagation and the
image sources.

which has the same form as the classical one [19,34–37],
although the explicit form of the quantized field B̂(r, t ) is
not written down. Here Ĵ1 := ∇ × M̂1 is the electric current
density induced by dipole-1, and M̂1(r, t ) := m̂1(t ) δ(r − r1)
is the magnetization density.

The dynamics of the quantized field contains two contri-
butions, B̂(r, t ) = B̂0(r, t ) + B̂d1(r, t ), where B̂0(r, t ) comes
from the vacuum EM field, given by the homogenous equation
[c−2∂2

t − ∇2]B̂0 = 0, and B̂d1(r, t ) is the dipole field gener-
ated by dipole-1, which can be given with the help of the
tensor Green function [32,38,39],

B̂d1(r, t ) = μ0

∫ ∞

−∞
dt ′

∫
V

d3r′ Gm(rt, r′t ′) · Ĵ1(r′, t ′),

[
1
c2 ∂

2
t − ∇2

]
Gm(rt, r′t ′) = ∇ × I δ(r − r′)δ(t − t ′). (5)

Here r (r′) denotes the field (source) position in the Green
function Gm(rt, r′t ′).

In the above dipole field B̂d1(r, t ), the dynamics of dipole-
1 is contained in the current Ĵ1(r, t ) = ∇ × [m̂1(t )δ(r −
r1)]. Here we make an approximation that, during the
field propagation time (∼R/c), the dynamics of dipole-1
can be regarded as only governed by its self-Hamiltonian
Ĥ1 and thus follows the unitary evolution, which gives
m̂ab

α (t ′) � m̂ab
α (t ) exp[−iω(α)

ab (t ′ − t )], with h̄ω
(α)
ab := E (α)

a −
E (α)

b [30,31]. In most microscopic experiments, the distance
between different dipoles are within several microns; thus,
the propagation time for their interactions (R/c � 10−15 s) is
much shorter than the decay time of each single dipole, which
guarantees this approximation is reliable. Then the dipole field
(5) can be further obtained as

B̂d1(r, t ) = μ0

∫ ∞

−∞
dt ′

∫
V

d3r′ G̃m(rt, r′t ′) · ∇′

× [m̂1(t ′)δ(r′ − r1)]

� −μ0

∑
ab

∫ ∞

−∞
dt ′

∫
V

d3r′ G̃m(rt, r′t ′) · ∇1

× [
m̂ab

1 (t )e−iω(1)
ab (t ′−t )δ(r′ − r1)

]
= μ0

∑
ab

G̃m
(
r, r1; ω(1)

ab

) × ←−∇ 1 · m̂ab
1 (t ). (6)
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Here [G × ←−∇ ]i j := ε j pq∂qGip means the curl operation to the
left, ∇′/∇1 is the derivative with respect to r′/r1, and

G̃m(r, r′; ω) :=
∫ ∞

−∞
dt ′ Gm(rt, r′t ′)e−iω(t ′−t ) (7)

is the Fourier transform of the Green function Gm(rt, r′t ′).
Therefore, the local interaction between dipole-2 (at po-

sition r2) and the dipole field B̂d1(r, t ) naturally gives the
dipolar interaction as the following symmetric form:

V̂2←1 = −m̂2(t ) · B̂d1(r2, t )

= μ0

∑
ab,uv

m̂uv
2 · G̃m

(
r2, r1; ω(1)

ab

) × ←−∇ 1 · m̂ab
1

= μ0

∑
ab,uv

m̂uv
2 · ∇2 × G̃A

(
r2, r1; ω(1)

ab

) × ←−∇ 1 · m̂ab
1 .

(8)

Here G̃A(r, r′; ω) is introduced from G̃m(r, r′; ω) = ∇ ×
G̃A(r, r′; ω), which is the Green function for the vector po-

tential B = ∇ × A. And G̃A(r, r′; ω) follows

[∇2 + (ω/c)2]G̃A(r, r′; ω) = −I δ(r − r′). (9)

The interaction (8) is gauge independent, since the term ∇ ×
G̃A in V̂2←1 remains unchanged in gauge transformations.
In addition, it is worth noting that the RWA is not needed
throughout the above derivations.

Therefore, once G̃A(r, r′; ω) is solved, the dipolar inter-
action V̂2←1 can be obtained from Eq. (8). The full dipolar
interaction between the two magnetic dipoles also should
involve the interaction between dipole-1 and the field induced
from dipole-2, i.e.,

V̂1↔2 = 1
2 [V̂2←1 + V̂1←2]

= − 1
2 [m̂2 · B̂d1(r2) + m̂1 · B̂d2(r1)]. (10)

In free space, the Green equation (9) has an isotropic solu-
tion: G̃A(r2, r1; ω ≡ ck) = (cos kR/4πR) I, with R ≡ |r2 −
r1|. Then Eq. (8) gives the dipolar interaction as V̂2←1 =∑

uv,ab V uv,ab
2←1 (ω(1)

ab ) τ̂ uv
2 τ̂ ab

1 , where the interaction strength

V uv,ab
2←1 (ω(1)

ab ) of each term is given by

V uv,ab
2←1 (ω) = μ0

[
�muv

2 · �mab
1 ∇2 − ( �muv

2 · ∇)
(
�mab

1 · ∇)]cos kR

4πR

= μ0

4πR3

{
�muv

2 · �mab
1 [(1 − η2) cos η + η sin η] − 3( �muv

2 · eR)
(
�mab

1 · eR

)[(
1 − η2

3

)
cos η + η sin η

]}
, (11)

where η = ωR/c = kR. This result has the same form as the
master equation approach (2), and here m̂uv

2 and m̂ab
1 no

longer need to be resonant dipoles.
The different matrix elements of the operator V̂2←1 indi-

cates different kinds of interactions. For example, considering
each dipole only has two levels |g〉α, |e〉α as the ground
and excited states, the interaction term 〈e1g2|V̂2←1|g1e2〉
|e1g2〉〈g1e2| ≡ V ge,eg

2←1 (ω(1)
eg ) τ̂+

1 τ̂−
2 gives the interaction be-

tween two transition dipoles (τ̂+
1 = |e〉1〈g| and τ̂−

2 =
|g〉2〈e|), which just returns Eq. (2); the interaction term
〈e1g2|V̂2←1|e1g2〉 |e1g2〉〈e1g2| ≡ V gg,ee

2←1 (ω(1)
ee = 0) τ̂ ee

1 τ̂
gg
2 indi-

cates the interaction between two permanent dipoles, namely,
when dipole-1 is in |e〉1 and dipole-2 is in |g〉2, which ex-
actly returns the static dipolar interaction (1). Besides, V̂2←1

also includes the interaction terms between one permanent
dipole and one transition dipole, e.g., V ee,eg

2←1 (ω(1)
eg ) τ̂+

1 τ̂ ee
2 , and

counter-rotating terms such as V eg,eg
2←1 (ω(1)

eg ) τ̂+
1 τ̂+

2 [31]. Though
usually neglected, these counter-rotating terms could exhibit
significant physical effects under the proper driving field.

On the other hand, the interaction propagated from
dipole-2 is V̂1←2 = ∑

uv,ab V ab,uv
1←2 (ω(2)

uv ) τ̂ ab
1 τ̂ uv

2 , and the full in-
teraction is V̂1↔2 = 1

2 (V̂1←2 + V̂2←1). Because of the isotropy
of G̃A(|r1 − r2| ≡ R) in free space, we have V ab,uv

1←2 (ω) =
V uv,ab

2←1 (ω), except now the frequency is ω(2)
uv from dipole-2.

For the resonant case |ω(1)
ab | = |ω(2)

uv |, the interaction strengths
contributed from both directions 1 ← 2 and 2 ← 1 are
equal.

It is also worth noticing that the explicit form of the
quantized field B̂(r, t ) is not needed throughout the above

derivations, and the starting point is simply the Maxwell
equation (4); thus, the above results do not depend on
how the EM field is quantized (e.g., whether the Coulomb
or the Lorenz gauge is used). The tensor Green function
G̃A(r, r′; ω) is the same as the one in classical electrody-
namics, and the results here apply for general boundary
conditions.

III. THE DIPOLAR INTERACTION INSIDE
A LOSSLESS CAVITY

Now we further consider the dipolar interaction between
two dipoles inside a rectangular cavity, which is made of ideal
conductors with no loss.

In this case, the field modes in the cavity are fully discrete.
The above discussions about the dipole field propagation still
holds, and the cavity boundary condition is naturally included
in the tensor Green function G̃A(r, r′; ω) from Eq. (9), i.e.,

n̂ × G̃A(r, r′; ω) = 0, ∇ · G̃A(r, r′; ω) = 0 (12)

for r on the conductor plane [38,39]. Here the Green function
can be written as G̃A = Gx

A exex + Gy
A eyey + Gz

A ezez, and the
above boundary condition indicates Gσ

A = 0 on the sidewalls
and ∂σ Gσ

A = 0 on the end caps with respect to direction-σ (for
σ = x, y, and z).

The Green function G̃A(r, r′; ω) has the following solution
of mode expansion:

Gσ
A (r, r′; ω) =

∑
k

Aσ
k (r)Aσ

k (r′)
k2 − (ω/c)2

, (13)
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where {�Ak(r)} is a set of orthonormal eigenfunctions for
[∇2 + k2]�Ak(r) = 0, with k indexing the field modes (see Ap-
pendix C). Then the dipolar interaction can be further obtained
[from Eq. (8)] as V̂2←1 = ∑

uv,ab V uv,ab
2←1 (ω(1)

ab ) τ̂ uv
2 τ̂ ab

1 , and the
interaction strength of each term is given by

V uv,ab
2←1 (ω) =

∑
k

c2ζ uv
2,kζ

ab
1,k

ω2 − c2k2
∼

∑
|k|� ω

c

c2ζ uv
2,kζ

ab
1,k/2ω

ω − c|k| , (14)

where ζ ab
α,k := √

μ0 �mab
α · ∇ × �Ak(rα ) for α = 1 and 2.

Intuitively, since ω2 − c2k2 appears in the denominator, we
may expect that only the near-resonant terms with |k| � ω/c
dominate in the summation, and that would give an interac-
tion strength returning the result (3) in the mode elimination
approach (see Appendix A). However, it turns out the above
summation series converges too slowly, since the density of
state of the field modes also increases as ∼k2, which is in
the same scale as the denominator ω2 − c2k2. As a result,
only counting the near-resonant terms is not enough to give
a precise evaluation for the dipolar interaction.

On the other hand, Gσ
A (r, r′; ω ≡ ck) also can be writ-

ten down in the form of image expansion (Fig. 1), but
that also has the slow-converging problem for numerical
estimations. This problem can be solved by the improved
Ewald expansion [38,39], that is, with the help of erf(x) +
erfc(x) = 1, the Green function is separated as Gσ

A (r, r′; ω) ≡
Gσ

A1(r, r′; ω) + Gσ
A2(r, r′; ω), which further gives (see more

details in Refs. [38,39])

Gσ
A1 =

∑
i jl,rst

(−1)r+s+t−qσ
cos kRi jl,rst

4πRi jl,rst
· erfc(KcRi jl,rst ),

Gσ
A2 =

∑
i jl,rst

(−1)r+s+t−qσ
cos kRi jl,rst

4πRi jl,rst
· erf(KcRi jl,rst )

=
∑
npq

Aσ
npq(r)Aσ

npq(r′) · �(Kc )(k, knpq ). (15)

Here k ≡ (nπ/Lx, pπ/Ly, qπ/Lz ) is the field mode index
with knpq := |k| and n, p, q ∈ Z+

0 . Ri jl,rst := |r − R′
i jl,rst | is

the distance between the field point r and the image of r′ ≡
(x′, y′, z′) at

R′
i jl,rst = [2iLx + (−1)rx′] ex + [2 jLy + (−1)sy′] ey

+ [2lLz + (−1)t z′] ez, (16)

with i, j, l ∈ Z; r, s, t = 0, 1; and qx,y,z = r, s, t . The function
�(Kc )(k, knpq ) provides a fast-converging cutoff,

�(Kc )(k, knpq ) = 1

2knpq

⎡
⎣e

− (k+knpq )2

4K2
c

knpq + k
+ e

− (k−knpq )2

4K2
c

knpq − k

⎤
⎦.

Here Kc is a free parameter [usually set as Kc = √
π/(2V 1/3)].

Now both the above Gσ
A1 and Gσ

A2 converge rapidly enough
for numerical evaluations (in our numerical results below,
∼103 image terms are counted, see also the precision anal-
ysis in Refs. [38,39]). When Kc → 0, the Green function
G̃A(r, r′; ω) gives the form of image expansion, and when
Kc → ∞, G̃A(r, r′; ω) returns the form of mode expansion

(13). In this sense, we say Gσ
A1 and Gσ

A2 indicate the contribu-
tions from the images and the mode propagation respectively.
Then the dipolar interaction strength can be further obtained
from Eqs. (8) and (10).

IV. NUMERICAL RESULTS

Based on the above discussions, now we consider the
dipolar interaction between two magnetic dipoles inside a
rectangular 3D cavity (with Lx,y,z ≡ L) given by Eq. (8). With-
out loss of generality, here we focus on the interaction term
between two resonant transition dipoles, namely, the interac-
tion term V uv,ab

2←1 (ω) τ̂ uv
2 τ̂ ab

1 as demonstrated in Fig. 1, so as to
make a close comparison with the previous free-space results
(1, 2) (the dipole frequency is set as ω ≡ 20 cL−1). Hereafter
we denote this interaction strength as V cav

2←1 for simplicity. The
numerical results for different configurations are shown in
Fig. 2.

In Figs. 2(a) and 2(b), dipole-1 (red) is placed at the
center of the cavity, dipole-2 (green) moves from the cen-
ter to the boundary (r2 = r1 + R ex with 0 < R < Lx/2), and
both dipoles are oriented in the z direction. As mentioned
above, the full interaction contains the contributions from
the field propagations in both ways V cav

1↔2 = (V cav
2←1 + V cav

1←2)/2,
and clearly these two contributions V cav

2←1(ω) and V cav
1←2(ω) are

not exactly the same as each other [Figs. 2(a) and 2(b)], which
is different from the above isotropic situation in free space
[Eq. (11)].

As a comparison, the dipolar interactions in free space with
the same conditions are also presented [Eqs. (1) and (2), see
the green and blue lines]. In the regime ωR/c > 1, the interac-
tion V cav

2←1 exhibits significant oscillations with the distance R,
which is more drastic than the free-space result V (ω) [see the
dashed blue line and Eq. (2)]. When the distance between the
two dipoles is quite small (in the regime ωR/c � 1), V cav

2←1
just returns the static dipolar interaction in free space (1)
with the power-law dependence ∼R−3 [see the log-log scale
inset in Fig. 2(a)]. That means, when the two dipoles are far
from the conductor boundary, their interaction well returns the
free-space situation [40], and this is also consistent with the
situation in classical electrodynamics.

Accordingly, we consider the situation that the two dipoles
are placed near the conductor plane. In Fig. 2(c), dipole-1
is set near the bottom center r1 = (0.5Lx, 0.5Ly, 0.01Lz ),
and still dipole-2 moves away from dipole-1 (r2 = r1 + R ex

with 0 < R < Lx/2). The dipole orientations are the same
as those in Figs. 2(a) and 2(b). Again, in the short-distance
regime, V cav

2←1 well returns the free-space result (1). But in
the long-distance regime, it turns out the interaction V cav

2←1 is
significantly suppressed compared with the free-space results
(1) and (2). The reason is the dipole field B̂d1(r) gener-
ated from dipole-1 should follow the boundary condition
near the conductor plane during its propagation, thus B̂d1(r)
tends to be parallel with the conductor plane. Therefore,
since here dipole-2 is perpendicular to the conductor plane,
their local interaction −m̂2 · B̂d1(r2) tends to vanish to zero
[Eq. (8)].

Similar comparison is also made for two dipoles oriented in
the x direction [Figs. 2(d) and 2(e)]. Since here the two dipoles
are parallel to the conductor plane, there is no suppressing
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FIG. 2. The dipolar interaction in a rectangular 3D cavity (solid red). (a) Dipole-1 (red symbol on the left) is placed in the box center
r1 = (0.5Lx, 0.5Ly, 0.5Lz ) with Lx,y,z ≡ L, and dipole-2 (green symbol on the right) is placed at r2 = r1 + R ex as in all the other figures. Both
�m1,2 are oriented in the z direction, and the interaction V cav

2←1(ω) is generated between dipole-2 and the field from dipole-1, with ω/c = 20L−1.
(b) All the conditions are the same as those in panel (a) except the interaction V cav

1←2(ω) is generated between dipole-1 and the field from
dipole-2. (c) The two dipoles are placed near the bottom r1 = (0.5Lx, 0.5Ly, 0.01Lz ). (d) Both �m1,2 are oriented in the x direction. (e) All the
conditions are the same as those in panel (d) except the positions are the same as those in panel (c). (f) Both the two dipoles move from the
bottom to the top, with r1 = (0.5Lx, 0.5Ly, d ), and the distance is fixed as R = 0.1L, and 0 < d < Lz. Both �m1,2 are oriented in the z direction.
(g) All the conditions are the same as those in panel (f) except �m2 is oriented in the x direction. In panels (f) and (g), the purple and blue lines
indicate the contributions from the images and mode mediations, respectively. The dipolar interactions in free space are plotted for comparison,
namely, V0 in Eq. (1) (dot-dashed green line) and V (ω) in Eq. (2) (dashed blue line).

behavior as in Fig. 2(c) when the dipoles are placed near the
cavity bottom, and the interactions V cav

2←1 in Figs. 2(d) and 2(e)
look similar to each other.

To see this mechanism more clearly, we consider the dis-
tance between the two dipoles is fixed as r2 = r1 + R ex with
R ≡ 0.1L, and they both move from the cavity bottom to
the top [r1 = (0.5Lx, 0.5Ly, d ) with 0 < d < Lz Fig. 2(f)],
and clearly the interaction V cav

2←1 approaches zero when the
two dipoles (in the z direction) approach the top and bottom
boundaries. The contributions from the dipole images and the
mode mediation are also presented respectively [from Gσ

A1 and
Gσ

A2 in Eq. (15)], comparing with the free-space interaction
strength, which is a constant due to the fixed distance. But
if dipole-2 is oriented in the x direction, V cav

2←1 would remain
nonzero at the boundaries d → 0, Lz [Fig. 2(g)].

The influence from the conductor boundary also can be
understood from the demonstration in Fig. 1. When dipole-1
is placed near the conductor plane, the dipole field felt by
dipole-2 comes from both dipole-1 and its image. In the bulk
regime far from the boundaries [see Figs. 2(f) and 2(g)], the
interaction strength exhibits significant oscillations varying
with positions, which come from the spatial distribution of

the mediating modes, especially the ones nearly resonant with
the dipole frequency.

V. DISCUSSIONS

By properly considering the propagation of the dipole
field, we obtain the full magnetic dipolar interaction which
includes all the interaction terms between permanent dipoles,
resonant or nonresonant transition dipoles, and even the
counter-rotating interaction terms altogether. The result ap-
plies for general boundary conditions, which already have
been enclosed in the tensor Green function G̃A(r, r′; ω), and
this is also consistent with the classical Maxwell equation. In
particular, we show the interaction for the dipolar interaction
in a rectangular 3D cavity and how it is connected with previ-
ous results under certain conditions.

From the above results, it is worth noticing that the dipolar
interaction exhibits significant dependence of three typical
lengths, i.e., the distance R between the two dipoles, the
distance d between the dipoles to the cavity boundaries, and
the wavelength λ of the field modes nearly resonant with the
dipole frequencies.
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For example, the NV centers (ωNV � 2.88 GHz) in a nan-
odiamond interact with the 13C nuclear spins (ωC ∼ 1 MHz)
around the magnetic dipolar interaction [5,6,20]. If the nan-
odiamond is placed in the center of a 3D cavity whose base
frequency is ∼1 GHz with the size ∼10 cm [41], the magnetic
dipolar interaction between the NV center and the nuclear
spins around it should be almost the same as the static dipolar
interaction (1) in free space, since these magnetic dipoles are
too far away from the cavity boundaries [Fig. 2(a)]. If the
nanodiamond is placed quite near to the cavity boundary, or
quite close to a metallic tip, their dipolar interactions would
be significantly changed.

On the other hand, considering some cold atoms are placed
in an optical cavity (usually ∼100 μm), the distance R be-
tween the flying atoms, their distance to the cavity boundaries
d , and the cavity mode wavelength λ would be comparable
[42–47]. In this case, the dipolar interaction in the cavity
would have a complicated position dependence as shown in
Fig. 2.

Throughout the discussion, the dynamics of the mediating
dipole field is simply described by the Maxwell equation
and the corresponding Green function. Thus, by properly
changing to some other field equations, this approach can be
generalized to study the interaction mediated by other kinds of
fields, such as the exciton-polariton field or the phonon field
[15,24,48,49].

In the above discussions about the cavity situation, we
focus only on the ideal conductors, and realistic situations
may involve more physical effects. For example, near the
metal surface, the surface plasmon induced by the electron
density oscillation would influence the EM field nearby, and
that would bring in extra changes to our above discussions
[16,24]. In principle, the interaction induced by these extra
fields also can be considered by the approach in this paper.
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APPENDIX A: THE EFFECTIVE INTERACTION
MEDIATED BY ONE FIELD MODE

We consider that two dipoles both interact with one com-
mon field mode, and the Hamiltonian of the three-body system
is Ĥ = Ĥ0 + V̂ , where

Ĥ0 = ω1τ̂
+
1 τ̂−

1 + ω2τ̂
+
2 τ̂−

2 + νâ†â,

V̂ = g1τ̂
+
1 â + g2τ̂

+
2 â + H.c. (A1)

The Fröhlich-Nakajima canonical transformation gives an ef-
fective Hamiltonian [26,27],

Ĥeff = e−ŜĤeŜ = Ĥ + [Ĥ , Ŝ] + 1
2 [Ĥ , [Ĥ , Ŝ]] + · · ·

� Ĥ0 + 1
2 [V̂ , Ŝ], (A2)

where the first order V̂ + [Ĥ0, Ŝ] ≡ 0 is eliminated by prop-
erly setting Ŝ := Aτ̂+

1 â + Bτ̂+
2 â − H.c., and that gives

[Ĥ0, Ŝ] = (ω1 − ν)(Aτ̂+
1 â + H.c.)+(ω2 − ν)(Bτ̂+

2 â + H.c.),

⇒ A = g1

ν − ω1
, B = g2

ν − ω2
. (A3)

Therefore, the effective interaction becomes

V̂eff = 1

2
[V̂ , Ŝ] = (β̃τ̂+

1 τ̂−
2 + H.c.) +

∑
α=1,2

ξ̃ατ̂ z
α

(
â†â + 1

2

)

β̃ = 1

2

[
g1g∗

2

ω1 − ν
+ g2g∗

1

ω2 − ν

]
, ξ̃α = |gα|2

ωα − ν
. (A4)

The first term in V̂eff eliminates the mediating field mode and
gives the interchange interaction between the two dipoles as
shown in Eq. (3), while the second term can be regarded as a
correction to the self-Hamiltonian ωατ̂+

α τ̂−
α which depends on

the mode state.

APPENDIX B: THE DYNAMICAL EQ. (4) FOR
THE QUANTIZED MAGNETIC FIELD

Here we show how Eq. (4) for the quantized magnetic field
B̂(r, t ) is derived. We consider one magnetic dipole at position
r1 interacting with the EM field, and the full dynamics of this
system is described by Ĥ = Ĥ1 + V̂1 + ĤEM, where Ĥ1 is the
self-Hamiltonian of the magnetic dipole, and

ĤEM =
∫

d3x
[

1

2
ε0Ê2(x) + 1

2μ0
B̂2(x)

]
,

V̂1 = −m̂ · B̂(r1) (B1)

are the Hamiltonian of the EM field and the local interaction
between the magnetic dipole and the magnetic field, respec-
tively. Under the Coulomb gauge, the quantized electric and
magnetic field operators read [37]

Ê(r, t ) =
∑
kς

√
h̄ωk

2ε0V
ekς [ieik·râkς (t ) − H.c.],

B̂(r, t ) =
∑
kς

√
h̄ωk

2ε0V

ek × ekς

c
[ieik·râkς (t ) − H.c.], (B2)

where ekς denotes the two polarization directions perpendic-
ular to the wave vector k. These quantized field operators
follow the Heisenberg equation ∂t ô = 1

ih̄ [ô, Ĥ], and that gives

∂t B̂(r) = 1

ih̄
[B̂(r), Ĥ] = −∇ × Ê, (B3a)

∂t Ê(r) = c2[∇ × B̂ − μ0∇ × m̂δ(r − r1)]. (B3b)

To obtain this result, the following commutation relations are
calculated:

[Ê(r), m̂ · B̂(r1)]

=
∑

kς,qσ

−h̄
√

ωkωq

2ε0V c
ekς (m̂ · eq × eqσ )

× [eik·râkς − e−ik·râ†
kς , eiq·r1 âqσ − e−iq·r1 â†

qσ ]

043709-6



FIELD-INDUCED MAGNETIC DIPOLAR INTERACTION … PHYSICAL REVIEW A 104, 043709 (2021)

=
∑
kς

−h̄ωk

2ε0V c
(m̂ · ek × ekς )ekς [e−ik·(r−r1 ) − eik·(r−r1 )]

=
∑

k

h̄

2ε0V
k × m̂[e−ik·(r−r1 ) − eik·(r−r1 )]

= ih̄

ε0
∇r × [m̂δ(r − r1)], (B4)

[Ê(r), B̂2(x)] = 2ih̄

ε0
∇r × [B̂(x)δ(r − x)]. (B5)

In the above calculations, we used the relations∑
ς=1,2 ekς ekς = 1 − ekek, and m̂ · k × 1 = −k × m̂.
Notice that Eqs. (B3a) and (B3b) and the current term

∇ × [m̂δ(r − r1)] := Ĵ have the same form as the classi-
cal Maxwell equations [19]. Taking the curl of Eq. (B3b)
gives the dynamical equation (4) for the quantized magnetic
field B̂(r, t ) in the main text, which has the same form as
the classical electrodynamics. Indeed, during the canonical
quantization of the EM field, the equations of motion for
the quantized operators should keep the same form as their
classical counterparts, which roots from the consistency from

the classical Poisson bracket to the quantum commutator
{A, B} → 1

ih̄ [Â, B̂].

APPENDIX C: EIGENMODES IN THE
RECTANGULAR CAVITY

Here we show the eigenmodes of the cavity field given
by [∇2 + k2]�Ak(r) = 0 in the rectangular region x, y, z ∈
[0, Lx,y,z]. The boundary condition requires n̂ × �Ak(r) = 0 and
∇ · �Ak(r) = 0 for r on the boundary planes. Denoting the
vector eigenmodes as �Ak(r) := (Ax

npq, A
y
npq, Az

npq ), the eigen-
modes read [38,39] as follows:

Ax
npq(r) =

√
4(2 − δn0)

V
cos

nπ

Lx
x sin

pπ

Ly
y sin

qπ

Lz
z,

Ay
npq(r) =

√
4(2 − δp0)

V
sin

nπ

Lx
x cos

pπ

Ly
y sin

qπ

Lz
z,

Az
npq(r) =

√
4(2 − δq0)

V
sin

nπ

Lx
x sin

pπ

Ly
y cos

qπ

Lz
z,

where knpq = (nπ/Lx, pπ/Ly, qπ/Lz ) and n, p, q ∈ Z+
0 .

Here Aσ
npq(r) are normalized as

∫
V Aσ

k (r) Aς
q (r) d3r = δσςδkq.
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