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Trapped ion in an optical cavity: Numerical study of an optomechanical
transition in the few-photon regime
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We consider an optomechanical system composed of a trapped ion dispersively coupled to a single mode of a
pumped optical cavity. We focus on a parameter range for which the semiclassical description predicts two clearly
distinct equilibrium configurations in the limits of small and large photon pumping, while a bistable regime is
found for intermediate pumping. This semiclassical description, however, is not valid in close proximity to the
system transitions or when the mean photon number is low. Here, we provide a numerical analysis of the fully
quantum state in the few-photon regime, exploring the features of the asymptotic state across the transition and
analyzing possible markers of semiclassical bistability. We find an increase in the entropy of the system and of
the entanglement in the transition region but no clear signatures of metastability in the spectrum of the evolution.
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I. INTRODUCTION

Trapped ions in optical cavities represent a promising
example of a hybrid quantum setup, with several potential
applications for quantum information such as coupling of the
processor and flying qubits or creating entangling gates for
photons [1–3]. The use of strong optical potentials for ions has
also been demonstrated as a trapping or pinning mechanism
[4,5] and has been proposed as a strategy to reduce unwanted
heating effects in experiments involving both neutral and
charged particles [6,7]. The application of optical forces can
be useful for tailoring the structure and motional spectrum
of an ion crystal and for studying noise-induced transport,
among other proposals [8–11].

One of the many appealing features of this kind of hybrid
setup is the possibility to realize controllable small-scale mod-
els of interest for statistical mechanics and condensed matter.
In particular, different groups have proposed and demon-
strated the use of this platform to explore features of the
Frenkel-Kontorova model for friction and crystal dislocation
[12,13]. This line of work builds upon an early experiment
observing the anomalous dynamics of a single ion [14], and
recent theoretical and experimental advances have led to the
realization of similar models involving chains with a few ions
[15–21].

Another interesting aspect of the combination of ion traps
and optical cavities is the possibility to apply cavity-cooling
techniques to the normal modes of the ion crystals. Indeed,
by appropriately choosing the system parameters the cavity
losses can provide a dissipation mechanism to reduce the
kinetic energy of the atoms. This topic has been studied ex-
tensively for neutral atoms [22,23] and has been proposed as
a means to achieve ground-state cooling of long chains of ions
as well [24].

Optomechanical systems in the regime of sufficiently large
couplings are known to lead to multistability (see [25] for a re-
view). For the particular case of ion crystals in optical cavities,
such behavior has been studied in connection with the linear-
zigzag structural transition [26] and the sliding-pinned phase
transition [19]. The former case corresponds to a linear ion
chain aligned transverse to the cavity axis, whereas the latter
is obtained when the chain is along the propagation direction
of the light. Both of these models exhibit parameter regimes
where two different classical configurations are stable, and
thus, the semiclassical treatment predicts an asymptotic state
which depends on the initial state.

The semiclassical description is comparatively simple and
properly describes the behavior of the system in many useful
cases, but there are several situations in which this treatment
is not reliable. These scenarios include the few-photon regime
and the case in which the spatial delocalization of the ion
is not small enough compared with the relevant scales of
the problem. In particular, the semiclassical description is
expected to break down in the vicinity of a transition when a
motional mode becomes unstable. The characterization of this
regime is an open problem, and previous work on nonlinear
optical systems has shown that the semiclassical and fully
quantum solutions may differ in the continuous or discontin-
uous character of the transition [27,28].

The kind of dynamics we consider is an instance of
a driven-dissipative model. Several studies in the literature
showed similar systems in which a semiclassical approxima-
tion leads to a dynamical map with more than one fixed point
[28–31]. In a quantum treatment, multistability is the result
of a vanishing gap in the Liouvillian, whereas metastability
is found for gaps that are much smaller than every other
relevant timescale, which has been studied in detail in the open
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FIG. 1. Schematic representation of the different equilibrium
configurations in the optomechanical model we consider. Left:
Weak-pumping regime; the cavity has a low mean number of photons
and the equilibrium for the ion position is located at the center of
the ion trap. Right: Strong-pumping regime; the cavity has a large
mean number of photons, and the equilibrium position of the ion is
determined mostly by the optical potential, exhibiting spontaneous
symmetry breaking in the semiclassical treatment. If back-action in
the system is relevant, the semiclassical treatment may predict stabil-
ity of both kinds of solutions in the intermediate-pumping regime.

Rabi model [32,33] and the open Ising model [34]. The clos-
ing of the Liouvillian gap in the appropriate thermodynamic
limit is one of the defining features of a dissipative phase
transition [35].

As a first approach to the full quantum treatment of our
system, in this work we study the case of a single motional
mode coupled to the cavity field. This mode may correspond
to a single trapped ion, or it may refer to the effective descrip-
tion of a problem in terms of a mode which is particularly
relevant for the dynamics. The configuration is such that the
equilibrium position results from a competition of the trap
potential and the optical forces, as depicted in Fig. 1. We
study the system in the regime in which the semiclassical
description predicts bistability, but in the limit of small mean
photon numbers, more precisely about 10 photons, and across
the whole transition, so that the semiclassical description is
not expected to be valid. We provide a characterization of the
states of the field and ion, as well as joint properties such as
entanglement and entropy, across the transition region.

Our results display some features of the transition pre-
dicted by the semiclassical treatment in [26], but no indica-
tions of metastability. We confirm the expectation that the
transition becomes sharper when the mean number of pho-
tons in the regime of classical bistability is increased. We
also observe local maxima of logarithmic negativity, mutual
information, and von Neumann entropy for the asymptotic
state of the system in the transition region. We do not detect,
however, a decrease in the spectral gap, so that at all times the
asymptotic state is clearly separated from the rest. In general,
we confirm that the semiclassical description of the state is
not appropriate in this regime, but it does capture the right
location of the transition region.

This paper is organized as follows: in Sec. II we present
the theoretical model for our system. In Sec. III we briefly
review the semiclassical treatment and predictions for equi-
librium and bistability. Section IV contains the results for the
quantum regime in the few-photon limit, including studies of
the cavity field, the state of the ion, and the potential indicators
of metastability. In Sec. V we summarize our results and state
conclusions and open questions. Finally, several technical is-
sues are explained in the Appendixes.

II. TRAPPED ION COUPLED TO AN OPTICAL CAVITY

In this section we describe the evolution of a trapped ion
coupled to a single mode of an optical cavity pumped by a
laser in the dispersive regime. In the reference frame rotating
at the laser frequency, the unitary evolution of this system is
given by

H = Hcav + Hion + Hint. (1)

Here,

Hcav = −h̄�ca†a + ih̄(a†η − aη∗) (2)

is the intracavity-field Hamiltonian. The operators a† and a
are the creation and annihilation operators of the cavity field,
respectively, and �c = ωl − ωc is the detuning between the
laser pump frequency and the cavity mode; η is proportional
to the amplitude of the laser field. Since the phase of the laser
field is arbitrary, we set it to zero for simplicity; hence, η ∈ R.

The intracavity field is coupled with modes of the external
field. The thermal occupation of the outer modes will be
neglected, and thus, we will assume that this coupling, apart
from the pumping, can cause only photon losses. The photon
decay, at a rate of 2κ , will be described by the standard master
equation under the Markov approximation:

Lκρ = κ (2aρa† − {a†a, ρ}), (3)

with the curly brackets denoting an anticommutator.
The Hamiltonian describing the motional degrees of free-

dom of the ion in the absence of the cavity is

Hion = p2

2m
+ Vion(x). (4)

Here, we assume that the ion is strongly confined in two
directions, and thus, only the motion along one axis with
coordinate x is relevant. For our purposes, the potential for
the ion includes only the trap potential, but in the more general
case of a system composed of more than one ion the Coulomb
potential should be included. We resort to the usual harmonic
approximation:

Vion(x) = mω2x2

2
. (5)

The interaction Hamiltonian between the intracavity field
and the ion degrees of freedom is given in the dispersive
regime by

Hint = h̄
�2(x)

�0
a†a (6)

This approximation is valid as long as the laser frequency is
far enough from resonance with the electronic transition at
frequency ωe so that the detuning �0 = ωl − ωe determines a
timescale which is much faster than any other in the system.
The frequency �(x) in the above equation is the coupling
strength between the cavity field and the electronic degrees
of freedom of the ion; since this coupling is assumed to be
spatially varying, it also couples the cavity field with the
atomic position. We do not consider spontaneous emission in
our description, which is a valid approximation as long as |�0|
is sufficiently large [36]. We also note that we do not include
additional noise or friction on the ion; it is the interaction
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with the cavity field that indirectly provides dissipation for
the motion as well.

The effect of the interaction Hamiltonian (6) can be un-
derstood by first considering its effects on the ion and cavity
separately: if the number of photons N is assumed to be
externally fixed, then the coupling with the atom provides
an optical potential of the form h̄N�2(x)/�0. For �0 > 0,
i.e., a blue-detuned laser, the optical forces push the ion to
minima of the optical intensity; if �0 is chosen to be negative,
the optical forces push the ions to locations where the field
intensity is maximum. On the other hand, if the ion position
x is taken to be fixed, it provides a position-dependent shift
of the cavity frequency. This can be made more explicit by
rewriting the total Hamiltonian as

H = −h̄�eff(x)a†a + ih̄η(a† − a) + Hion(x), (7)

where the operator �eff is defined by

�eff(x) = �c − �2(x)

�0
. (8)

In the complete scenario, since the effective cavity detuning
is relevant to determine the number of photons in the cavity
and, in turn, the number of photons in the cavity determines
the optical potential depth, both degrees of freedom interact in
a way that gives rise to “back-action” of the ion on the optical
forces it feels.

For strong pumping, one expects the equilibrium positions
of the ion to be essentially determined by the optical potential,
whereas for weak pumping the trap potential dominates. If
the optical potential and the trap potential compete, for in-
termediate values of the pumping the semiclassical treatment
of the problem may find multistability, i.e.. a coexistence of
different solutions for the ion position which are associated
with different values of the mean photon number (this will be
analyzed in more detail in the next section).

Following the lines of previous works, we focus on the case
of a Hamiltonian preserving spatial parity, corresponding to
a situation in which the optical field is aligned with the trap
[26,37]. We note that studies of the sliding-pinned transition
for a finite chain have resorted to an aligned setup in order to
recover a sharp behavior at the transition [17,19]. Under this
assumption, the semiclassical description predicts a steady
state which either is even, when the equilibrium position is at
the trap center, or has spontaneous symmetry breaking, when
the ion is localized at one side.

For definiteness, we take �0 > 0, and we consider an in-
tensity profile given by

�2(x) = �2
0 f (x), (9)

f (x) = [(x/xeq )2 − 1]2. (10)

We make this choice since the quarctic potential provides a
paradigmatic scenario for the transition from single well to
double well. It also makes numerical calculations simpler and
allows us to derive some analytical results for the classical
equilibrium positions, as shown in the next section and in
Appendix A. In our case, the classical equilibrium positions
are located at x = 0 for weak pumping, whereas in the limit
of infinite mean photon number they lie at x = xeq. We also

fix our choice in such a way that the optical depth per photon
associated with the barrier between optical wells is character-
ized by the parameter U0 = �2

0/�0.
Of course, this intensity profile does not describe an exper-

imentally realistic shape, but only the behavior in the central
trap region is relevant for our purposes. Experimentally, a
transition similar to the one we study could be observed by
taking x to be an axis orthogonal to the propagation direction
of the cavity and using a tightly focused blue-detuned Gaus-
sian field or a Hermite-Gaussian mode. Alternatively, one
could consider x to coincide with the propagation direction
of the field and restrict one’s study to the parameter regime
where only two wells of the optical sinusoidal potential are
accessible to the ion. We prefer not to refer to any specific
implementation since we expect the qualitative behavior of
our system to be independent of the details of the potential as
long as it displays an optomechanical single-to-double-well
transition. Furthermore, one motivation for our study is tran-
sitions involving more than one ion such as the sliding-pinned
[26] and the linear-zigzag [19] transitions. In these contexts,
one can often find one motional mode which “drives” the
transition, and it is the effective potential for this mode that
is most relevant in the description.

A particularly relevant parameter in our model is the dis-
persive cooperativity C = U0/κ , which quantifies the effect
of the ion on the cavity field and thus the back-action of
the ion location on the optical potential it feels. The regime
of small dispersive cooperativities leads to the usual optical
potentials in dipole traps [36]. On the contrary, large values
of C correspond to highly deformable potentials which can
display multistability and, when several atoms are considered,
significant cavity-mediated interactions (see, for example,
[19,38,39]). In systems containing several atoms, the effective
dispersive cooperativity scales with the number of particles.

III. SEMICLASSICAL APPROXIMATION AND CLASSICAL
EQUILIBRIUM CONFIGURATIONS

The equations of motion for this system can be written in
Heisenberg-Langevin form:

ȧ = i�eff (x) a + η − κa +
√

2κ ain(t ),

ẋ = p

m
,

ṗ = h̄a†a
∂�eff (x)

∂x
− ∂Vion(x)

∂x
, (11)

where the operators ain(t ) can be interpreted as a stochastic
external field [40].

Within the semiclassical treatment the system dynamics
are considered to be given by small fluctuations around the
system’s classical equilibrium positions:

a = a + δa,

x = x + δx,

p = p + δp, (12)

where a ≡ 〈a〉, x ≡ 〈x〉, and p ≡ 〈p〉, so that the mean values
of the fluctuation operators are zero. In order to find the
classical equilibrium values the input noise fields ain(t ) are set
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to zero while we look for solutions satisfying ȧ = ẋ = ṗ = 0.
This leads to

a = η

κ − i�eff (x)
, (13)

p = 0, (14)

whereas the possible equilibrium positions are determined by
the condition that

∂

∂x
[Veff (x) + Vion(x)] = 0, (15)

with Veff being the effective potential [41],

Veff (x) = h̄
|η2|
κ

arctan

(
−�eff (x)

κ

)
. (16)

This somewhat strange form of the effective potential results
from taking into account in a single expression the depen-
dence on x that comes from �(x) in the coupling Hamiltonian
(6) and also the fact that the equilibrium mean photon number
depends on the position x through Eq. (13). More details can
be found in [41].

The classical equation (15) for the equilibrium positions
imposes only a zero derivative of the total effective potential,
but stability considerations for the quantum fluctuations about
equilibrium show that the semiclassical equilibrium positions
must correspond, as usual, to minima of the total effective
potential. One should keep in mind that the effective potential
is useful for finding equilibrium positions but should not be
interpreted as a classical potential energy.

From Eq. (13) we see that the lowest-order semiclassical
expression for the mean photon number is given by

〈a†a〉 � |a|2 = η2

κ2 + �2
eff (x)

. (17)

Using the above expression to approximate the mean photon
number implies neglecting fluctuations, which are expected
to represent an important contribution to the mean photon
number when the value predicted by Eq. (17) is small.

Given that the spatial profile of the chosen field intensity
is even, we have that x = 0 is always a solution of Eq. (15).
Considering the form of the effective optical potential (16),
it is clear that if there are other equilibrium solutions, they
must satisfy x2 < x2

eq; the equality can be satisfied only for
vanishing trap potential or in the limit of infinite pump-
ing strength. The equation for the solutions at the sides,
which exist only for strong enough pumping, is given in
Appendix A.

From the second derivative of the total effective potential
V = Veff + Vion one can determine parameter conditions for
which the semiclassical solutions x transition from stable to
unstable equilibrium configurations (see Appendix A for de-
tails). This description predicts a stable equilibrium position
at x = 0 for weak laser pumping, whereas for large pumping
strength the stable equilibrium positions approach ±xeq.

The transition between both classes of solutions can be
continuous or discontinuous depending on the cooperativity C
and a dimensionless parameter c associated with the detuning:

c = −�c

U0
+ 1. (18)

FIG. 2. Minima of the total effective potential V = Veff + Vion

determining the equilibrium position in the semiclassical descrip-
tion. The parameters used are κ = ω, xeq = 3

√
h̄/(mω), c = 1, and

C = 0.5 [dark blue (dark gray)] and C = 2 [light blue (light gray)],
corresponding to continuous and discontinuous transitions, respec-
tively. For the latter case, the vertical solid line shows the change in
global minimum, and the vertical dashed lines show the transition
values computed from Eqs. (A4) and (A6).

The change from a continuous to a discontinuous transition
can be identified by imposing that the instability of the equi-
librium points at the sides occur at a position that approaches
zero. This leads to a critical value for C which depends on the
detuning:

Ccrit = 1√
c (4 − c)

. (19)

If C is above Ccrit, then the transition is discontinuous; other-
wise, it is continuous. For a detuning such that c 	∈ (0, 4), the
semiclassical description predicts a continuous transition for
all values of the cooperativity.

As an illustration, in Fig. 2 we show the minima of V
as a function of η for a cooperativity below (dark blue) and
above (light blue) the critical value. In the first case a contin-
uous transition can be observed. In contrast, the second case
displays an abrupt transition where two local minima appear
close to xeq, while the value x = 0 remains a stable solution,
and as η increases even further, the local minimum at the
origin becomes unstable and the only stable solutions are the
ones around xeq.

The semiclassical description in [19,26] also includes a
linear treatment of the fluctuations, truncating Eqs. (11) to first
order in the displacements from the mean values. From this
linear set of equations, if the parameter regime corresponds
to a stable configuration, one can find an asymptotic Gaussian
state [42] for the system. Within this semiclassical description,
it is the coupling of motional and field fluctuations that leads,
for appropriate parameters, to cavity cooling of the ion. This
cooling mechanism is most efficient for large coupling under
resonance conditions, facilitating the transfer of vibrational
energy to cavity fluctuations [24]. However, there are also
parameter values for which the pump induces heating of the
motion, and thus, the system becomes unstable [37].

In the equations for the fluctuations of cavity and motion
taken to first order, the coupling between the two degrees of
freedom is proportional to the derivative of the field intensity
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at the ion position. This means that, for the model we analyze,
this optomechanical coupling is zero in the whole parameter
region for which the equilibrium position is at the origin. This
fact has two important consequences: first, in this regime a
direct dissipation mechanism on the ion must be included in
order to obtain an asymptotic state. Second, this asymptotic
state displays no correlations, quantum or classical, between
cavity and ion. These features are due to the linear approxi-
mation and not properties of the actual quantum system.

Finally, we note that the semiclassical analysis suggests
that the main features of the transition depend on very few
dimensionless parameters. This need not be the case in the
truly quantum regime. For instance, if the minima of the
optical potential ±xeq are located within the spatial region
occupied by the ground state of the trap, then one cannot
expect an abrupt transition between the two kinds of solutions
because the quantum treatment shows that they overlap. The
semiclassical treatment is expected to become more accurate
in the limit with a large number of photons and with xeq 
 xω,
where xω = √

h̄/(mω) is the length scale determined by the
trap ground state. Nevertheless, even under these assumptions,
the semiclassical description breaks down close to the insta-
bility points due to the large position fluctuations.

IV. QUANTUM STEADY STATE: NUMERICAL RESULTS

In this section we undertake a fully quantum treatment of
the system. In particular, we study the steady state of the
system in the regime in which the semiclassical description
predicts bistability, but in the limit of small mean photon
numbers, where the semiclassical approximation is not ex-
pected to remain valid. For different parameter choices within
this limit, we provide a characterization of the transition and
analyze possible indications of the semiclassical bistability
through the entropy of the state, the entanglement between
field and motion, and the spectral gap. The results are obtained
by numerical diagonalization of the evolution superoperator,
truncating the bases for motional and cavity states; for more
details see Appendix C.

It follows from the symmetry of the Hamiltonian that,
unless direct dissipation or noise on the motion is included,
the system will have at least two steady states corresponding
to subspaces with even and odd parities in the ion’s coordinate
space [43]. The spontaneous symmetry breaking predicted
by the semiclassical model can be observed in the quantum
description only if the tunneling between potential wells is
zero, corresponding to the limit of infinitely many photons.
To simplify the description, since symmetry breaking is not
the feature we want to analyze, we consider only the subspace
of even motional states.

For definiteness we choose �c = 0; this choice guarantees
�eff < 0, which was identified as being necessary to avoid
cavity heating [37]. Fixing �c = 0 also leads to some simple
analytical results for the classical configurations, as shown in
Appendix A. We study the steady state for fixed values of
cooperativity and of xω/xeq. In particular, in the examples that
follow we take C = 2, xeq = 5xω. These values were chosen
because they display features of the transition of interest and
at the same time are numerically tractable and close to the
experimentally accessible regime with present technology.

FIG. 3. (a) Mean photon number (in semilog scale) and (b) mean
value of the detuning as a function of the pump strength. We show the
mean values obtained through diagonalization of the Liouvillian for
the parameter values C = 2, xeq/xω = 5, and κ/ω = 0.75, 1.00, 1.50,
shown by solid blue, dashed red, and dotted violet lines, respectively.
The region for which semiclassical bistable behavior occurs is shown
between dashed vertical black lines, and circles indicate the change
in the global classical minimum. In (a) the solid curves with a jump
at the global minimum change indicate the values obtained with
the semiclassical approximation to lowest order according to (17),
without taking into account fluctuations. In (b) the dash-dotted line
indicates the semiclassical value of the detuning �eff (x̄); this curve
is the same for the three cases plotted.

Although we do not aim to describe any particular realiza-
tion, our parameter choices could, for instance, correspond to
calcium ions in the transition at 854 nm, taking κ,U0, and ω

of the order of 2π × 100 kHz [44].
We have explored other sets of parameters, confirming the

expectation that smaller photon numbers and smaller values
of xeq lead to smoother transitions. While the main features
of our results are representative of the phenomena we want to
study, some aspects of the results shown are not universal: for
instance, there are regimes for which the cavity cooling effect
is too small to lead to a motional state which is localized with
respect to the scale set by xeq, and also the precise positions
of the peaks in quantities such as entropy and negativity vary
from one parameter choice to another.

A. Transition in the equilibrium configuration: Mean values
for the cavity and ion

In Fig. 3 we show the behavior of expectation values as-
sociated with the cavity field as the pumping is increased.
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FIG. 4. (a) Mean value of the operator x2 associated with the ion position, in units of x2
eq. We note that the mean value of x is always

zero for symmetry reasons. (b) Dispersion of x2, �(x2) =
√

〈x4〉 − 〈x2〉2, in units of x2
eq. (c) Mean value of the kinetic energy of the ion, in

units of p2
ω/m = h̄ω. The curves correspond to the parameter values C = 2, xeq/xω = 5, and κ/ω = 0.75, 1.00, 1.50, shown by solid blue,

dashed red, and dotted violet lines, respectively. Notice that as the cooperativity is kept fixed, different values of κ also correspond to different
values of U0.

Since the semiclassical bistability region depends on the pump
strength through the combination η2/(ωκ ), the curves are
shown as functions of η/

√
ωκ . In order to keep C constant,

each curve with constant κ has its corresponding value of
U0. In every figure in this section, the dashed lines divide
the three regions that have different numbers of local minima
in the total effective potential. In the leftmost region, V has
only one minimum at x = 0; in the rightmost region only the
minima at the sides are stable. The middle region corresponds
to classical bistability. The change from a global minimum in
x = 0 to one at the sides is shown by small black circles.

Figure 3(a) displays the mean photon number at the steady
state as a function of the pumping and for different values
of the cooperativity and of κ, U0. In accordance with the
semiclassical description, the mean photon number for fixed
η/

√
κω grows as κ decreases, and outside the transition region

the mean photon number grows quadratically with η. The
mean photon number obtained through the semiclassical treat-
ment (17), without taking quantum fluctuations into account,
is shown in Fig. 3(a) by thin lines that jump at the change
in global minimum. One can see that the value predicted by
the semiclassical approximation has a different shift on each
side of the transition. This shift is related to the fact that the
semiclassical approximation as described in Sec. III neglects
the effect on �eff of the spatial spread of the ion. In a fully
quantum treatment, this spread has a large impact on the value
of the effective detuning and, through it, on the mean photon
number.

The behavior of 〈�eff〉/U0 as a function of η/
√

κω in
shown in Fig. 3(b). The dash-dotted line displays the semi-
classical prediction corresponding to �eff (x̄); there is only one
semiclassical curve since the result does not change when one
varies κ and U0 while keeping C constant (see Appendix A
for more details). There is a marked discrepancy between the
semiclassical prediction and all the curves obtained from the
numerical calculations. This is, as already mentioned, due to
the spatial spread of the ion position. One can observe in
Fig. 3(b) that 〈�eff〉/U0 grows towards �c = 0 as η increases.
This is expected since as η is increased, the probability density
of the ion tends to localize near the potential wells, which in
our case correspond to field nodes, reducing the ion-induced
cavity detuning. However, the effective detuning reaches a
plateau at a value lower than �c because the ion does not

localize completely. One can also confirm from the plot that
an increase in the photon number at the transition region gives
rise to a more abrupt behavior.

A deeper understanding of the behavior of the ion motion
can be gained from the plots in Fig. 4. The mean value of x2

is displayed in Fig. 4(a). Although the curves are qualitatively
similar, one can observe that the change in the motional state
becomes more abrupt as the values of κ and U0 are decreased,
so that the photon numbers in the transition region become
larger. The dispersion of x2, �(x2) =

√
〈x4〉 − 〈x2〉2, is shown

in Fig. 4(b), where one can observe a maximum dispersion
around the middle of the transition region. For large pumping,
the plots confirm that the ion does not localize completely, and
actually, the curves become almost flat. This can be under-
stood by taking into account that the localization of the ion at
the field nodes makes the effective detuning very small, which
limits the cooling effect of the cavity. Finally, in Fig. 4(c) we
show the ion’s kinetic energy, in units of p2

ω/m = h̄ω. The
corresponding curves are quite flat in the regime with the
ion located at the center and display an approximately linear
increase with η for large pumping. This growth is expected
since the motional energy scale associated with the classical
optical potential, neglecting back-action and replacing the op-
erator for the number of photons by the mean value, increases
like h̄η.

In the semiclassical description, the two different equilib-
rium configurations for the ion directly correlate with two
distinct equilibrium values of the cavity-field amplitude. This
behavior can be approximately observed in the Husimi dis-
tributions Qρ (α) = 〈α|ρ|α〉, with |α〉 being a coherent state
of the corresponding subsystem [45]. We show these distri-
butions in Fig. 5 for the cavity (top) and ion (bottom), with
increasing pumping from left to right. In [27,31], the authors
observed that the Husimi distribution has two distinct lobes
in the bistable regime. In this sense, we would expect clas-
sical bistability to translate into a Husimi distribution for the
ion with distinct peaks at x = ±xeq and x = 0 and with two
separated peaks for the associated cavity amplitudes. These
conditions are related to the above-mentioned requirements
that xeq be much larger than xω and the mean photon num-
ber be much larger than 1. This limit is not reached for our
parameter regimes, which is clear from the Husimi functions

043705-6



TRAPPED ION IN AN OPTICAL CAVITY: NUMERICAL … PHYSICAL REVIEW A 104, 043705 (2021)

FIG. 5. Husimi distribution functions for the reduced states of the cavity and ion for C = 2, xeq/xω = 5, κ/ω = 0.75, and η/
√

ωκ = 2.0,
3.3, 3.4, and 5, from left to right. The top row corresponds to the field subsystem, with |α〉 being the coherent states in the Husimi distribution,
whereas the bottom row corresponds to the ion.

showing a non-negligible overlap between the peaks that cor-
respond to different semiclassical solutions.

B. Analysis of typical transition markers

In the following we study the behavior of several quantities
that are expected to display clear signatures of the transition
and/or indicate metastability in the quantum description of the
system. First, we analyze the mixedness of the state, which
is expected to have a peak at the transition. For instance, in
[35] the authors noted that the maximum mixedness occurs
at the transition between different phases, and in [31], using
the quantum trajectory formalism two different types of tra-
jectories were identified, explaining the asymptotic state as
a statistical combination of the two competing equilibrium
configurations. In Fig. 6 we show the von Neumann entropy
S(ρ) = −tr(ρ ln ρ) of the composite system state and that of
the reduced states. We observe a clear peak for the cavity but
not in the entropy of the full system or the ion subsystem.
Once more, this is a consequence of inefficient cavity cooling.

Despite the mixedness, there is nonzero entanglement be-
tween the ion and the cavity field. In Fig. 7(a) we show the
behavior of the logarithmic negativity EN [46,47] for the same
parameters as in Fig. 3. We note that EN is calculated from the

numerically found steady state ρ as

EN (ρ) = log2

(
1 + 2

∑
j

|λ j |
)

, (20)

where λ j indicates the negative eigenvalues of the partial
transposition of ρ. A nonvanishing value of EN is an indicator
of entanglement. For the parameter regimes we study, the
negativity reaches a maximum within the transition region.
Furthermore, the peak becomes sharper as the mean photon
number at the transition increases. In any case, one must be
cautious regarding the quantification of entanglement in this
kind of system since different entanglement measures may be
more relevant depending on the purpose of the study.

A useful quantifier of the correlations between the cavity
field and ion motion, which encompasses both quantum-
mechanical and classical correlations, is given by the mutual
information [48]. In Fig. 7(b) we show the behavior of this
quantity, which also displays a peak in the transition region.
Interestingly, within the transition region the magnitude of the
correlations in terms of the mutual information is roughly the
same for all the curves shown, regardless of the difference
in mean photon numbers. The large values of the mutual
information for strong pumping are related to the shape of

FIG. 6. Von Neumann entropy of the composite system and that of the reduced states ρA and ρB for the cavity and ion, respectively.
Parameters are the same parameters as in Fig. 3.
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FIG. 7. (a) Logarithmic negativity between motion and cavity
degrees of freedom. (b) Mutual information between motion and
cavity degrees of freedom. Parameters are the same as in the previous
figures.

the Husimi distribution of the cavity, which exhibits a “tail”
reminiscent of the alternative equilibrium configuration.

The approach to classical bistability is expected to trans-
late, in a quantum treatment with large numbers of excitations,
into metastability, i.e., the appearance of a very slow decay
towards the asymptotic state. This timescale, much slower
than the other scales in the system, can be observed as a very
small gap in the spectrum of the evolution superoperator: the
eigenvalue associated with the slowest decay gets very close
to zero. Then, the dynamical relaxation takes place in two
steps, namely, a fast relaxation towards the metastable man-
ifold followed by a very slow approach to the true asymptotic
state [49].

In Fig. 8 we show the spectral gap of the Liouvillian. We do
not observe any significant decrease of the spectral gap in the
transition region. However, for the smallest choice of κ,U0

there is a sharp change in behavior around η/
√

ωκ � 3.5
which might be a precursor of a gap decrease for higher
photon numbers. In general, we rather observe that the gap
becomes smaller the further one is from the transition due
to a reduction in the cavity cooling efficiency. The irregular
features observed in some of the curves are due to level cross-
ings. We confirm from this plot that larger numbers of photons
and/or values of xeq are required to approach metastability.
Nevertheless, we observe a very slow numerical convergence
of the gap values, so that obtaining an accurate estimation of
the gap is much more challenging than the calculation of the
properties of the steady state.

FIG. 8. Spectral gap of the Liouvillian in units of κ . Here, ν1 is
the eigenvalue which is closest to ν0 = 0, associated with the steady
state. Parameters are the same as in the previous figures.

C. Gaussian character of the steady state

As a final issue, we consider to what extent the asymp-
totic state can be approximated by a Gaussian state. The
semiclassical description can be approximately correct only
when the state is close to being Gaussian, although this is a
necessary, but not sufficient, condition. As a quantifier of the
non-Gaussian character of the state, we choose to work with
the measure defined in [50]. This choice has several desirable
properties; in particular, it focuses on the defining features
of non-Gaussianity, namely, the higher-order cumulants and
its manifestation in the shape of the state in phase space,
providing a quantifier that is invariant under homogeneous
scalings in phase space. The measure is based on the Wehrl
entropy HW :

N (ρ) = HW (ρG) − HW (ρ), (21)

where ρG is the Gaussian state that has the same first and
second moments as ρ (for more details see Appendix B). For
reference, the Fock state |1〉 is assigned a non-Gaussianity
N (|1〉〈1|) � 0.12 [50].

In Figs. 9(a) and 9(b) we show this measure for each sub-
system as a function of the pumping strength. We resort to the
calculation of non-Gaussianity for the subsystems alone since
the full system state can be approximately Gaussian only if the
subsystem states are. Figure 9(a) shows that, as expected, the
cavity state is maximally non-Gaussian in the transition region
and is very well approximated by a Gaussian for low pumping.
However, that is not the case to the right of the transition; this
can be related to the existence of a significant deformation in
the corresponding Husimi distribution in Fig. 5 (a Gaussian
state gives an elliptic shape for the Husimi function).

The non-Gaussianity of the ion state shows a monotoni-
cally increasing behavior with increasing pumping. This can
be understood by taking into account the spatial symmetry: in
the limit of large pumping, our model predicts a probability
distribution for the ion with two peaks, one on each side.
A true semiclassical state would correspond to one of these
two peaks. In order to correct for this effect and analyze the
Gaussianity of just one peak, we consider a state which is
projected on the positive (or negative) semiaxis x. We achieve
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FIG. 9. Non-Gaussianity measure N (ρ ) from Eq. (21) for (a) the cavity state, (b) the motional state of the ion, and (c) the motional state
projected on the positive semiaxis (shown for only the parameter region in which the ion is predominantly located at the sides). Parameters are
the same as in the previous figures.

this by means of the projection operator such that

P+|x〉 =
{|x〉 if x � 0,

0 if x < 0,
(22)

followed by the corresponding renormalization of the state.
The application of P+ on a state which does not vanish at the
origin leads to discontinuities which are unphysical and make
the behavior of momentum ill defined. However, we work
with a modified operator that is truncated in the Fock basis.
This causes it to no longer be a proper projection operator,
but it gives a qualitatively correct approximation of the pro-
jected state, avoiding sharp behavior at the origin. After this
procedure, in the limit of large pumping, the steady-state solu-
tions resemble the semiclassical solution with spontaneously
broken symmetry. The non-Gaussianity of the resulting state
is shown in Fig 9(c). Using the projected state, the motional
state does show a tendency towards a Gaussian character as
the pumping strength is increased, indicating that a Gaussian
approximation may be applicable far enough from the classi-
cally bistable regime.

V. CONCLUSIONS

We have analyzed the asymptotic quantum state of an op-
tomechanical system comprising the motion of an ion coupled
to an optical cavity field for cooperativities such that the semi-
classical treatment predicts bistability, but in the few-photon
regime. Our results indicate a smooth transition between the
two semiclassical solutions, which is to be expected given
the non-negligible overlap between the states associated with
the different semiclassical solutions. We observe peaks in the
entanglement, mixedness of the cavity state, and mutual infor-
mation at the steady state in the transition region. However,
we do not find clear signatures of the semiclassical bistability
in the spectral gap of the evolution superoperator. Instead,
the behavior of the Liouvillian gap is mostly dominated by
the efficiency of the cavity cooling of the motion, which is
determined by the effective detuning and the ion location.

The semiclassical predictions as in [26] can be approxi-
mately valid only when the asymptotic state is close to being
Gaussian. According to our results, for the parameters we
choose the state can be taken as approximately Gaussian for
weak pumping, whereas recovering an approximately Gaus-
sian state in the regime with the ion localized at the sides
requires much larger pumping strengths than the ones for

which the transition is observed. Thus, for the parameter range
we explore we would expect the semiclassical description to
be approximately valid only on the low-pumping side of the
transition. However, contrary to the semiclassical description,
there are non-negligible correlations between the state of the
ion and that of the cavity also well within the regime where the
ion is located at the trap center. One could then conclude that
the semiclassical approximation as in [26] is not appropriate
for any of the parameter ranges in our studies. Nevertheless,
the semiclassical treatment predicts correctly the parameter
range for the optomechanical transition.

Summing up, the study of the transition in the location of
an ion induced by the dispersive coupling to a cavity field
shows, in the regime with around 10 photons, some features of
the behavior predicted by the semiclassical treatment in [26]
but does not display indications of metastability. We confirm
the expectation that the transition becomes sharper when the
overlap between the two competing equilibrium configura-
tions decreases. We also observe local maxima of logarithmic
negativity, mutual information, and von Neumann entropy of
the cavity in the transition region. We do not find, however,
a decrease in the spectral gap, so at all times the asymptotic
state is clearly separated from the rest.
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APPENDIX A: SEMICLASSICAL ANALYSIS OF THE
EQUILIBRIUM CONFIGURATIONS

In this Appendix we provide more details regarding the
classical equilibrium configurations. Using (15) and defining
z = 1 − (x/xeq )2, the equation that determines the equilibrium
positions at the sides is

1 + C2(z2 − 1 + c)2 = 4Cγ z, (A1)

where we use the dimensionless parameter combinations:

c = −�c

U0
+ 1, (A2)

associated with the detuning, and

γ =
(

xω

xeq

)2
η2

ωκ
, (A3)
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associated with the pumping strength. These solutions exist
only for strong enough pumping, and when they exist, they
are stable.

By looking at the second derivative of the total effective
potential V = Veff + Vion one can determine conditions for the
system parameters for which the semiclassical solutions x
transition from stable to unstable equilibrium configurations.
For the solution at the origin the critical condition is given by
the vanishing of the second derivative, corresponding to

γ (0)
c = 1 + c2C2

4C
. (A4)

For the equilibrium solutions at the sides, the critical
parameter combination can be found by putting Eq. (A1)
together with

z(z2 + c − 1) = γ

C
. (A5)

We could not derive an explicit general formula for the critical
value of γ corresponding to the appearance of the equilibrium
positions at the sides. However, for the particular case of zero
detuning, c = 1, the equations greatly simplify, and one can
find

γ (s)
c = 1

33/4
√

C
, (A6)

where we use the superindex (s) to indicate that this critical
value corresponds to the equilibrium at the sides.

APPENDIX B: GAUSSIAN STATES

Let us consider a set of dimensionless canonical operators
qk, pk representing a system of N degrees of freedom. The op-
erators qk, pk are related to creation and annihilation operators
of a given mode through [51]

qk = (ak + a†
k )√

2
, pk = i(a†

k − ak )√
2

. (B1)

If canonical operators are grouped in a vector as

−→
R = (q1, p1, q2, p2, . . . , qN , pN ), (B2)

the canonical commutation relations can be recast as

[Rk, Rl ] = i�kl , (B3)

where � is the symplectic form:

� =
N⊕

k=1

ω, ω =
(

0 1
−1 0

)
. (B4)

The set of displacement operators D(α) with α ∈ CN is
complete in the sense that any operator O acting on the Hilbert
space H can be written as [52]

O =
∫
CN

d2Nα

πN
Tr[OD(α)]D†(α). (B5)

Function χo(α) = Tr[OD(α)] is termed the characteristic
function of the operator O. The set of Gaussian states is the
set of states with Gaussian characteristic functions, and thus,
Gaussian states are completely characterized by their first and

second moments, that is, by the vector of first moments P (B6)
and by the covariance matrix σ (B7):

Pi = 〈Ri〉, (B6)

σi j = 1
2 〈{Ri, Rj}〉 − 〈Ri〉〈Rj〉. (B7)

This permits the description of continuous-variable systems
in terms of finite matrices. Particular examples of Gaussian
states are coherent states, thermal states of quadratic Hamilto-
nians, and squeezed states [42].

There are several quantities to measure the Gaussian char-
acter of an arbitrary state based on the relative entropy [53,54],
Hilbert-Schmidt norm [55], or Bures metric [56]. We consider
a non-Gaussianity measure based on the Wehrl entropy, pro-
posed and studied in [50]. Given a state ρ, the non-Gaussianity
measure N (ρ) is defined as the difference of Wehrl entropies:

N (ρ) = HW (ρG) − HW (ρ). (B8)

Here, the reference state ρG represents the Gaussian state
with the same first and second moments as ρ, and the Wehrl
entropy for an N-mode state is defined as [50]

HW (ρ) = − 1

πN

∫ N∏
j=1

d2α jQρ (α) ln Qρ (α). (B9)

This entropy is based on the Husimi quasiprobability dis-
tribution Qρ (α) = 〈α|ρ|α〉, with α ∈ CN , which is defined
analogously for the subsystem states. We note that we follow
the definition of Q in [50], which is normalized to π instead
of 1 [45].

The measure N (ρ) is always non-negative, being zero
if and only if the state ρ is Gaussian. This measure also
has the desirable property that if two quantum states pos-
sess phase-space representations as given by the Husimi
functions that are related by a uniform scaling of all phase
space coordinates, then they are assigned the same amount of
non-Gaussianity [50].

APPENDIX C: NUMERICAL METHODS
TO FIND THE STEADY STATE

The Lindblad master equation has the form ρ̇ = L(ρ) and
includes the Hamiltonian terms and one dissipative channel
associated with cavity losses. Since L is time independent,
at least one steady state exists [57]. If L is diagonalizable,
its eigenvectors, defined by Lρi = νiρi, satisfy Re[νi] � 0.
The set of eigenvectors with eigenvalues satisfying Re[νi] = 0
forms the decoherence free subspace of L [31]. If the zero
eigenvalue is degenerate with degeneracy n, then there is
an infinite set of states towards which the system can relax
depending on the initial state. However, in the absence of sym-
metries the steady state is generally unique [35,58] and given
by the right eigenvector corresponding to the zero eigenvalue:
ρss = ρ0/Tr[ρ0]. The Liouvillian gap |Re[ν1]|, also termed
the asymptotic decay rate, determines the system’s slowest
relaxation rate [35].

For our numerical calculations, we describe the state of the
system in a truncated basis of Fock states for each subsystem,
i.e., eigenstates of the photon number operator for the cavity
and the vibrational number operator corresponding to the trap
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potential alone for the motion. We note that this choice be-
comes rather inefficient in the limit with the ion well localized
at the sides; however, our main focus is the bistable region,
and we need to describe the three equilibrium locations of
the ion at the same time. In contrast, the number of states
required to describe the cavity can be reduced by applying
a displacement operator on the basis of Fock states. This is
particularly useful for high mean photon numbers and will be
explained in more detail below.

We write the state in vectorized form, so that the action of
the evolution superoperator L corresponds to multiplication
by a matrix L [35,58]. Since the cutoff dimensions needed
to correctly represent the states are too big in the composite
Hilbert space, it is not feasible to solve the diagonaliza-
tion of the whole Liouvillian operator by means of an exact
diagonalization algorithm. Hence, we resort to the Arnoldi
algorithm to find the eigenvalues in the spectral region of
interest [59].

The region of interest in the spectrum of L corresponds to
the eigenvalues with the smallest real part, particularly the null
eigenvalue, while the Arnoldi method is efficient for finding
eigenvalues with the largest magnitude in the spectrum. Be-
cause of this, we solve the equivalent problem of finding the
eigenvectors of the dynamical map �(t ) = exp(Lt ) for some
fixed short time t . In this case, multiplication of the map by a
vector x0 amounts to evolution of the initial point x0 as given
by ẋ = Lx. Then the region of interest in the spectrum consists

of the eigenvalues of the map with the largest absolute value,
particularly eigenvalue 1, corresponding to the steady state.

Since the map eigenvectors are time independent, the Lind-
blad equation to obtain the map �(t ) can be integrated by
means of the Euler method at very short times �t , so that t =
Nsteps�t . For our calculations, we took a step �t = 10−4/ω,
which provided sufficient precision without requiring exceed-
ingly long computation times.

This short integration time step is essential to achieve high
precision for the eigenvectors. Since this is prohibitive in the
original basis of Fock states of the cavity, we perform a change
to a basis consisting of displaced Fock states. In order to do
this, we first obtain preliminary results in the original basis at
low precision, where we verify that the mean values already
converge by varying the basis cutoff. We choose the maxi-
mum basis cutoff of these preliminary results such that the
reduced density matrix populations decay below a threshold
value of 10−5 in the worst case. From this solution, we find an
estimation for the mean value of the cavity quadratures. Then
we perform the change of basis to a displaced number-state
basis for the cavity-field system, which greatly reduces the
number of states in our description. We keep the cutoff in this
new basis fixed and augment the precision by decreasing the
integration time. Here, we verify that the mean values are still
fixed to the same values obtained previously, but the precision
of the eigenvectors thus obtained is now increased to ensure
the validity of the remaining numerical calculations.
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