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Detecting two photons with one molecule
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We apply input-output theory with quantum pulses [A. H. Kiilerich, K. M.ølmer, Phys. Rev. Lett. 123, 123604
(2019)] to a model of a type of two-photon detector consisting of one molecule that can detect two photons
arriving sequentially in time. The underlying process is distinct from the usual two-photon absorption process
where two photons arriving simultaneously and with frequencies adding up to the resonance frequency are
absorbed by a single molecule in one quantum jump. Our detector model includes a Hamiltonian description of
the amplification process necessary to convert the microscopic change in the single molecule to a macroscopic
signal.
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I. INTRODUCTION

There are two standard ways of detecting two photons in a
photon-number resolved (PNR) manner: (i) an inherent PNR
detector produces a different signal depending on whether one
or two photons were absorbed by the detector, (ii) multiplexed
PNR detection [1] exploits multiple single-photon detectors,
and the signal consists of either one or two such detectors
“clicking.” An inherent PNR detector may, for example, be
sensitive to the total energy deposited by the photons [2]. A
second type of detector sensitive to two photons makes use of
a process called “two-photon absorption” (TPA) in which one
molecule can absorb two photons that arrive simultaneously
and whose frequencies add up to the resonance frequency.
This effect was discovered by Göppert-Mayer in 1931 [3,4],
goes through a virtual intermediate state, and has become an
item of modern interest since the realization that this TPA
process is sensitive to time-frequency entanglement between
the two incoming photons [5–7].

For a biological example of multiplexing, we may consider
the human eye. There are about 108 rods, each of which is
sensitive to single photons in that they can absorb one photon
at a time [8]. Interestingly, the TPA process occurs in the
human eye, too, where two infrared photons may give rise
to the sensation corresponding to that of light in the visible
range [9,10]. In this case the detection is not strictly PNR,
as the signals from two infrared photons or from one visible
photon are the same.

A process related to TPA is called stepwise two-photon ab-
sorption where the first photon takes the molecule to an actual
(rather than a virtual) excited state and a subsequent photon
takes the molecule to an even higher lying excited state, see,
e.g., Ref. [11]. Taking a molecule to an excited state, however,
is not yet sufficient for implementing a measurement. We also
need an amplification process that produces a macroscopic
signal. In the human eye a light-absorbing molecule decays
from the excited state irreversibly to a metastable state, in
which the shape of the molecule has changed. That change in

shape triggers a chain reaction of shape changes in surround-
ing proteins, eventually producing (or changing) a permanent
dipole moment that in turn triggers a change in a mesoscopic
electric current [12], which then permanently registers the
detection of the photon.

Following the example of Refs. [13–16] of taking inspira-
tion from biological systems to design photo detectors (see,
also, Ref. [17]), based on this robust photo-detection mech-
anism we propose and model a PNR two-photon detector
consisting of a five-level molecule, as follows (see Fig. 1 and
Sec. III for more details and reasons for choosing this partic-
ular configuration): A ground state |F0〉 from which a photon
with a frequency ωα ≈ ω1 − ω0 =: ω01 can induce a transi-
tion to an excited state |F1〉, which can then irreversibly decay
to a metastable state |F2〉. In this state the molecule triggers
a first amplification process that indicates and permanently
registers the detection of that first photon. Subsequently, a
second photon of a different frequency ωβ ≈ ω3 − ω2 =: ω23

can excite the molecule to another state |F3〉, from which it can
decay to a different metastable state |F4〉, triggering a second
(different) amplification process that indicates the detection of
the second photon. The two photons must arrive sequentially
rather than simultaneously for TPA.

One motivation for this work comes from recent theory
efforts to find fundamental (i.e., device-independent) limits
to photo detection [13,14,18–24]. For reasons fully explained
in Ref. [23] we construct a Hamiltonian here for the full
detection process, including the crucial amplification step. A
second motivation is of a more technical nature. The theo-
retical description of two (or more) photons interacting with
a quantum system is known to be considerably more com-
plicated than that of just a single photon interacting with
the same system [25–35]. Two types of methods have been
developed to tackle this problem. One is based on a hierar-
chy of coupled differential equations for generalized density
matrix elements [25,26,36] for a quantum system interacting
with prescribed multiphoton pulses. The other method [34,35]
includes virtual cavities that generate the photons and is thus
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FIG. 1. Model of a two-photon detector. A light-absorbing
molecule starts in the ground state |F0〉. There are two excited states
|F1〉 and |F3〉, indicated in red, and two metastable states |F2〉 and
|F4〉. We assume level |F2〉 corresponds to a shape change [while still
being an electronic ground state], which down the line corresponds to
a change in electric dipole moment, which in turn induces a change
in a mesoscopic current or voltage (thus mimicking the process
taking place in the human eye). That mesoscopic change permanently
registers the detection of the first photon. The metastable state |F4〉
corresponds to yet another change of shape, which eventually leads to
a change in a dipole moment, which then in turn can change a meso-
scopic current in a way that is distinct from what the molecule in state
|F2〉 accomplished. This distinct mesoscopic change then registers
the second photon. The molecule can detect two photons, one “blue”
photon resonant with the transition from the ground state to the first
excited state, and a “green” photon resonant with the transition from
|F2〉 to the second excited state. From each of the two excited states
the molecule can spontaneously decay back to state it came from
or to the desired metastable state. Thus there are four decay rates,
indicated from left to right by γ1 . . . γ4, which are assumed to be more
or less of the same order of magnitude. (The spontaneous transitions
are indicated with dashed black lines.) On a time scale much longer
than 1/γ1 the molecule resets by the metastable states decaying back
to the ground state |F0〉 (this resetting is not indicated in the figure).

based on a Hamiltonian description of the quantum system
and the photons. We refer to these two methods as the “gen-
eralized density matrix” and the “Hamiltonian” formulations,
respectively. We will use both methods here, since they each
have their own advantages, and we also give the explicit
equations (which seem not to have been given before) that
link the two methods. Moreover, we can explain why the
methods above yield expressions for scattered light and for the
dynamics of the quantum system in terms of (Hilbert space)
inner products that involve the temporal amplitudes of the
incoming photons [37] on the one hand, and the appropriate
response functions of the system on the other.

This paper is organized as follows. In Sec. II we first give
a synopsis of some of the results, which can be understood
without going into the details of the derivations. Such details
are provided in the remaining Sections. In Sec. III we give
the Hamiltonian for our five-level molecule. Section IV de-
scribes the two different methods we used to obtain results:
The generalized density matrix methods is used to obtain
analytical results, while the Hamiltonian method is used to
obtain numerical results. We explain why the latter method is

so much easier to use for numerical calculations. Section V
ends with conclusions and discusses possible extensions of
our work. In the Appendix we present the transformation that
unifies the two formalisms (generalized density matrix and the
Hamiltonian formulation) used in the paper.

II. SYNOPSIS

Since the detailed description of our system is rather in-
volved we first give here a synopsis of the basic results without
any derivations. The results presented here are quite straight-
forward to understand. The light-absorbing molecule at the
heart of our detector is described in detail in Fig. 1.

A. Detection probabilities

For an incoming single-photon wave packet, the different
frequency components are not all absorbed with 100% effi-
ciency. The probabilty Pα for the first photon, labeled α, to be
detected can be written in the form

Pα =
∫

dω |T1(ω)|2|uα (ω)|2. (1)

Here uα (ω) is the Fourier component of the incoming wave
packet at frequency ω and may also be referred to as its spec-
tral amplitude. T1(ω) is a complex transmission amplitude for
the molecule to go from the initial state |F0〉 to the desired state
|F2〉 through the intermediate excited state |F1〉 [see Eq. (28)
below]:

T1(ω) =
√

γ1γ2

(γ1 + γ2)/2 − i{ω − ω01} . (2)

If γ1 = γ2, the transmission probability |T1(ω)|2 reaches a
maximum of 1 at the resonance frequency ω01 and has a
width of about γ1. Thus, a resonant photon with a narrow
width in frequency space (much less than γ1) and whose
duration is, therefore, much longer than γ −1

1 , can be ab-
sorbed with near-unit efficiency, exactly as was found before
in Refs. [13,14,21].

A similar result holds for the second photon, labeled β.
The only (important!) difference is that the second photon
can be absorbed only when the molecule is in the state |F2〉.
Hence ideally it should arrive after photon α has been fully
absorbed. In that ideal case, the conditional probability of
detecting photon β [with a spectral amplitude uβ (ω)], given
that photon α was detected, is

Pβ =
∫

dω|T2(ω)|2|uβ (ω)|2, (3)

with

T2(ω) =
√

γ3γ4

(γ3 + γ4)/2 − i{ω − ω23} (4)

a second complex transmission amplitude, describing how the
molecule can transition from level |F2〉 to level |F4〉 through
the intermediate |F3〉 excited state.

The probability to detect both photons in the more general
case when the two photons do overlap in time can be written
in the form

Pα&β = PαPβ − Poverlap, (5)
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FIG. 2. Top: Populations in the ground state and the two
metastable states as functions of time, when two photons arrive se-
quentially. Bottom: The (Gaussian) amplitudes of the “blue” photon
(uα) and the “green” photon (uβ ) as functions of time. We chose here
γk = γ1 for k = 2, 3, 4 and the time delay between the two input
photons is 3/γ1 Eventually a steady state is reached, with the total
population in the three lowest states adding up to 1. The steady-state
population in the ground state (dot-dashed curve) is 0.346, which
equals the probability to not detect any of the photons. The sum
of the steady-state populations in the metastable states is 0.654 and
equals the probability to detect the “blue” photon. The steady-state
population in |F4〉 is 0.418 and equals the probability to detect both
photons.

where the (non-negative) “overlap term” will be derived and
discussed in Sec. IV A. We merely note here that the overlap
term can be found analytically and is then written as a convo-
lution involving the two spectral amplitudes uα,β (ω) and the
two transmission amplitudes T1,2(ω). If photon β is delayed
by a time much longer than 1/γ1, then Poverlap → 0, but if
photon β entirely precedes photon α, then Poverlap → PαPβ . In
Fig. 2 we plot a numerical result for a case that is not optimal
for two reasons. First, the widths in time of the two incoming
single-photon pulses are equal to 1/(2γ1), which is too short
to be close to optimal. Second, the pulses partially overlap

FIG. 3. Top: Populations in the ground state and the two
metastable states as functions of time, when the “green” photon
arrives just before the “blue” photon (the time delay is −1/(4γ1).
Bottom: The absolute values of the amplitudes |uα| of the “blue”
photon and |uβ | of the “green” photon as functions of time. The
probability to detect both photons is very small in this case, 0.022.
The first photon is detected with the same probability (0.346) as in
the previous figure.

in time. The probability to detect both photons is then about
42%.

In Fig. 3 we plot a case that shows how important the delay
between the two photons is. Here photon β arrives just before
photon α: While this does not affect at all the absorption (and
detection) of photon α, photon β is now detected only with a
very small probability of about 2%.

B. Detector clicks

The generalized density matrix formalism can be used to
get analytical expressions describing “clicks” of our detector
in simple cases.
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1. One photon

For example, suppose for simplicity that we could measure
in what state our molecule is at a specific time T > t0, given
that it started in the state |F0〉 at time t0, and suppose that
we find our molecule in the state |F2〉. This clearly would
implement a measurement of the incoming photon. Thus,
ignoring the second photon for now, given an expression for
the population in that level as a function of time, we can write
that probability at time T in the form of the Born rule as

P2(T ) = Tr(|uα〉〈uα|�1), (6)

where |uα〉〈uα| is the projector onto the input single-photon
wave packet of photon α, and �1 is a positive hermitian oper-
ator (guaranteeing that P2(T ) is a real non-negative number).
We can always write �1 in a diagonal form

�1 =
∑

n

λn|φn〉〈φn| (7)

with λn real and non-negative, and with {|φn〉} forming an
orthonormal basis of single-photon states. That means the
probability P2(T ) can be rewritten as

P2(T ) =
∑

n

λn|〈uα|φn〉|2. (8)

The fact that the Born rule is linear in the input state (repre-
sented as a density operator or matrix) thus explains why this
probability can be expressed in terms of overlaps involving the
incoming single-photon wave packet [37,38]. It also follows
that λn � 1, since λn has the meaning of the probability that
an input photon in the state |φn〉 will be detected.

In our specific case we find that �1 is of the form

�1 =
∫ T

t0

dt Wt |φt 〉〈φt |, (9)

where Wt is a weight per unit of time

Wt = γ1γ2

γ1 + γ2
[1 − exp(−(γ1 + γ2)(t − t0))], (10)

and the projector projects onto a normalized single-photon
state of the form

|φt 〉 =
∫ t

t0
dt ′ exp[(γ1 + γ2)t ′/2] exp(iω01(t ′ − t ))b†

1(t ′)|vac〉√∫ t
t0

dt ′ exp[(γ1 + γ2)t ′]
,

(11)
where b†

1(t ) is the Fourier transform of b†
1(ω). (Note that

we could equivalently write t ′ − t instead of t ′ in the argu-
ments of the γ1,2-dependent exponentials in both numerator
and denominator.) These states |φt 〉 are not orthogonal for
different values of t and this type of nonorthogonal states
also appears in the context of spectral filtering [39]. We
also note that the transmission function T1(ω) given above
in Eq. (2) is the (properly normalized) Fourier transform of
the time-dependent function —which is a Green’s function—
appearing in |φt 〉. That transmission function also determines
the spectral shape of the photon emitted spontaneously by the
molecule [38].

It is important to note that in Eq. (6) �1 refers only to
the detector, and |uα〉 refers only to the incoming photon.
�1 is called a POVM (Positive-Operator Valued Measure)

element and fully describes the outcome of the measurement
corresponding to finding the molecule in level |F2〉 at time
T . It allows us to calculate for any incoming photon the
detection probability (6). In particular, it allows us in principle
to infer the type of photon that is detected with the largest
possible probability, by making use of the diagonal form
(7). The largest eigenvalue λmax = maxn λn gives the highest
possible efficiency ηmax = λmax of detecting a single photon,
and the corresponding eigenstates [there may be more than
one] give the optimal single-photon states that achieve that
limit.

The interpretation of

Tr(�1) =
∑

n

λn =
∫ T

t0

dt Wt

≈ γ1γ2

γ1 + γ2

[
T − t0 − 1

γ1 + γ2

]
, (12)

(where we ignored an exponentially small term in the sec-
ond line) is that of a bandwidth: The effective size of the
single-photon Hilbert space covered by this particular mea-
surement outcome [18]. This bandwidth may be (much) larger
than unity. For a fixed value of γ1 + γ2 the bandwidth is
maximized by γ1 = γ2, an optimal “impedance-matching”
condition found before in the same context of designing an
optimal single-photon detector [13,14,21]. The bandwidth is
then approximately equal to the total time the detector has
been on in units of 2/γ1.

If we would be able to measure if the molecule were in state
|F1〉 at time t , then the corresponding POVM element would
be proportional to a pure projector. But, since we do not know
when the upper state spontaneously decayed to state |F2〉, we
do not know t , and hence we get a mixed POVM element. That
is, for fixed T (when we detect the molecule to be in the state
|F2〉) there are different possibilities for time t , each with their
own probability Wt dt . That is the interpretation of Eq. (9).

The idea that a quantum system absorbs a single-photon
wave packet with, in principle, 100% efficiency if and only
if it is the time-reversed version of a photon that the system
would emit if it started in the final state [40,41] does not apply
so simply here, because of the presence of irreversible spon-
taneous decay. If we imagine we would apply a laser pulse
to the |F1〉 → |F2〉 transition to induce stimulated emission,
then, as is well known [42,43], that idea indeed would apply
straightforwardly.

2. Two photons

The more interesting case of detecting the molecule in level
|F4〉 at time T signals the detection of both photons and is
described by the POVM element

�2 =
∫ T

t0

dt
∫ t

t0

dt ′ Wt ′Wt,t ′ |φt ′ 〉〈φt ′ | ⊗ |ψt,t ′ 〉〈ψt,t ′ |, (13)

with

Wt,t ′ = γ3γ4

γ3 + γ4
[1 − exp(−(γ3 + γ4)(t − t ′))], (14)
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and the single-photon state corresponding to the second pho-
ton is

|ψt,t ′ 〉 =
∫ t

t ′ dτ exp[(γ3+ γ4)τ/2] exp(iω23(τ − t ))b†
2(τ )|vac〉√∫ t ′

t dτ exp[(γ3 + γ4)τ ]
.

(15)

The prefactor Wt and the single-photon state |φt 〉 appearing
here are exactly as defined before in Eqs. (10) and (11). The
time-dependent function appearing in |ψt,t ′ 〉 is once again
a Green’s function, and T2(ωb) is its (normalized) Fourier
transform.

There is a double integral over time in Eq. (13), each
integral corresponding to an irreversible step in the detection
process, which makes it uncertain at what time t we could
have found the molecule in state |F3〉 and at what earlier time
t ′ < t we could have found the molecule in |F1〉.

We may again write down an eigenvalue equation for �2

(which would have to be solved numerically) and then write
that POVM element in the diagonal form

�2 =
∑

n

μn

∣∣φ(α,β )
n

〉〈
φ(α,β )

n

∣∣, (16)

where the projectors |φ(α,β )
n 〉〈φ(α,β )

n | project onto specific pure
two-photon (eigen)states, and the eigenvalues 0 � μn � 1
give the corresponding efficiencies with which those specific
two-photon wave packets are detected at time T .

Like we saw for the single-photon case treated above, the
bandwidth

Tr(�2) =
∑

n

μn =
∫ T

t0

dt
∫ t

t0

dt ′ Wt ′Wt,t ′ (17)

is the size (dimension) of the two-photon Hilbert space cov-
ered by our detector.

III. THE TWO PHOTON ABSORBER
AND ITS HAMILTONIAN

To construct the minimal absorber atom or molecule or
multilevel system that can absorb two photons sequentially
and produce classical outputs signaling the final state of the
absorber, we consider the five level system of Fig. 1 for
efficient photon transduction. Some recent efforts for physi-
cally based fundamental models for photodetection assemble
all parts of the process into a single fully coupled evolution
problem [13,14,18–24]. Minimal noise amplification of the
absorbed photon signal has been shown to be optimally done
with continuous quantum measurement [13,14,23]. In this
scheme, the “shelving state” or the state in which the absorber
produces the amplified classical readout is continuously mea-
sured. To get around the quantum Zeno effect problem with
having the same state to be the photoexcited and shelving
state, a three level system is determined to be optimal for
single photon detection [13]. Hence we use the three levels
|F0,1,2〉 to detect one photon.

For the two-photon detection scheme, we supplement the
molecule with two more levels. The second photon can lift
the molecule from state |F2〉 into the excited state |F3〉, which
can spontaneously relax into the second shelving state |F4〉.

In the latter state the molecule triggers an amplification pro-
cess which produces a noticeably different signal than that
produced by the shelving state |F2〉. The absence of a signal
and the two different signals from the two levels |F2〉 and |F4〉
help the observer distinguish the number of photons (0, 1,
or 2) absorbed by the molecule. Since the frequency of the
amplified signal is independent of the input photon frequency
[22], we can have different shelving states (classically) driving
different oscillators of different frequencies [23]; and hence
we can have distinguishable classical output signals for one
or two detected photons.

We wish to calculate the dynamics of the five-level discrete
quantum system F coupled to the two continua b1 and b2

which contain our two input photons (with different frequen-
cies). With h̄ = 1, the parts of the Hamiltonian in the Markov
approximation for these coupled systems are

Hsys =
4∑

k=0

ωk|Fk〉〈Fk|, (18)

H1(2)
bath =

∫
dω ωb†

1(2)(ω)b1(2)(ω), (19)

Hint = −i
∫

dω

[√
γ1

2π
|F1〉〈F0|b1(ω)

+
√

γ3

2π
|F3〉〈F2|b2(ω)

]
+ H.c. (20)

This part of the Hamiltonian includes spontaneous decay back
to |F0〉 and back to |F2〉. (The radiation field modes are fully
described by four degrees of freedom. Here we fixed the
quantum numbers for three of them (polarization and two
transverse spatial degrees of freedom) and explicitly retain
only the spectral/temporal degree of freedom.)

The next and last part of our Hamiltonian is necessary
for the purpose of enabling the additional spontaneous de-
cays of the absorber from |F1〉 to |F2〉 and from |F3〉 to |F4〉.
These two transitions need to be dipole allowed and γ2 and
γ4 determine the rates (probability per unit time) of those two
processes:

H1
int = −i

∫
dω

[√
γ2

2π
|F1〉〈F2|g(ω)

+
√

γ4

2π
|F3〉〈F4|h(ω)

]
+ H.c. (21)

in terms of two additional independent (commuting) bosonic
modes, described by annihilation operators g(ω) and h(ω) and
their hermitian conjugates.

IV. TWO THEORIES FOR PHOTON ABSORPTION

Restriction of the number of excitations to one or two
offers a workaround for the complications of the multimode
nature of the interaction of propagating light with a nonlinear
medium such as a two- or three-level atom. The Fock state
master equation formalism by Baragiola et al. [26], and the
set of generalized density matrices by Gheri et al. [25] offer
suitable theoretical frameworks for calculating few photon
Fock state interactions with a multilevel discrete quantum
system.
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An alternate route for having a computationally manage-
able effective master equation has recently been developed by
Kiilerich et al. [34,35] by restriction of the input pulse to a
single time dependent mode. This approach is appealing to
the problem of single photon absorption as the same physical
effects of the incoming wave packet of the multimode bosonic
input field is emulated. As previously formulated by Gheri
et al. [25], an upstream virtual cavity is introduced whose out-
put serves as the incident field for a system under study. The
incident field generated by the cavity is in a state residing in
a specific wave-packet mode and all other orthogonal modes
are designated the vacuum state. Since we are only interested
in the input quantum state and the absorption of the photon,
we only acquire the technique of driving with a quantum
pulse from Refs. [34,35]. The reflected quantum state is of
no interest to us, and only the transmitted state ([21]), which
quantifies the probability of absorption, is required for our
purpose.

The generalized density matrices framework developed by
Gheri et al. [25] suffices for calculating the absorption prob-
abilities and corresponding POVMs. However, we introduce
the virtual upstream cavities and formulate a Hamiltonian
formulation for the entire evolution problem of photodetec-
tion (including amplification to a mesoscopic signal) that we
introduced in a previous publication [23]. The Hamiltonian
formulation is versatile and facilitates the calculations to be
done in either the Schrödinger or the Heisenberg picture.
The explicit transformation between the generalized density
matrices and the components of the density matrix obtained
by the Hamiltonian method is presented in the Appendix.

A. Generalized density matrix operators

We assume we have two unentangled single-photon wave
packets in two orthogonal modes

|2〉 = |α〉|β〉, (22)

where the individual photon states are defined as

|α(β )〉 =
∫ ∞

−∞
dωa(b)uα(β )(ω)b†

1(2)(ω)|vac〉. (23)

uα(β ) is the properly normalized wave function for photon
a (b). The two photons reside in the two distinct continua
b1 and b2. [We will also use the Fourier transforms of the
single-photon amplitudes, which for simplicity we denote by
uα,β (t ).]

Following Ref. [25], we can define generalized density ma-
trix operators for i, j = 0, 2, α, β and derive a set of coupled
differential equations for them that describes the absorption
of the two photons. In the following, R denotes the reservoir
or bath, which includes continua other than b1 and b2, such as
the continua g and h introduced above:

ρi, j (t ) = TrR[U (t, t0)ρS (t0) ⊗ |i〉〈 j |U †(t, t0)]. (24)

Here |0〉 denotes the vacuum state |vac〉, and |2〉, |α〉
and |β〉 are the two-photon input state and the individual
single-photon states introduced above. Furthermore, ρS (t0) is
the initial state of all remaining quantum systems, including
our five-level molecule and the reservoir R. In our case, each

of these generalized density matrices for fixed values of i and
j is a 5x5 matrix, describing the five levels of our molecule.

The generalized density matrices can be expanded in a time
independent complete 5x5 basis, and substitution in the evo-
lution equations yields a set of coupled differential equations
for the coefficients ρik, jl (t ) of the expansion,

ρi, j (t ) =
∑
k,l

ρik, jl (t )|Fk〉〈Fl |. (25)

These equations are given in the Appendix. The diagonal
generalized density matrices (for i = j) have a preserved trace
of 1, and off-diagonal ones have a preserved trace of 0 over
the evolution [25]. (In the alternative Hamiltonian formulation
shown below a single Hamiltonian (with auxiliary cavities
appended) can embody the complete evolution, and a single
density matrix (with preserved trace of 1) of size 20x20 can
embody the complete dynamics [23]).

In order to simplify intermediate equations, we will absorb
a time-dependent phase factor exp(iω01)t ) in the definition of
the single-photon amplitude uα (t ) for photon a and similarly
a factor exp(iω23t ) in the amplitude uβ (t ) for photon b, such
that both amplitudes can be considered slowly varying if the
photons are more or less on resonance with their respective
transition in the molecule. End results are quoted in terms of
the original amplitudes.

The evolution problem is initiated with ρ00,00 = 1 at time
t0, i.e., the molecule is in the |F0〉 state, with any photon yet
to come in. The coefficient ρα2,α2 embodies the evolution of
the molecule occupation elevated to |F2〉 state driven by just
the first photon α with temporal amplitude uα (t ). The solution
found is

ρα2,α2(t ) = γ1γ2

∫ t

t0

dt1

[
e−(γ1+γ2 )t1

∫ t1

t0

dt2e
γ1+γ2

2 t2 u∗
α (t2)

×
∫ t2

t0

dt3e
γ1+γ2

2 t3 uα (t3)

]
+ c.c. (26)

This result becomes especially simple when considering the
steady state, obtained by taking the limit t → ∞. The result
further simplifies when we take the limit t0 → −∞ such
that, in principle, any single-photon wave packet could be ab-
sorbed, irrespective of when it arrives. The equations in those
limits are most easily solved in Fourier space, and we obtain
then the same result we had obtained before in Ref. [23],

ρα2,α2(∞) = Pα =
∫

dω |uα (ω)|2|T1(ω)|2, (27)

where

T1(ω) =
√

γ1γ2

(γ1 + γ2)/2 − i{ω − (ω1 − ω0)} (28)

is the transmission coefficient describing the propagation of a
single excitation through the � system [21,39]. [This is Eq. (2)
of the Synopsis Section.]

ρα2,α2(t ) in Eq. (26) can be recast into the more informative
form

ρα2,α2(t ) =
∫ t

t0

dt ′
∣∣∣∣
∫ t ′

t0

dt2
√

γ1γ2e
γ1+γ2

2 (t2−t ′ )uα (t2)

∣∣∣∣
2

.

(29)
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This is the form that can be used straightforwardly to obtain
the expressions (9)–(11) for the POVM element �1. The
quantity inside the integral over t ′ is actually γ2 times the
population in level |F1〉 as a function of time [14].

The probability of the molecule reaching |F4〉 state driven
by the second photon β has a “nested” structure containing
the expression, ρα2,α2(t ),

ρ24,24(t ) = γ3γ4

∫ t

t0

dt1

[
e−(γ3+γ4 )t1

∫ t1

t0

dt2e
γ3+γ4

2 t2 u∗
β (t2)

∫ t2

t0

dt3e
γ3+γ4

2 t3 uβ (t3)ρα2,α2(t3)

]
+ c.c. (30)

We may rewrite this expression by changing variables in the
complex conjugate term and by substituting Eq. (29) to obtain
our two-photon POVM, Eq. (13).

As we noted in Sec. II the time-dependent functions ap-
pearing in the expression for ρ24,24(t ) and other populations of
quantum levels can be interpreted as Green’s functions. Their
(normalized) Fourier transforms act as transmission and re-
flection coefficients when treating this problem as a scattering
problem. In our case, transmission coefficients T1(ω) (defined
above) and T2(ω) (defined below) play the new role of deter-
mining the detection probability of photons with frequency ω

in the limit of t → ∞, as we saw in Eq. (27) and as we will
show in the next subsection.

B. Overlap term

The absorption of the two photons can be completely cal-
culated in the frequency domain. To that end, we define the
Fourier transform of the population in level |F1〉, since we can
express all quantities of interest in terms of that function. We
find

F1(ω) = 1√
2π

∫
dx T1(ω + x)uα (ω + x)T ∗

1 (x)u∗
α (x). (31)

The zero-frequency component of
√

2πF1(ω), equals the
detection probability for the first photon

√
2πF1(0) =∫

dx|uα|2|T1(x)|2 =: Pα . In the frequency domain, we then
obtain the Fourier transform of ρα2,α2(t ) as

ρα2,α2(ω) = γ2

[
iF1(ω) P

(
1

ω

)
+ πF1(0)δ(ω)

]
, (32)

where P denotes the principal value. In Eq. (30), if we replace
ρα2,α2(t ) with its steady state value Pα , we get an expression
identical in form to Eq. (26) with different decay rates, and we
thus can simply evaluate the result for t → ∞ as the product
PαPβ with Pβ given by Eq. (3). So, if the second photon arrives
long after the first photon has been completely absorbed (and
the absorber raised to the level |F2〉), the probability of both
photons being absorbed becomes the product of their individ-
ual absorption probabilities.

Therefore, we can rewrite the probability of two-photon
absorption, ρ24,24(∞) as a sum of two parts, one being the
product of the two absorption probabilities. We name the other
term Poverlap, since we expect the term to vanish if the second
photon comes in after a delay and the two wave functions of
the two photons overlap negligibly. We thus write

ρ24,24(∞) = PαPβ − Poverlap. (33)

After some algebra, we obtain

Poverlap = 1

2
PαPβ + Pαβ, (34)

where

Pαβ = γ2
√

γ3γ4√
2π (γ3 + γ4)

∫
dω u∗

β (ω)T2(ω)

×
∫

dx uβ (ω − x) P
F1(x)

ix
+ c.c., (35)

where P denotes the principal value. The following results are
borne out in numerical simulations for different arbitrary wave
shapes of the two photons that are delayed by a long time
td � 1/γ1:

Pαβ −→ − 1
2 Pα

absP
β

abs

Poverlap −→ 0

ρ24,24(∞) −→ PαPβ. (36)

C. Hamiltonian formulation

In a recent paper, Ref. [23], we developed a “Hamiltonian
formulation” that can describe a single photon detection pro-
cess in its entirety. We now adapt that formulation for the
detection of two unentangled photons absorbed sequentially.
The most convenient method for solving the dynamical equa-
tion set is numerical integration of the Liouvillian equation
in the Hamiltonian formulation [23]. In the Hamiltonian for-
mulation, we get a single density matrix for the entire system
that can be solved easily with well-known vectorization and
Trotter decomposition techniques [44]. From the solution of
the single density matrix, the generalized density matrices can
be found easily with the transformation (A5).

We introduce two auxiliary cavities with damped harmonic
motion leaking one excitation each into the continuous bath
modes b1(ω) and b2(ω) (see Fig. 4). These two excitations
mimic the photon wave packets in the two baths that we are
trying to detect. There are two other continuous modes g and
h, which are introduced only to enable the spontaneous relax-
ation of the molecule F. The Hamiltonian is of the following
form:

H = Ha1 + Ha1−b1 + Hb1 + Ha2 + Ha2−b2 + Hb2

+ Hb1−F + Hb2−F + HF + HF−g + Hg + HF−h + Hh

+ HF−c + Hc + Hc−d + Hd . (37)

The diagonal terms in the Hamiltonian give all the eigen en-
ergies of the systems. For example, for the cavities it features
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FIG. 4. The cavity modes a1 and a2 each have one excitation to
start with. These two excitations leak out into their adjacent baths
(continuous modes b1 and b2, respectively) by designing the coupling
to the baths in time, thus creating two single-photon wave packets.
They, respectively, drive the |F0〉 to |F1〉 and |F2〉 to |F3〉 transitions.
From the excited levels, the molecule can relax with certain probabil-
ities either back to the state it came from or to another shelving state.
The two shelving states drive two distinct amplification processes
and thus produce two macroscopically distinct “classical” signals
(unrelated in frequency to the incoming photons) in an output bath
d (ω).

their resonance frequencies,

Ha1(2) = ωa1(2) a
†
1(2)a1(2), (38)

and for the continuous modes, such as g, we have

Hg =
∫ ∞

0
dω ωg†(ω)g(ω), (39)

and similar terms for Hb1 , Hb2 , Hc, Hd , and Hh. HF is simply
Hsys as defined before in Eq. (18).

The interaction between the cavities and the field modes,
as well as the interaction of the photons with the molecule
are mediated by the electric fields corresponding to modes b1

and b2. Each of the electric field operators of the modes can
be expanded into the plane wave basis (also their Hermitian
conjugate operators). For the input fields B1,2(x, t ), we expand

B1,2(x, t ) = 1√
2π

∫ ∞

0
dω b1,2(ω, t ) exp(iωx/c). (40)

The molecule is located at x = 0 and the cavities a1 and a2

are located “upstream” at x = −cτ1 and x = −cτ2 where c is
the speed of light and τ1, τ2 are the times it takes for a photon
to travel from the respective cavities to the absorber F. The
cavities are coupled to the fields B1(x = −cτ1, t ) and B2(x =
−cτ2, t ) in the manner:

Ha1(2)−b1(2) = i[g∗
1(2)(t )a1(2)B

†
1(2)(−cτ1(2), t ) − g1(2)(t )B1(2)(−cτ1(2), t )a†

1(2)].

As pointed out in previous work [23,25,35], the coupling of
the virtual cavities to the fields can be made time dependent
for the purpose of creating arbitrary photon wave packets, and
therefore the Hamiltonian formulation is completely general
for the photodetection process. In this way, we can calculate
the evolution of the complete system with the elements of
a single density matrix, instead of the multiple generalized
density matrices in Eq. (24). All other discrete-continuum
couplings are at position x = 0:

Hb1(2)−F = i
√

γ1|F0(2)〉〈F1(3)|B†
1(2)(x = 0, t ) + H.c.

HF−g = i
√

γ2|F2〉〈F1|G†(x = 0, t ) + H.c.

HF−h = i
√

γ4|F4〉〈F3|H†(x = 0, t ) + H.c.

Hc−d = i
√

�cD†(x = 0, t ) + H.c., (41)

where the field operators G(x, t ) and H (x, t ) are defined in
terms of g(ω) and h(ω) just as the field operator B(x, t ) is
defined in Eq. (40) in terms of b(ω).

The amplification mechanism is embodied in the parts,

F̃ =
∑

k=0,1,..,4

Fk|Fk〉〈Fk|,

HF−c = iF̃ (c − c†). (42)

The different eigenvalues of the operator F̃ drive a discrete
quantum harmonic oscillator (another cavity, for example)
with annihilation operator c by different classical driving
strengths. That driven cavity mode will contain an increasing
number of excitations. We assume here F0 = F1 = F3 = 0
so that no amplification (no driving) takes place when the
molecule is in the corresponding states. The values for F2

and F4( �=F2) are nonzero and drive the amplification process.

Excitations from the driven cavity c leak into the continuum
mode d (ω), which can be observed “classically” when pop-
ulated massively. Thus d (ω) contains our final “classical”
signal. We will not analyze the macroscopic signal here and
refer instead for further details to Ref. [23], where it is shown
that this type of amplification process yields minimal noise;
see also Ref. [45].

D. Invariants of motion

The Hamiltonian formalism preserves the basic idea of the
photodetection process that is meant to be simulated. We can
find some operators that commute with the Hamiltonian and
are therefore conserved in time:

I20 = a†
1a1 +

∫
dωb†

1(ω)b1(ω) − |F0〉〈F0|,

I21 = a†
1a1 +

∫
dωb†

1(ω)b1(ω) + |F1〉〈F1| +
∫

dωg†(ω)g(ω),

I22 = a†
2a2 +

∫
dωb†

2(ω)b2(ω) − |F2〉〈F2| +
∫

dωg†(ω)g(ω),

I23 = a†
2a2 +

∫
dωb†

2(ω)b2(ω) + |F3〉〈F3| +
∫

dωh†(ω)h(ω),

I24 = |F4〉〈F4| −
∫

dωh†(ω)h(ω).

A conserved quantity of particular interest is IN = 1
2I20 +

1
2I21 + 1

2I22 + 1
2I23 − I24 + 1

2 . The 1
2 is added here to give

the invariant IN the meaning of the number of excitations
(photons). The invariant takes the values 0,1,2 for the three
cases of 0,1,2 input photons, respectively.
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The values of these quantities keep track of where the
excitations are and whether the photons will be detected or
not. For example, an initial excitation in the a1 cavity means
I20 maintains a value of 0 in the entire evolution. So as the
eigenvalue of a†

1a1 decays from 1 to 0, either the eigenvalues
of both

∫
dωb†

1(ω)b1(ω) and |F0〉〈F0| for t → ∞ are 1 (the
photon was not detected) or they are both 0 (the photon was
detected).

Similarly, I24 always equals 0, with an eigenvalue of 1
for both |F4〉〈F4| and

∫
dωh†(ω)h(ω) indicating the second

photon was detected, and an eigenvalue 0 indicating it was
not detected (yet).

E. The Liouvillian representation

Due to the continua in our model, the Hilbert space is
infinite dimensional. However, we follow the well established
practice of eliminating the continua and focus our attention on
the “system Hilbert space, Hd ” (d=2×2×5 = 20) and are able
to calculate all quantities of interest in the vector space of the
linear operators, L(Hd ) acting on the Hilbert space, Hd . We
eliminate the continua b1, b2, g, h and obtain our Liouvillian
master equation for the system density operator, ρs comprised
of discrete quantum systems a1, a2, F . Details of the exact
method and validation of quantum mechanical commutation
relationships can be found in a preceding paper Ref. [23].
For the absorption problem, we need not include the discrete
cavity mode c. The Liouvillian master equation for the chosen
discrete quantum parts of the Hamiltonian is

∂

∂t
ρs = −i[Hsys, ρs] + D[ρs]. (43)

Equation (43) facilitates numerical calculation in the
Schrödinger picture. For a collapse operator, X, the Lindblad
dissipator superoperator [a map, S: L(Hd ) → L(Hd )] acting
on the system density operator, ρs has the form, DX [ρs] =
XρsX † − 1

2ρsX †X − 1
2 X †Xρs. For time dependent coupling

of system and environment, the collapse operator takes time
dependent forms [34,35]. The collapse operator embody-
ing the decay from the upper state |F1(3)〉 back to the state
|F0(2)〉 takes the form X = g∗

1(2)(t )a1(2) + √
γ1|F0(2)〉〈F1(3)|. A

quantum jump effected by this operator indicates the corre-
sponding photon was not detected.

The density operator in Eq. (43) can be expanded in the
partial basis of the two virtual cavity populations, i.e., four
basis states |n, m〉 with n, m = 0, 1 indicating the number of
photons inside the cavity. This gives rise to a coupled equation
set of 16 coefficients. The complete expansion can be found
in Eq. (A2). With the transformation in Eq. (A5), we get back
the equation set in Eq. (A1) for the generalized density matrix
operators, ρab(t ) with the substitution:

uα(β )(t ) = g∗
1(2)(t )e− 1

2

∫ t
t0

dt ′|g1(2) (t ′ )|2
, (44)

which is the same result as found in [34,35]. Inversion of the
relationship in Eq. (44) gives away the method of varying the
couplings g1(2)(t ) in time so as to generate a desired photon
wave packet uα(β )(t ) [34,35]

g1(2)(t ) = u∗
α(β )(t )√

1 − ∫ t
t0

dt ′|uα(β )(t ′)|2
. (45)

FIG. 5. The steady state occupations of F2 and F4 level for the
initial state of both cavity having one photon. Here we chose γ1 =
γ2 = γ3 = γ4 and κ1 = κ2 = γ1/5.

V. RESULTS

A. Exponentially decaying uα(t ) and uβ(t )

With uα (t ) = √
κ1e−κ1t/2�(t ) and uβ (t ) =√

κ2e−κ2t/2�(t ), [�(t ) being the Heaviside unit step function]
either dynamical equation sets (A1) or (43) as well as
quantities like absorption probabilities [Eq. (33)] can be
solved analytically. Through Eq. (45), we find both couplings
g1(2)(t ) = √

κ1(2) to be constant in time. This is the only
example which can be calculated with a time-independent
system Hamiltonian and collapse operators. As discussed
previously, if the two photons have significant temporal
overlap, the second photon may get reflected before the first
is absorbed, and the molecule may end up in |F2〉 instead
of being raised all the way to |F4〉. If we gradually delay
the second photon in time with increasing delay periods (td )
and calculate the steady state populations in |F2〉 and |F4〉
from the Liouvillian equation each time, we find that with
a longer delay the second photon is absorbed with higher
probability (Fig. 5). The sum of the two populations is always
Pα

abs(= 10/11), the probability of the first photon being
absorbed. For a delay td � 1/γ1, the steady state occupation
of the F4 level reaches Pα

absP
β

abs(= 100/121), as expected.
However, the delay is not the only critical determinant

of the absorption probability of the second photon. (The
absorption of the first photon is completely independent of
the second.) The closer to Pα the occupation in |F2〉 has risen
when the second photon arrives, the more efficient the absorp-
tion of the second photon. So, a longer width of the second
photon wave function would also increase the efficiency of
the second photon absorption. The overlap between the two
photon wave functions determines the efficiency of the sec-
ond photon absorption. By making κ2 smaller we can make
the second photon wave function longer in time. In Figs. 6
and 7, respectively, we plot the average occupation levels of
|F2〉 and of |F4〉 as functions of time for different values for
κ2 that make the wave function of the second (β) photon
longer. The same colored curves from Figs. 6 and 7 add up to
Pα = 10/11 for t → ∞. With the larger share of the second
photon coming into the detector after the first photon has
already populated the F2 level, the probability of a successful
two-photon absorption rises.
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FIG. 6. The occupation of the F2 level as a function of time
for an initial state of both cavities having one photon. The decay
rate κ2 of the second cavity (which determines the width in time of
the second photon) is varied. All rates γ s are equal, and the rates
κ1,2 are given in units of γ1. The steady-state population of |F2〉
decreases with decreasing value of κ2, that is, with increasing width
of the second photon. The second photon moved population out of
level |F2〉.

B. Gaussian |uα(t )|2 and |uβ(t )|2

We numerically calculate the two photon absorption prob-
ability, ρ24,24(∞) for two real Gaussian wave functions with
varying standard deviations and the second one delayed by
different delays. The results are plotted in Fig. 8. A note on the
numerical method is in order here. For repeated calculations
with different values of the parameters, we use Eq. (33), since
it is less demanding than solving the Liouvillian equation
Eq. (43)] many times. For the numerical calculation of the
principal value, we use

P

(
1

ω

)
= 1

2

(
1

ω − iε
+ 1

ω + iε

)
, (46)

and use a sufficiently small ε.
Curiously, we find that the efficiency plot is symmetric in

their standard deviations for any given delay. The efficiency
for a standard deviation σ1 for photon α and standard devi-
ation σ2 for photon β for a given time delay td is the same
as for standard deviations σ2 for photon α and σ1 photon β.

FIG. 7. Same as the Fig. 6, but plotting the occupation of level
F4. Here the steady-state population of |F4〉 increases with decreasing
value of κ2 since the second photon is more effective at moving
population from |F2〉 to |F4〉.

FIG. 8. ρ24,24(∞) plotted on the vertical z axis against the stan-
dard deviations of the α and β photons plotted on the two axes on
the horizontal plane for (a) no time delay, (b) 1/γ1,(c) 3/γ1, and
(d) 5/γ1 delays (of the means/centers of the wave shape) of the
second photon, β.

The probability of the second photon absorption improves a
lot as the delay is increased. For some delays there is a peak
efficiency for a certain standard deviation and falls off slightly
with even longer standard deviations.

C. Gaussian |uα(t )|2 and exponentially decaying uβ(t )

For completeness we also consider the “mixed” case of
one Gaussian wave packet (for the first photon) and an ex-
ponentially decaying wave packet (for the second photon).
The results are plotted in Fig. 9 As long as the two photon
wave functions overlap, we get a decrease in the ρ24,24(∞)
value with increasing the standard deviation of the α photon.

FIG. 9. ρ24,24(∞) plotted on the vertical z axis against the stan-
dard deviations of the α photon Gaussian wave shape on the x axis
and the inverse of the rate constant (κ) of the β photons plotted on
the y axis for (a) no time delay, (b) 0.5/γ1 delay (delay between the
mean of the Gaussian, and the onset of the β photon wave shape).
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Increase in κ or decrease in the time constant of the β photon
increases Pβ

abs and is responsible for larger ρ24,24(∞).

VI. CONCLUSIONS

We developed a fully quantum-mechanical model for a
photon-number resolving detector that can detect up to two
photons by extending the model of Ref. [23] to a five-
level molecule. Moreover, we used two different methods
for treating the interaction of two photons with a quantum
system—the methods developed by Refs. [25,26] on the one
hand, and by [34,35] on the other—and provided the explicit
connection between the two. The former method allowed us to
obtain several analytical results in Sec. II that characterize our
detector, the latter method is very well suited for numerical
calculations, as shown in Sec. V.

The model developed in Ref. [23] followed the lead by
Refs. [13,14,16] in taking inspiration from visual systems
appearing in biology. It is an open question whether our
current extension of that model can be found in nature as
well: In particular, whether the specific stepwise two-photon
absorption process we studied here occurs in the human eye,
just as simultaneous two-photon absorption does occur [10].

We note two extensions of our work that may be inter-
esting. The first extension of our model is to another type
of five-level molecule that would detect just one photon, but
it would be sensitive to polarization. From the initial state
we could either reach an excited state |F1〉 (as in our actual
model) but also an alternative excited state |F1′ 〉 (for an or-
thogonally polarized photon), which would then decay to a
different metastable state |F2′ 〉. If the signal produced in the
latter state is distinguishable from that produced by |F2〉, then
this molecule would perform a polarization-sensitive single-
photon measurement. It is known that some animals (insects,
fish, birds) did develop polarization vision, see, e.g., Ref. [46].

Second, we focused here on the case of two distinguishable
input photons, with different frequencies. The case of two
overlapping frequencies (relevant when the two molecular
transitions would have nearly equal transition frequencies)
would reveal two additional features. Both input photons
would be able to drive the two transitions, and the final
expression for the two-photon absorption amplitude would
contain two terms, corresponding to two different time orders
in which the “first” and “second” photon could be absorbed.
Those two terms may interfere destructively. That type of
effect is certainly interesting but known [39,47]. Moreover,
the POVM element would involve projections onto entangled
two-photon input states, like it does for standard two-photon
absorption [5].
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APPENDIX: EMULATING PHOTON WAVEPACKETS
WITH AUXILIARY CAVITIES

We outline the systematic process of deriving the trans-
formations between the generalized density matrix operators
and coefficients [in the expansion in Eq. (A2)] in the Hamil-
tonian formulation. Unlike Gheri et al., we do not introduce
a detuning of the auxiliary cavities for the emulation of the
generalized density matrix equations (Refs. [34,35] did not
either). Gheri et al. addressed the mapping for the problem
of photons (one or few) in a single continuum. For the prob-
lem of two photons residing in two continua (or even more
complex scenarios), the procedure outlined here can find the
mapping between the two formalisms (generalized density
matrix operator and Hamiltonian formulation) systematically.
The generalized density matrix equations found for the system
described in Secs. III and IV are

ρ̇2,2(t ) = L{ρ2,2}(t ) + [
√

γ3uβ (t )[ρα2(t ), |F3〉〈F2|(t0)] + √
γ1uα (t )[ρβ2(t ), |F1〉〈F0|(t0)] + H.c.],

ρ̇α,2(t ) = L{ρα,2}(t ) − √
γ3u∗

β (t )[ρα,α, |F2〉〈F3|(t0)] + √
γ1uα (t )[ρ0,2, |F1〉〈F0|(t0)] − √

γ1u∗
α (t )[ρα,β, |F0〉〈F1|(t0)],

ρ̇β,2(t ) = L{ρβ,2}(t ) − √
γ1u∗

α (t )[ρβ,β, |F0〉〈F1|(t0)] + √
γ3uβ (t )[ρ0,2, |F3〉〈F2|(t0)] − √

γ3u∗
β (t )[ρβ,α, |F2〉〈F3|(t0)],

ρ̇α,α (t ) = L{ρα,α}(t ) − √
γ1uα (t )[|F1〉〈F0|(t0), ρ0,α (t )],+√

γ1u∗
α (t )[|F0〉〈F1|(t0), ρα,0(t )],

ρ̇β,β (t ) = L{ρβ,β}(t ) − √
γ3uβ (t )[|F3〉〈F2|(t0), ρ0,β (t )] + √

γ3u∗
β (t )[|F2〉〈F3|(t0), ρβ,0(t )],

ρ̇α,β (t ) = L{ρα,β}(t ) − √
γ1uα (t )[|F1〉〈F0|(t0), ρ0,β (t )] + √

γ3u∗
β (t )[|F2〉〈F3|(t0), ρα,0(t )],

ρ̇0,2(t ) = L{ρ0,2}(t ) − √
γ3u∗

β (t )[ρ0,α, |F2〉〈F3|(t0)] − √
γ1u∗

α (t )[ρ0,β , |F0〉〈F1|(t0)],

ρ̇0,α (t ) = L{ρ0,α}(t ) + √
γ1u∗

α (t )[ρ0,0, |F0〉〈F1|(t0)],

ρ̇0,β (t ) = L{ρ0,β}(t ) + √
γ3u∗

β (t )[ρ0,0, |F2〉〈F3|(t0)],

ρ̇0,0(t ) = L{ρ0,0}(t ). (A1)

D is the Lindblad dissipator superoperator and its explicit form depends on the number and nature of the baths coupled to the
system. Due to the coupling of the total of four continua, we get four collapse operators for the Lindblad dissipator superoperator,
D, namely

√
γ1|F0〉〈F1|, √

γ2|F2〉〈F1|, √
γ3|F2〉〈F3|, and

√
γ4|F4〉〈F3|. The density matrix in the Hamiltonian formulation can be
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expanded in the complete basis (time dependence restricted to the expansion coefficients):

ρ(t ) = ρ̃2,2(t )|0, 0〉〈0, 0| + ρ̃α,α (t )|0, 1〉〈0, 1| + ρ̃β,β (t )|1, 0〉〈1, 0|
+ ρ̃β,2(t )|1, 0〉〈0, 0| + ρ̃0,α (t )|1, 1〉〈0, 1| + ρ̃2,β (t )|0, 0〉〈1, 0| + ρ̃α,0(t )|0, 1〉〈1, 1|
+ ρ̃α,2(t )|0, 1〉〈0, 0| + ρ̃0,β (t )|1, 1〉〈1, 0| + ρ̃2,α (t )|0, 0〉〈0, 1| + ρ̃β,0(t )|1, 0〉〈1, 1|
+ ρ̃0,0(t )|1, 1〉〈1, 1| + ρ̃0,2(t )|1, 1〉〈0, 0| + ρ̃2,0(t )|0, 0〉〈1, 1| + ρ̃β,α (t )|1, 0〉〈0, 1| + ρ̃α,β (t )|0, 1〉〈1, 0|. (A2)

Here a state |n, m〉 for n, m ∈ {0, 1} indicates the number of photons in the two cavities, respectively. Since we start the cavities
with one photon each, an input photon in mode α or β will correspond to a cavity state |n, m〉 with n = 0 or m = 0, respectively
(the photons have leaked out of their cavities). The F operators in the Hamiltonian and Lindbladian of Eq. (43) act on the
expansion coefficients, ρ̃i, j (t ) and the cavity mode annihilation a1, a2 operators act on the basis elements |n, m〉. Using the
expansion, Eq. (A2) in Eq. (43), we get a set of coupled differential equations for the 16 coefficients. For example, the two
coefficients, ρ̃β,2(t ) and ρ̃0,α have the coupled equations,

˙̃ρβ,2(t ) = (
D√

γ1|F0〉〈F1| + D√
γ2|F2〉〈F1| + D√

γ3|F2〉〈F3| + D√
γ4|F4〉〈F3|

)
ρ̃β,2(t ) − 1

2 |g2(t )|2[ρ̃β,2] + |g1(t )|2ρ̃0,α (t )

+ g1(t )
√

γ1[|F0〉〈F1|, ρ̃β,β (t )] − g2(t )
√

γ3[ρ̃β,α, |F2〉〈F3|] − g∗
2(t )

√
γ3[|F3〉〈F2|, ρ̃0,2(t )], (A3)

˙̃ρ0,α (t ) = (
D√

γ1|F0〉〈F1| + D√
γ3|F2〉〈F3| − |g1(t )|2 − 1

2 |g2(t )|2)ρ̃0,α + g1(t )
√

γ1[|F0〉〈F1|, ρ̃0,0(t )]. (A4)

The following transformation from the tilde operators gives
us back the set of differential equations in Eq. (A1) with
the generalized density matrix operators defined previously in
Eq. (24). This comes with the substitutions in Eq. (45):

ρ0,0(t ) = ρ̃0,0(t )e
∫

dt (|g1(t )|2+|g2(t )|2 ),

ρα,α (t ) = [ρ̃α,α (t ) + ρ̃0,0(t )]e
∫

dt |g1(t )|2 ,

ρβ,β (t ) = [ρ̃β,β (t ) + ρ̃0,0(t )]e
∫

dt |g2(t )|2 ,

ρ2,2 = [ρ̃2,2 + ρ̃α,α (t ) + ρ̃β,β (t )],

ρ0,α (t ) = ρ̃0,α (t )e
∫

dt (|g1(t )|2+ 1
2 |g2(t )|2 ),

ρβ,2(t ) = [ρ̃β,2(t ) + ρ̃0,α (t )]e
∫

dt 1
2 |g2(t )|2 ,

ρ0,β (t ) = ρ̃0,β (t )e
∫

dt ( 1
2 |g1(t )|2+|g2(t )|2 ),

ρα,2(t ) = [ρ̃α,2(t ) + ρ̃0,β (t )]e
∫

dt 1
2 |g1(t )|2,

ρα,β = ρ̃α,βe
∫

dt 1
2 (|g1(t )|2+|g2(t )|2 ),

ρ0,2(t ) = ρ̃0,2(t )e
∫

dt 1
2 (|g1(t )|2+|g2(t )|2 ). (A5)

The coefficients in Eq. (A2) can actually be given the
meaning of a density matrix element with their usual meaning.
The Hamiltonian formulation helps us write the density oper-
ator with trace of 1 that embodies all the generalized density
operators in Eq. (A1) [the diagonal(off-diagonal) ones each
have a preserved trace of 1(0) each].

[1] M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, Phys.
Rev. A 68, 043814 (2003).

[2] D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, Phys.
Rev. A 71, 061803(R) (2005).

[3] M. Goppert-Mayer, Ann. Phys. 401, 273 (1931).
[4] M. Göppert-Mayer, Ann. Phys. 18, 466 (2009).
[5] H.-B. Fei, B. M. Jost, S. Popescu, B. E. A. Saleh, and M. C.

Teich, Phys. Rev. Lett. 78, 1679 (1997).
[6] M. G. Raymer, T. Landes, M. Allgaier, S. Merkouche, B. J.

Smith, and A. H. Marcus, Optica 8, 757 (2021).
[7] D. Tabakaev, M. Montagnese, G. Haack, L. Bonacina, J.-P.

Wolf, H. Zbinden, and R. T. Thew, Phys. Rev. A 103, 033701
(2021).

[8] H. Okawa and A. P. Sampath, Physiology 22, 279
(2007).

[9] G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D.
Salom, K. Komar, J. Zhang, M. Cascella, M. Wojtkowski, V. J.
Kefalov et al., Proc. Natl. Acad. Sci. 111, E5445 (2014).

[10] P. Artal, S. Manzanera, K. Komar, A. Gambín-Regadera, and
M. Wojtkowski, Optica 4, 1488 (2017).

[11] Y. Kobayashi, K. Mutoh, and J. Abe, J. Photochem. Photobiol.
C 34, 2 (2018).

[12] J. E. Hall and M. E. Hall, Guyton and Hall Textbook of Medi-
cal Physiology e-Book (Elsevier Health Sciences, Amsterdam,
2020).

[13] S. M. Young, M. Sarovar, and F. Léonard, Phys. Rev. A 97,
033836 (2018).

[14] S. M. Young, M. Sarovar, and F. Léonard, Phys. Rev. A 98,
063835 (2018).

[15] F. Léonard, M. E. Foster, and C. D. Spataru, Sci. Rep. 9, 3268
(2019).

[16] S. M. Young, M. Sarovar, and F. Léonard, ACS Photonics 7,
821 (2020).

[17] H. C. Chan, O. E. Gamel, G. R. Fleming, and K. B. Whaley,
J. Phys. B 51, 054002 (2018).

[18] S. J. van Enk, J. Phys. Commun. 1, 045001 (2017).
[19] L.-P. Yang and Z. Jacob, Opt. Express 27, 10482 (2019).
[20] L.-P. Yang and Z. Jacob, J. Appl. Phys. 126, 174502 (2019).
[21] T. B. Propp and S. J. van Enk, Phys. Rev. A 100, 033836 (2019).
[22] T. B. Propp and S. J. van Enk, Opt. Express 27, 23454 (2019).

043703-12

https://doi.org/10.1103/PhysRevA.68.043814
https://doi.org/10.1103/PhysRevA.71.061803
https://doi.org/10.1002/andp.19314010303
https://doi.org/10.1002/andp.200910358
https://doi.org/10.1103/PhysRevLett.78.1679
https://doi.org/10.1364/OPTICA.426674
https://doi.org/10.1103/PhysRevA.103.033701
https://doi.org/10.1152/physiol.00007.2007
https://doi.org/10.1073/pnas.1410162111
https://doi.org/10.1364/OPTICA.4.001488
https://doi.org/10.1016/j.jphotochemrev.2017.12.006
https://doi.org/10.1103/PhysRevA.97.033836
https://doi.org/10.1103/PhysRevA.98.063835
https://doi.org/10.1038/s41598-019-39195-1
https://doi.org/10.1021/acsphotonics.9b01754
https://doi.org/10.1088/1361-6455/aa9c95
https://doi.org/10.1088/2399-6528/aa90ce
https://doi.org/10.1364/OE.27.010482
https://doi.org/10.1063/1.5121558
https://doi.org/10.1103/PhysRevA.100.033836
https://doi.org/10.1364/OE.27.023454


DETECTING TWO PHOTONS WITH ONE MOLECULE PHYSICAL REVIEW A 104, 043703 (2021)

[23] S. Biswas and S. J. van Enk, Phys. Rev. A 102, 033705
(2020).

[24] T. B. Propp and S. J. van Enk, Phys. Rev. A 102, 053707
(2020).

[25] K. M. Gheri, K. Ellinger, T. Pellizzari, and P. Zoller, Fortschr.
Phys. 46, 401 (1998).

[26] B. Q. Baragiola, R. L. Cook, A. M. Brańczyk, and J. Combes,
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[40] M. Stobińska, G. Alber, and G. Leuchs, EPL 86, 14007 (2009).
[41] M. G. Raymer, D. V. Reddy, S. J. van Enk, and C. J. McKinstrie,

New J. Phys. 20, 053027 (2018).
[42] A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Sørensen,

and M. D. Lukin, Phys. Rev. Lett. 98, 123601 (2007).
[43] L. Giannelli, T. Schmit, T. Calarco, C. P. Koch, S. Ritter, and G.

Morigi, New J. Phys. 20, 105009 (2018).
[44] Christopher E. Granade, Characterization, verification and con-

trol for large quantum systems, Ph.D. thesis, University of
Waterloo, Canada, 2015.

[45] J. M. Epstein, K. B. Whaley, and J. Combes, Phys. Rev. A 103,
052415 (2021).

[46] G. Horváth, A. Lerner, and N. Shashar, Polarized Light and
Polarization Vision in Animal Sciences (Springer, Berlin, 2014),
Vol. 2.

[47] C. A. Schrama, G. Nienhuis, H. A. Dijkerman, C. Steijsiger,
and H. G. M. Heideman, Phys. Rev. Lett. 67, 2443 (1991).

043703-13

https://doi.org/10.1103/PhysRevA.102.033705
https://doi.org/10.1103/PhysRevA.102.053707
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<401::AID-PROP401>3.0.CO;2-W
https://doi.org/10.1103/PhysRevA.86.013811
https://doi.org/10.1103/PhysRevA.92.053834
https://doi.org/10.1088/1367-2630/17/2/023030
https://doi.org/10.1088/1367-2630/18/3/033004
https://doi.org/10.1103/PhysRevA.96.023819
https://doi.org/10.1103/PhysRevA.96.063826
https://doi.org/10.1103/PhysRevA.96.033817
https://doi.org/10.1088/1751-8121/ab01ac
https://doi.org/10.1103/PhysRevLett.123.123604
https://doi.org/10.1103/PhysRevA.102.023717
https://doi.org/10.1103/PhysRevA.12.1919
https://doi.org/10.1088/1367-2630/18/9/093035
https://doi.org/10.1103/PhysRevA.96.023861
https://doi.org/10.1103/PhysRevA.96.033834
https://doi.org/10.1209/0295-5075/86/14007
https://doi.org/10.1088/1367-2630/aabb43
https://doi.org/10.1103/PhysRevLett.98.123601
https://doi.org/10.1088/1367-2630/aae725
https://doi.org/10.1103/PhysRevA.103.052415
https://doi.org/10.1103/PhysRevLett.67.2443

