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We analyze the requirements for fault-tolerant quantum computation with atom-atom gates based on cavity
quantum electrodynamics (cQED) mediated by a photon with a finite pulse length. For short photon pulses, the
distorted shape of the reflected pulses from the cQED system is a serious error source. In the previous study by
Goto and Ichimura [Phys. Rev. A 82, 032311 (2010)], only the photon loss is minimized without considering the
shape distortion to optimize the system parameters. Here we show an improved optimization method to minimize
the infidelity due to the shape distortion and the photon losses in a well-balanced manner for the fault-tolerant
scheme using probabilistic gates [Phys. Rev. A 80, 040303(R) (2009)]. Under this optimization, we discuss the
fault-tolerant quantum computing requirement for short pulses. Finally, we show that reducing the cavity length
is an effective way to reduce the errors of this type of gate in the case of short photon pulses.
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I. INTRODUCTION

Cavity quantum electrodynamics (cQED) is an important
platform for quantum computing because it enables atoms
and light to couple at the single-photon level. So far, many
schemes based on cQED systems, such as single-photon
sources [1–5], nondemolition measurements [6–8], and two-
qubit gates [9–17], have been proposed and demonstrated
as a means of implementing quantum computers [18]. The
ultimate goal of these theoretical and experimental efforts is
the realization of fault-tolerant quantum computing (FTQC)
[19].

It is well known that FTQC can be achieved if the error
probability per operation used for scalable quantum compu-
tation is lower than a certain threshold [19,20]. In particular,
sufficiently small error probability of two-qubit gates is often
the most stringent requirement for FTQC.

Previously, the requirement for the FTQC using proba-
bilistic gates based on cQED [21] has been investigated in
the long-pulse limit [22]. In this case, cQED systems can
be optimized by simply minimizing the probability of pho-
ton loss through dissipative channels. However, the FTQC
requirement may become more severe for short pulses, be-
cause of the error induced by distortion of the shape of the
pulses through reflections from cQED systems. On the other
hand, pulses should be shortened for faster gate operations and
shorter delay lines.

In this paper, we investigate the FTQC requirements for
cQED-based quantum gates with finite pulse lengths and op-
timize the cavity parameters, mainly focusing on the external
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coupling rate. The optimization is performed so that the FTQC
requirements for the FTQC scheme proposed in Ref. [21] are
most likely to be met. That is, the photon loss probability
and the pulse-distortion error probability are minimized in the
best-balanced manner for the FTQC scheme. Our optimiza-
tion greatly relaxes the FTQC requirements in some parameter
regions compared with the previous optimization method that
simply minimizes the photon loss [22].

In the long-pulse limit, the error probability of the con-
trolled phase flip (CPF) gate can be represented by a single
dimensionless value called internal cooperativity [22]. In con-
trast, we find that the performance of the CPF gate is not
characterized only by the internal cooperativity when the pho-
ton pulse length is shorter than ≈1/κint , where κint is the cavity
field decay rate due to undesirable scattering and absorption
inside the cavity. Finally, we show that reducing the cavity
length is effective at meeting the FTQC requirements when
the photon pulse length is shorter than 1/κint.

This paper is organized as follows: In Sec. II, we briefly
explain the CPF gate scheme based on cQED as proposed in
Ref. [11]. In Sec. III, we classify the errors in the CPF gate. In
Secs. IV and V, we discuss the requirements for FTQC with
the cQED scheme in the long-pulse limit and for a finite pulse
length, respectively. Our conclusions are presented in Sec. VI.

II. CAVITY-QED-BASED CONTROLLED PHASE
FLIP GATE

The CPF gate between atom qubits proposed in
Refs. [11–13] utilizes selective π -phase flip reflection in the
interaction between a three-level atom in a single-sided cavity
and a single-photon pulse. First, we explain the phase flip
mechanism [10]. A qubit is represented by the ground states of
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FIG. 1. Schematic of the interaction between a three-level atom
in a single-sided cavity and a single-photon pulse.

an atom, |0〉a and |1〉a, and the transition between |1〉a and an
atomic excited state |e〉a is resonant with a cavity (Fig. 1). The
Hamiltonian of a cQED system with input and output photon
pulses is given by

H = h̄ωcc†c + h̄ω1e|e〉aa〈e| − h̄ω01|0〉aa〈0|

+ h̄
∫ ∞

−∞
dωωa†(ω)a(ω)

+ ih̄g(c†|1〉aa〈e| − c|e〉aa〈1|)

+ ih̄

√
κext

π

∫ ∞

−∞
dω[c†a(ω) − a†(ω)c], (1)

where c(c†) and a(a†) are the annihilation (creation) operators
of a photon in the cavity and of a pulse photon, respectively.
The entire state of the cQED system and a photon pulse is
expressed as

|�(t )〉 = |0〉a|0〉c

∫ ∞

−∞
dω f0(ω, t )a†(ω)|0〉p

+ c0(t )|0〉a|1〉c|0〉p

+ |1〉a|0〉c

∫ ∞

−∞
dω f1(ω, t )a†(ω)|0〉p

+ c1(t )|1〉a|1〉c|0〉p

+ d (t )|e〉a|0〉c|0〉p, (2)

where f0(ω, t ) [ f1(ω, t )] is the probability amplitude of the
incident single-photon pulse when the atom is in the |0〉a (|1〉a)
state. The subscripts “c” and “p” denote “cavity” and “pulse,”
respectively. The Fock space of the cavity field is truncated
at one, assuming that the pulse includes only a single photon.
We also take into account the following dissipative processes:
atomic spontaneous emission with a (polarization) decay rate
γ , cavity field decay with a decay rate κext associated with the
extraction of a cavity photon to the desired external mode via
transmission of the mirror, and other undesirable cavity field
decay due to the imperfection of the cavity with the rate κint.
The total cavity decay rate is given by κ = κext + κint.

Finally, we derive the equations of motion for the cQED
system with dissipative channels and the relations between the
input pulse and output pulse [23]:

Ċ0 = −κC0 −
√

κext

π

∫ ∞

−∞
dωF in

0 (x = 0)e−iωt , (3)

Ċ1 = gD − κC1 −
√

κext

π

∫ ∞

−∞
dωF in

1 (x = 0)e−iωt , (4)

Ḋ = −gC1 − γ D, (5)

F out
0 (x = 0) = F in

0 (x = 0) +
√

κext

π

∫ t

0
dt ′C0e−iωt ′

, (6)

F out
1 (x = 0) = F in

1 (x = 0) +
√

κext

π

∫ t

0
dt ′C1e−iωt ′

, (7)

where we have introduced the probability amplitudes in the
rotating frame: C0 = ei(ωc−ω01 )t c0, C1 = eiωct c1, D = eiω1et d ,
F in

0 = f0(ω, t = 0)ei(ωc−ω01 )t , F in
1 = f1(ω, t = 0)eiωct , F out

0 =
f0(ω, t )ei(ωc−ω01 )t , and F out

1 = f1(ω, t )eiωct . We set x = 0 as
the position of the input mirror; notation x = 0 is omitted
in the following discussions. Equations (6) and (7) represent
the interference between the input pulse and the cavity field,
which induces interesting phenomena such as phase flip and
resonant tunneling. The norm of the entire state 〈�(t )|�(t )〉
decreases over time via the dissipative terms, and the decrease
in the norm corresponds to the photon loss probability.

One can understand the basic mechanism of the CPF gate
by analyzing these equations [10]. Assuming that the photon
pulse is sufficiently long, we can make the approximations
Ċ0 � 0, Ċ1 � 0, and Ḋ � 0. Accordingly, we obtain simple
relations between the input and output pulses:

F out
0 = L0F in

0 , (8)

F out
1 = L1F in

1 , (9)

where

L0 = −κext + κint − i�

κext + κint − i�
, (10)

L1 =
−κext + κint − i� + g2

γ−i�

κext + κint − i� + g2

γ−i�

. (11)

Here, � = ω − ωc is the detuning. To realize the CPF gate,
only the phase of the atomic state |0〉a needs to change by π ,
namely L0 = −1 and L1 = 1. We call this selective π -phase
reflection. For example, in the long-pulse limit, where the in-
put photon includes a single mode ω = ωc, selective π -phase
reflection is achieved when the condition

g2/γ � κext � κint (12)

is satisfied.
The CPF gate between atom qubits is formed by combining

the selective π -phase flip reflection technique with linear op-
tical devices and a feedback operation. The setup of the CPF
gate between atom qubits proposed in Ref. [11] is illustrated
in Fig. 2(a). A single-photon pulse carries a qubit represented
by its polarization states |V 〉p and |H〉p. Initially the single-
photon pulse is in the |V 〉p state and is incident on the cavities
only when its polarization is |H〉p. The polarization of the pho-
ton pulse is measured by the polarized beam splitter (PBS3)
and the photodetectors, and a phase flip gate σ z is performed
on the atom qubit 1 if detector 2 clicks; that is, the photon
state is in the |V 〉p state. Figure 2(b) shows the quantum circuit
representing the whole operation in Fig. 2(a). The Hadamard
gates on the photonic qubit are performed with the half-wave
plates (HWP 1, 2, 3). This circuit would be equivalent to
the CPF gate between qubits 1 and 2 and operates ideally
in the long-pulse limit if there were no dissipation processes.
However, the dissipation processes and the finite pulse length
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FIG. 2. (a) Schematic diagram of the CPF gate between atom
qubits. (b) A quantum circuit representing the CPF gate in panel (a).
Z and H denote Pauli-Z and Hadamard gates, respectively. Z with
a vertical line denotes the CPF gate between an atom qubit and a
photon qubit. The rightmost Z at the end of the arrow means that a
Pauli-Z gate is performed only when the measurement result is |V 〉p.

effectively prevent ideal gate operation. The key point of this
gate is that the photon loss during the CPF gate operation can
be naturally treated as a failure event of the probabilistic two-
qubit gates, which can be detected by the photon detectors.
Hence FTQC schemes for probabilistic two-qubit gates can
be applied to quantum computing with this gate.

III. FAULT-TOLERANT QUANTUM COMPUTING SCHEME
AND ERRORS IN THE CONTROLLED PHASE FLIP GATE

In Ref. [22], Goto and Ichimura applied the FTQC scheme
for probabilistic two-qubit gates [21] to quantum computing
based on the atom-atom gate explained in the previous sec-
tion. As a result, the requirements for FTQC based on cQED
were greatly relaxed compared with the case that the standard
FTQC schemes based on concatenated code [24] and surface
code [25] are simply applied.

In the FTQC scheme in Ref. [22], the errors in the CPF
gate operation are categorized into two types: photon loss and
conditional error [26]. Here, photon loss means that no photon
is detected by either detector. Thus, photon loss events can be
eliminated by postselecting the events that auxiliary photons
are detected. Conditional error is defined as unheralded error,
which remains when a photon is detected by one of the photon
detectors. This error accumulates during successful postse-
lections. The fault-tolerant threshold of the conditional error,
therefore, depends on the photon loss probability [21]. The
photon loss probability pl and the conditional error probabil-
ity pc are formulated as pl ≡ 1 − 〈�(t )|�(t )〉/〈�(0)|�(0)〉
and pc ≡ 1 − F = 1 − |〈�id(t )|�(t )〉|2/〈�(t )|�(t )〉, where
�id(t ) represents the ideal state function at time t , and F
is the fidelity renormalized at time t . The renormalization
eliminates the amount of the photon loss measured in terms
of the infidelity.

FIG. 3. Typical dependencies of (a) photon loss probability and
(b) conditional error probability on the external coupling rate κext in
the long-pulse limit, when the atom is in the |0〉a state or |1〉a state.

IV. LONG-PULSE LIMIT

Here, we discuss the requirements for FTQC in the case of
an optimized cQED system in the long-pulse limit, where the
detuning � in Eqs. (8)–(11) is zero. The long-pulse limit has
been already discussed in Ref. [22], but we will review here it
in the case of a broader range of system parameters, in order
to compare it with the case of the finite pulse length in Sec. V.

A. Optimization by tuning the external coupling rate

In the long-pulse limit, conditional errors are caused by
the unbalanced photon loss between polarization states and
between |0〉a|H〉p and |1〉a|H〉p states. In the CPF gate scheme,
only the |H〉p state is incident on the cavity, which leads
to unbalanced photon loss between the different polarization
states. Additionally, there is a g2/γ difference between the
reflection coefficients of |0〉a|H〉p and |1〉a|H〉p, as can be seen
in Eqs. (10) and (11). The effect of these unbalanced photon
losses remains even after the postselection and reduces the
fidelity in the form of a conditional errors.

These errors occurring during the CPF gate operation can
be minimized by properly adjusting the system parameters. In
cQED systems, the external coupling rate κext is proportional
to the transmittance of the mirror, which is relatively easy to
adjust. In the long-pulse limit, an appropriate choice of κext

can almost surely minimize both the error probabilities of the
photon loss and the conditional error.

Typical dependencies of the photon loss probability and
the conditional error probability on κext are illustrated in
Fig. 3. These dependencies are straightforwardly explained
by Eqs. (8)–(11). The photon loss probability in the CPF gate
operation between an atom and a photon is calculated by

p(0)
l = 1 − |L0|2, (13)

p(1)
l = 1 − |L1|2, (14)

where p(0)
l and p(1)

l denote the photon loss probabilities when
an atom is in the |0〉a state or |1〉a state. Since L0 and L1 depend
on κext as in Eqs. (10) and (11), p(0)

l and p(1)
l have peaks

at κext = κint and κext = κint + g2/γ , respectively, at which
the output pulse completely disappears due to interference
between the input pulse and the cavity field. Hence, the total
loss probability reaches a minimum between the peaks. The
photon loss probability is small when κext is quite small or
large, but we will exclude those regions because the condi-
tional probability is quite high, as shown below.
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FIG. 4. Threshold of the FTQC scheme of Ref. [21]
(crosses). The solid curve represents the FTQC fitted function
60
17 p0.59

l + 260
17 p0.59

c = 1. The dotted curves denote the average errors
for the two values of the FTQC error parameter, P = 0.7 and 1.5.

As illustrated in Fig. 3(b), the conditional error shows
a monotonic behavior of the probability of the unbalanced-
photon-loss error. The conditional errors in the CPF gate
operation between an atom and a photon are calculated as
follows:

p(0)
c = 1 − 1

2

(1 − L0)2

1 + L2
0

, (15)

p(1)
c = 1 − 1

2

(1 + L1)2

1 + L2
1

, (16)

where p(0)
c and p(1)

c denote the conditional errors when an atom
is in the |0〉a state or |1〉a state. These errors are calculated
using the initial state 1√

2
(|H〉p + |V 〉p)|0, 1〉a and the output

state 1√
2
(L0,1|H〉p + |V 〉p)|0, 1〉a. As κext increases, the condi-

tional error probability p(0)
c monotonically decreases, whereas

p(1)
c monotonically increases. Hence, the total conditional er-

ror probability reaches a minimum around the intersection of
these error curves.

Goto and Ichimura derived a formula for the external cou-
pling rate that minimizes the photon loss [22]:

κ loss
ext = κint

√
1 + 2Cint. (17)

Here, internal cooperativity Cint is defined in terms of the
system parameters, Cint ≡ g2/(2κintγ ). The formula (17) was
derived from the optimal condition L0 = −L1 to minimize the

following photon loss probability:

pl = 1 − 1
4

{|α0,0|2
[
L2

0 (L0 − 1)2 + (L0 + 1)2
]

+|α0,1|2
[
L2

1 (L0 − 1)2 + (L0 + 1)2
]

+|α1,0|2
[
L2

0 (L1 − 1)2 + (L1 + 1)2
]

+|α1,1|2
[
L2

1 (L1 − 1)2 + (L1 + 1)2]}, (18)

where αi, j are the coefficients of the initial state of the two-
qubit system |ψ0〉 = ∑

i, j=0,1 αi, j |i〉1| j〉2.
Furthermore, in Ref. [22], they numerically showed that

the conditional error also takes a minimal value around
κext = κ loss

ext . This can be intuitively understood from the fact
that the unbalanced-photon-loss error, which is originally
caused by photon loss, is the major error type within the con-
ditional error. Accordingly, any type of error in the long-pulse
limit takes a minimal value around κext = κ loss

ext . This means
that κ loss

ext is optimal not only for the photon loss but also for
FTQC. Thus, we can choose κ loss

ext as an approximate optimal
value of κext. As shown in the following section, when the
external coupling rate is κ loss

ext , the FTQC requirements can be
simply represented by the internal cooperativity.

B. Fault-tolerant quantum computing requirements

In Ref. [21], the threshold values of the conditional error
probability were derived for several photon loss probabili-
ties (see Fig. 4). To determine the FTQC requirements for
the cQED parameters under the optimization, we can plot
a threshold curve over the pl-pc map by interpolating the
threshold values. We assume that the fitting function for the
threshold curve is of the form apd

l + bpd
c = 1; the fitted pa-

rameters are a = 60/17, b = 260/17, and d = 0.59. Using
this result, we introduce a convenient FTQC error parameter:

P ≡ 60
17 p̄l

0.59 + 260
17 p̄c

0.59, (19)

where p̄l and p̄c are the average photon loss probability and
the average conditional error probability, respectively, over the
various initial states. As shown in Fig. 4, if P � 1, a quantum
computation with the average errors is fault tolerant. The aver-
age probabilities are calculated from the following formulas,
p̄l = 1 − ∏

i, j

∫
dαi, j〈�(t )|�(t )〉/∏

i, j

∫
dαi, j〈�(0)|�(0)〉

and p̄c = 1 − (4F̄max + 1)/5, where F̄max denotes the average
gate fidelity for the maximally entangled states [27]. We use
the formula of fidelity in the long-pulse limit to calculate
F̄max:

pc = 1 − ||α0,0|2L0(L0 − 1) − |α0,1|2L1(L0 − 1) + |α1,0|2(L1 + 1) + |α1,1|2(L1 + 1)|2

|α0,0|2η1 + |α0,1|2η2 + |α1,0|2η3 + |α1,1|2η4
, (20)

η1 = L2
0 (L0 − 1)2 + (L0 + 1)2, (21)

η2 = L2
1 (L0 − 1)2 + (L0 + 1)2, (22)

η3 = L2
0 (L1 − 1)2 + (L1 + 1)2, (23)

η4 = L2
1 (L1 − 1)2 + (L1 + 1)2. (24)
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FIG. 5. (a) Average loss probability p̄l, (b) average conditional
error probability p̄c, and (c) FTQC error parameter P with κext = κ loss

ext

in the (g/γ , κint/γ ) plane. Solid lines are contours. The dashed line
in panel (c) is the line on which Cint is 1130; it falls along the P = 1
line, namely the FTQC threshold line.

Figure 5 shows the average error probabilities and FTQC
error parameter P in Eq. (19) in the (g/γ , κint/γ ) plane, with
κext set to κ loss

ext . Note that the contours of p̄l, p̄c, and P are
lines with gradient two on a log-log plot. This means that
p̄l and p̄c are expressed only with Cint (then P is naturally
expressed only with Cint), because the line on which Cint is
constant is represented as κint/γ = α(g/γ )2 (α is constant).
In fact, Ref. [22] showed that the photon loss probability is
proportional to 1/

√
Cint for sufficiently large Cint, and the

conditional error probability is also proportional to the inverse
of the internal cooperativity when κint/γ = 1. Thus, the value
of Cint determines the performance of the CPF gate. The
reason why the system is not characterized by the general
cooperativity C ≡ g2/(2κγ ) is that simply reducing κext is not
always the best way for atom-photon quantum gates.

We illustrate the line on which Cint is 1130 in Fig. 5(c); it
falls along the P = 1 line, namely the FTQC threshold line.
This match indicates that the quantum computation is fault-

FIG. 6. Typical shapes of output pulses with the atom in the
state |0〉a (solid curve) and |1〉a (dashed curve). The dotted curves
represent input pulses, whose centers are located at t = 0. The pulse
length in panel (a) is long enough compared with any other charac-
teristic timescales in the system. The pulse length in panel (a) is two
orders of magnitude larger than that in panel (b). The values of the
system parameters other than the pulse length are common to panels
(a) and (b). The distortion of the pulse shape is more noticeable in
panel (b) than in panel (a).

tolerant under the condition Cint � 1130. Thus, the FTQC
requirements can be estimated from the error map.

V. FINITE PULSE LENGTH

In the case of a finite pulse length, the conditional error
increases due to pulse distortion, as shown in Fig. 6(b), and
it changes the situation. In what follows, we discuss the op-
timization of κext for pulses with a finite length; then, we
compare the quality of cQED required for FTQC for a finite
pulse length and in the long-pulse limit.

To investigate the dependence of the error on the system
parameters, we simulated the dynamics of the CPF gate based
on Eqs. (3)–(7) with a Gaussian input single-photon pulse
defined as

f in(t ) =
√

1√
πWt

exp

(
− (t − t0)2

2W 2
t

)
. (25)

A. Optimization including the pulse-distortion error

For pulses with a finite length, the conditional error caused
by distortion of the output-pulse shapes grows with the
unbalanced-photon-loss error. The question here is “does κ loss

ext
obtained in the long-pulse limit also minimize the error due
to the pulse distortion?” As we see below, the answer is “no”;
κ loss

ext is not optimal for the total error, i.e., for FTQC. This is
because the distortion of the output pulses, which is as serious
an issue as the photon loss for short pulses, is a completely
different type of error from photon loss.

Pulse distortion is caused by the reflection depending on
the input photon frequency. When an input pulse with a fi-
nite length is incident; that is, it includes multiple frequency
modes besides ω = ωc, a detuning-dependent photon loss and
a phase shift between the input and output pulses arise, as
indicated from Eqs. (10) and (11). The detuning-dependent
reflection distorts the output-pulse shapes, as shown in Fig. 6.

To suppress the error probability due to pulse distor-
tion, certain conditions regarding the pulse length must be
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TABLE I. Conditions under which the photon loss probability
and the pulse-distortion error probability are small.

Photon loss Pulse distortion

Bad-cavity limit g2/γ � κext � κint
g2/κ � 1/Wt

Strong-coupling limit κ � 1/Wt

satisfied in addition to Eq. (12). The condition κ � 1/Wt

(Wt is pulse length) must be satisfied to achieve L0 � −1.
In addition, to achieve L1 � 1, the condition g � 1/Wt must
be satisfied in the strong-coupling limit (g � κ, γ ), while the
condition g2/κ � 1/Wt must be satisfied in the bad-cavity
limit (κ � g2/κ � γ ). However, the condition κ � 1/Wt

includes g � 1/Wt in the strong-coupling limit, while the
condition g2/κ � 1/Wt includes κ � 1/Wt in the bad-cavity
limit. In total, to keep the conditional error probability low
for pulses with a finite length, we require κ � 1/Wt in the
strong-coupling limit and g2/κ � 1/Wt in the bad-cavity
limit. Table I summarizes the conditions under which the pho-
ton loss probability and the pulse-distortion error probability
are small. The above discussion leads us to conclude that the
optimal value of κext for short pulses is larger than κ loss

ext when
κint/γ � 1, whereas it is smaller than κ loss

ext when κint/γ � 1.
Figure 7 shows the dependence of the pulse-distortion error
probability (dashed curves), whose illustration is based on the
discussion in the previous section. These error curves inter-
sect at κ ≈ g, where κ and g2/κ are equal. Moreover, since
κext � κint in Eq. (12) is also needed for high fidelity, the error
curves approximately intersect at κext ≈ g [the intersections of
the dashed curves in Figs. 7(a) and 7(b)]. On the other hand,
the photon loss and the unbalanced-photon-loss error proba-

FIG. 7. Dependence of the error probability due to pulse distor-
tion on κext (dashed curves) for (a) κint/γ > 1 and (b) κint/γ < 1. The
solid curves are the conditional error probabilities in the long-pulse
limit in Fig. 3(b). The total conditional error probability for a finite
pulse length is the sum of the solid and dashed curves.

FIG. 8. Ratio of external coupling rates κP
ext/κ

loss
ext . The pulse

length is (a) Wt = 0.3/γ and (b) Wt = 30/γ .

bilities reach a minimum around κext = κ loss
ext � g

√
κint/γ [the

intersections of the solid curves in Figs. 7(a) and 7(b)], where
Cint � 1 is assumed. Hence, the optimal κext for the photon
loss is larger (smaller) than g when κint/γ is larger (smaller)
than unity. Thus, since the optimal value of κext for the total
error probability is expected to be between g and κ loss

ext , it is
larger than in the long-pulse limit for κint/γ � 1 [Fig. 7(a)],
while it is smaller than in the long-pulse limit for κint/γ � 1
[Fig. 7(b)] [28].

We performed numerical simulations to confirm the va-
lidity of the above discussion. In the numerical simulations,
the optimal value of κext for short pulses was determined to
minimize the FTQC error parameter P. The minimization of
P most likely makes the total error enter the fault-tolerant
area, which is bounded by the approximate curve 60

17 p̄l
0.59 +

260
17 p̄c

0.59 = 1 of the fault-tolerant threshold. This optimization
is the best way for achieving FTQC.

We calculated κP
ext, which is κext determined from the mini-

mization of P, and plot the ratio κP
ext/κ

loss
ext in Fig. 8. The figure

shows that κP
ext is small compared with κ loss

ext for κint/γ > 1
[Fig. 8(a)], while it is large for κint/γ < 1 [Fig. 8(b)]; that is,
the optimal κext for FTQC is larger than in the long-pulse limit
for κint/γ � 1, while it is smaller than in the long-pulse limit
for κint/γ � 1. In particular, when κint/γ is far from unity,
κ loss

ext is not at all optimal for FTQC with short pulses. This
difference in κext greatly affects the FTQC requirements, as
will be discussed at the end of the next section.
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B. Fault-tolerant quantum computing requirements

Here we discuss the FTQC requirements when the pulse
length is finite under optimization by minimizing P. We show
that the FTQC requirements for large and small κint/γ are
quite different when the photon pulse is short. This is in con-
trast with the case of the long-pulse limit, where Cint � 1130
is the only FTQC requirement in the whole parameter region.
The difference between the FTQC requirements for large and
small κint/γ comes from the difference between the conditions
under which a low pulse-distortion error probability can be
achieved for small and large κint/γ .

Figures 9(a) and 9(b) plot the FTQC error parameter P
in Eq. (19) with κext = κP

ext, when κint/γ is large and small.
In both parameter regions, the FTQC requirements are more
severe than in the long-pulse limit because of the pulse-
distortion error, but the shapes of P = 1 boundaries are quite
different for large and small κint/γ .

In Fig. 9(a), the P = 1 line, namely, the FTQC threshold
line (red line), simply shifts in the direction of increasing g/γ
(or decreasing κint/γ ) with respect to the FTQC threshold line
in the long-pulse limit (yellow dashed line). This shift means
that the FTQC requirements are still represented by the value
of Cint. The value of Cint required for FTQC is Cint � 2220 for
Wt = 0.3/γ .

On the other hand, Fig. 9(b) shows that the P = 1 boundary
is not simply shifted relative to the FTQC threshold line in the
long-pulse limit: the error probabilities of the CPF gate are
not simply determined by Cint , and consequently the FTQC re-
quirements are not represented by the value of Cint. The P = 1
boundary and the FTQC threshold line in the long-pulse limit
are widely separated for κint smaller than 1/Wt (the area below
the dotted lines) [29]. That is, the FTQC requirements are
more severe for smaller κint. The shape of the P = 1 curve also
indicates that reducing κint is less effective to reduce the error
parameter P for shorter pulses. It can even cause a situation
where the FTQC requirements are never met by reducing κint

for small g. Thus, unlike in the long-pulse limit, increasing
Cint is not always effective for FTQC, when the photon pulse
length is shorter than ≈1/κint.

The characteristic shape of the P = 1 boundary in
Figs. 9(b) should be considered in developing a strategy
to improve a cavity for quantum computation, since typical
cavity-QED systems do not have such a large g/γ (except for
artificial atomic systems). The typical values of the cavity-
QED parameters are (g/γ , κint/γ ) ≈ (2.5, 0.067) [17] and
(5.36, 0.04) [30,31]. In these systems, depending on pulse
length, increasing Cint by reducing κint is less effective to
achieve FTQC. We will show a strategy to alleviate this prob-
lem in Sec. V C.

The difference between the shapes of the P = 1 boundaries
in Figs. 9(a) and 9(b) can be explained by the difference
between the conditions to achieve a low pulse-distortion error
probability in Figs. 9(a) and 9(b). Moreover, the difference
between the conditions originates from the difference between
the parameter regimes of Figs. 9(a) and 9(b).

In Fig. 9(a), namely, for large κint/γ , the conditions g � γ

and κP
ext > g are satisfied because we expect that g < κP

ext <

κ loss
ext , as explained with the help of Fig. 7(a) in the last section.

Thus, in Fig. 9(a), the cQED parameters satisfy the bad-cavity

FIG. 9. (a), (b) FTQC error parameter P and (c) average
conditional error probability p̄c in the (g/γ , κint/γ ) plane. The
optimization is performed to minimize P. The pulse length is
(a) Wt = 0.3/γ and (b), (c) Wt = 30/γ . The thick solid red line and
curve are P = 1 boundaries, namely, the FTQC thresholds, and the
dashed lines in panels (a) and (b) are the FTQC thresholds in the
long-pulse limit as shown in Fig. 5(c). The dashed-dotted curves in
panels (a) and (b) represent the P = 1 boundary when κext is set to
κ loss

ext . The horizontal dotted lines in panels (b) and (c) denote the
κint/γ = 1/Wt .

regime relation, κ > g2/κ > γ . In the bad cavity regime, the
main condition under which a low pulse-distortion error can
be achieved is g2/κ � 1/Wt (see Table I). On the other hand,
in Fig. 9(b), namely, for small κint/γ , g is larger than γ and κP

ext
because it is expected that κ loss

ext < κP
ext < g, as explained with

the help of Fig. 7(b). Thus, in Fig. 9(b), the cQED parameters
satisfy the strong-coupling regime relation, g � κ, γ . In the
strong-coupling regime, the main condition under which a
low pulse-distortion error can be achieved is κ � 1/Wt (see
Table I again). Table II summarizes the main conditions under
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TABLE II. Parameter regime and corresponding conditions to
suppress pulse-distortion error probability in Figs. 9(a) and 9(b).

Main condition for
low pulse-distortion

Parameter regime error probability

Fig. 9(a) Bad-cavity regime g2/κ � 1/Wt

Fig. 9(b) Strong-coupling regime κ � 1/Wt

which a low pulse-distortion error probability can be achieved
in each parameter region in Figs. 7(a) and 7(b).

The above discussion simply explains the shift of the
FTQC line in the case of the bad-cavity regime [Fig. 9(a)]:
by satisfying the condition g2/κ � 1/Wt , the internal cooper-
ativity Cint required for FTQC increases in order to reduce the
pulse-distortion error probability, and this results in the shift
of the P = 1 boundary.

The case of the strong-coupling regime, i.e., Fig. 9(b),
is more complicated. In this regime, as κint decreases, κext

should be increased to satisfy the condition κ � 1/Wt for
suppressing the pulse-distortion error. On the contrary, κ loss

ext =
κint

√
1 + 2Cint � κint

√
2Cint ∝ √

κint (Cint � 1 was assumed)
decreases as κint is reduced; hence, κext should be reduced

FIG. 10. (a) Dependence of FTQC error parameter P on cavity
length Lc for Wt = 30/γ (circles). Lc0 represents the cavity length
for the system parameter set (g/γ , κint/γ ) = (2.0, 0.001). The solid
curve represents a fitted function P = 3.5(Lc/Lc0 )0.51 + 0.45. (b) De-
pendence of p̄l and p̄c on the cavity lengths in panel (a).

in order to suppress the photon loss probability. Therefore,
simply increasing κext by reducing κint to suppress the pulse-
distortion error is not the best way of minimizing the total er-
ror. Reducing κint ultimately results in an increase in the pulse-
distortion error when one chooses κext that minimizes the total
error [Fig. 9(c)]. This increase in the pulse-distortion error off-
sets the original decrease in the photon loss by reducing κint;
thus, reducing κint is less effective for FTQC. This problem is
especially noticeable when κint is smaller than 1/Wt .

Finally, let us address the validity of the optimization min-
imizing the FTQC error parameter P by comparing it with
the optimization only minimizing the photon loss probability,
which is valid in the long-pulse limit. As can be seen from
Fig. 9(b), the optimization minimizing the FTQC error pa-
rameter P is especially effective for small κint/γ , where the
pulse-distortion error is large. The FTQC with κext = κ loss

ext re-
quires even more severe conditions to be placed on the cQED
parameters compared with our optimization minimizing P, for
κint smaller than 1/Wt . For example, when κint/γ = 0.001,
the value of g required for FTQC with κext = κ loss

ext is more
than twice as large as that with κext = κP

ext. Thus, appropriately
optimizing the external coupling rate according to the FTQC
schemes greatly relaxes the FTQC requirements compared
with only minimizing the photon loss, especially for small κint.

C. Optimizing via cavity length

We mentioned in the previous section that reducing κint is
less effective to suppress the errors for shorter pulses for small
κint/γ . A remaining way to reduce the errors in the parameter
region κint � 1/Wt is to increase g. However, we should note
that it is not easy to increase only g itself in typical cQED
systems [32]. This problem can be alleviated by reducing the
cavity length, as shown below.

In the long-pulse limit, as already mentioned, the error
probabilities in the CPF gate are characterized only by the
internal cooperativity Cint = g2/2κintγ . Assuming that bulk
loss of photons (due to absorption and scattering in the cavity
medium) is negligible, the system parameters depend on the
cavity length Lc, as g ∝ 1/

√
Lc, κint ∝ 1/Lc, and γ = const.

[18,33]; that is, Cint is independent of Lc. Therefore, the cav-
ity length in each system will be determined by considering
other experimental constraints. For short pulses, on the other
hand, the error probabilities can no longer be characterized
by Cint alone in the parameter region κint � 1/Wt , and they
depend on the cavity length. From the dependence of the
system parameters on the cavity length, we see that p̄l and p̄c

move to the upper right in Fig. 9 while Cint remains constant,
which makes P smaller mainly because of the reduction in the
pulse-distortion error. Thus, reducing the cavity length is an
effective way to suppress the total error for κint � 1/Wt .

To confirm the validity of the above argument, we evalu-
ated the dependence of the average errors on the cavity length
Lc. Figure 10 shows the average errors for Lc/Lc0 from 0.001
to 10, where Lc0 denotes the cavity length for the parameters
(g/γ , κint/γ ) = (2.0, 0.001). We chose these values because
the average errors with them fall out of the fault-tolerant area
for Wt = 30/γ , whereas they are in the fault-tolerant area
in the long-pulse limit [see Fig. 9(d)]. In contrast, as shown
in Fig. 10(b), the average errors for Wt = 30/γ are in the
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fault-tolerant area for Lc/Lc0 � 0.01. This indicates that re-
ducing the cavity length can relax the conditions for FTQC
with fast gates where κint is smaller than ≈1/Wt .

VI. SUMMARY

In summary, we have described the fault tolerance require-
ments on an atom-atom CPF gate based on cQED mediated
by a photon with a finite pulse length. In our analysis, we
optimized the external coupling rate, where two types of the
errors caused by photon loss and distortion of the output-pulse
shapes were minimized so that the FTQC requirements for
the FTQC scheme is most likely to be met. Our optimization
greatly relaxes the requirements for FTQC compared with the
previous optimization, in which the photon loss probability
was simply minimized, especially when the pulse length is
shorter than 1/κint .

In the case of a finite pulse length, the error caused by
the distortion of the output-pulse shape increases and the
FTQC requirements are more severe, when the timescales 1/κ

and κ/g2 are not short enough compared with pulse length
in the strong-coupling regime and in the bad-cavity regime,
respectively. Especially for small κint/γ , reducing the cavity
internal loss, i.e., the improving only κint, is less effective for
FTQC. This is because the optimal external coupling rates to
minimize photon loss and the pulse distortion are far apart,
resulting in a high total error for any external coupling rate.
However, even in that situation, reducing the cavity length can
reduce the total error probability.

In this paper, we focused on the fundamental errors in
the gate operation. A more concrete analysis specifying the
atomic system and decoherence effects should be conducted
in future. Our analysis of short photon pulses for obtaining
fast gate operations would be helpful in this regard.
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