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Semiclassical control theory of coherent anti-Stokes Raman scattering maximizing vibrational
coherence for remote detection
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A semiclassical theory that describes the generation of a coherent anti-Stokes Raman scattering (CARS) signal
is presented that maximizes vibrational coherence in a mode predetermined by the pump, the Stokes, and the
probe chirped pulse trains and takes into account the field propagation effects in a cloud of molecules. The
buildup of the anti-Stokes signal, which may be used as a molecular signature in the backward CARS signal,
is demonstrated numerically. The theory is based on the solution of the coupled Maxwell’s and Liouville–
von Neumann equations and focuses on the quantum effects induced in the target molecules by the control
pulse trains. A deep convolutional neural network technique is implemented to evaluate time-dependent phase
characteristics of the control fields. The effect of decoherence induced by spontaneous decay and collisional
dephasing is examined.
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I. INTRODUCTION

Coherent anti-Stokes Raman scattering (CARS) belongs to
the frontiers of nonlinear optics methods suited for imaging,
sensing, and detection without labeling or destruction [1].
The implementation of ultrafast pulses in stimulated Raman
spectroscopy in general and CARS in particular brings the
advantages of high peak power, three-dimensional spatial
resolution, and femtosecond time resolution to monitor vibra-
tional dynamics [2–12]. Femtosecond CARS has been widely
used and nowadays advances toward solving tasks related
to single-molecule spectroscopy, molecular-specific imaging,
sensing traces of molecules, and remote detection [13–18].
Success in these areas depends on a high level of chemical
sensitivity and specificity, the signal-to-noise ratio, and the
CARS signal intensity. Because the Raman fields’ evolution
is proportional to the macroscopic induced polarization [19],
which in its turn is proportional to a microscopic quantum
property of the material, quantum coherence, crafting ultra-
fast laser pulses to generate the maximum coherence in the
target molecules lies at the root of any method to impact
the molecular-specific response and to significantly enhance
the signal. To date, there have been a number of methods
developed to achieve the maximum coherence leading to the
enhancement of the signal from predetermined vibrational
modes in CARS using shaped ultrafast pulses. Among pi-
oneering works, including those for remote detection, are
Refs. [20–32] proposing different phase shapings of the ul-
trafast pulses. Other notable works involve multiplex CARS
using a combination of a narrow-band chirped pump and
probe and a transform-limited broadband Stokes pulse [33]
and a proposal of double parabolic phase functions in stimu-
lated Raman scattering (SRS) [34].

In this paper, we present a semiclassical theory of the
generation of an anti-Stokes signal by creating the maxi-
mum vibrational coherence in a predetermined mode with the

pump, the Stokes, and the probe chirped pulse trains in the
four-wave mixing in CARS and take into account the field
propagation effect in a cloud of molecules. The motivation is
to demonstrate the buildup of the anti-Stokes signal, which
may be used as a molecular signature in the backward CARS
signal. The theory is based on the solution of coupled sets
of Maxwell’s and Liouville–von Neumann equations and fo-
cuses on the quantum effects induced in the target molecules
by the shaped laser pulse trains. We analyze the enhancement
of the backscattered anti-Stokes signal upon multiple scatter-
ing of radiation from the target molecules, which modifies
propagating fields. We examine the impact of decoherence
induced by spontaneous decay and collisional dephasing. We
demonstrate that decoherence due to spontaneous decay can
be mitigated by applying the control pulse trains with the train
period close to the decay time.

This study demonstrates the buildup of coherent anti-
Stokes signal as a result of controllability of the vibrational
coherence in the target molecules upon the propagation of
four chirped pulse trains subject to multiple-scattering events,
utilizes the pulse train properties to mitigate decoherence,
and implements the deep convolution network approach to
evaluate the phase of the propagating fields, which provides
us with information about the relative phase change between
the pump, the Stokes, the probe, and the anti-Stokes pulses.

As a case study we use methanol vapor. Methanol
molecules have Raman active symmetric 2837-cm−1

(85.05 THz) and asymmetric 2942-cm−1 (88.20 THz)
stretch modes. These values are within the range of molecular
group vibrations in various biochemical species, which span
from 2800 to 3100 cm−1, making methanol a suitable choice
as a surrogate molecule for nonhazardous experiments in the
laboratory. Thus the results of methanol studies would be
useful for the development of remote detection schemes as
well as for environmental analyses.
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FIG. 1. Schematic of CARS: the pump (ωp) and the Stokes (ωs)
fields interact with the ground vibrational state |1〉 and the excited vi-
brational |2〉 state of the ground electronic state in the target molecule
to create a superposition state with coherence ρ12. The probe (ωpr)
field interacts with this superposition state to generate an anti-Stokes
field at frequency ωas. Parameters �s and �as are the one-photon
detunings, and δ is the two-photon detuning.

Various setups are available to perform CARS experiments
satisfying the phase-matching conditions to separate the di-
rectional anti-Stokes signal from the incident fields. However,
for particles having a size comparable to the wavelength, the
phase-mismatched factor is small, and it was shown that the
non-phase-matched CARS can provide an effective method
to probe complex molecules [22,35]. For methanol, the ra-
tio 4πρ0/λ � 1, where ρ0 ∼ 10−10 m is the target molecule
diameter; this relaxes the phase-matching condition and per-
mits consideration of the collinear copropagating fields’
configuration.

The paper is organized as follows. In Sec. II, a theoretical
framework is formulated. Section III discusses the machine
learning approach for a numerical analysis of the phase of the
propagating fields. Section IV contains the numerical results

for methanol and a discussion. The paper concludes with a
summary.

II. THEORETICAL FRAMEWORK

A. Coupled Maxwell’s and Liouville–von Neumann formalism

CARS is a third-order nonlinear process in which three
beams, the pump, the Stokes, and the probe, at frequencies
ωp, ωs, and ωpr , respectively, interact with the electronic
vibrational—vibronic—states of the target molecules to gen-
erate the anti-Stokes field at frequency ωas = ωp + ωpr − ωs

(Fig. 1). In our control scheme, we use linearly chirped pulse
trains which read

Ei(t ) =
N−1∑
k=0

Ei0 exp

{
− (t − tc − kT )2

2τ 2

}

× cos

{
ωi0(t − tc − kT ) + αi

(t − tc − kT )2

2

}
.

(1)

Here, T is the pulse train period, tc is the central time when
the peak value of the Gaussian field envelope is E0, τ is the
chirp-dependent pulse duration, ωi0 is the carrier frequency,
and αi, i = p, s, pr, is the linear chirp rate of an individ-
ual pump, Stokes, or probe pulse in the respective pulse
train. The values of αi are chosen in accordance with the
control scheme, which implies αs = −αp and αpr = αs − αp

for t � tc; and αs = αp and αpr = 0 for t > tc [36]. Such
chirped pulses induce the maximum coherence between vi-
bronic states in the target molecules via adiabatic passage
provided the two-photon detuning δ = 0. Any slightly differ-
ent vibrational mode not satisfying the two-photon resonance
condition, δ �= 0, is suppressed. The selectivity of the mode
excitation is determined by the condition τδ � 1. The chirped
pulse duration τ relates to the transform-limited pulse dura-
tion τ0 as τ = τ0(1 + α′2/τ 4

0 )1/2, and the temporal (α) and
spectral (α′) chirps relate as α = α′τ−4

0 /(1 + α′2/τ 4
0 ).

The matrix Hamiltonian written in the interaction represen-
tation and in the rotating-wave approximation (RWA) reads

H = h̄

2

⎛
⎜⎜⎜⎜⎝

0 0 
p0 (t )ei�st+i
αp
2 t2


as0 (t )ei�ast

0 0 
s0 (t )ei�st+i αs
2 t2


pr0 (t )ei�ast+i
αpr

2 t2


∗
p0

(t )e−i�st−i
αp
2 t2


∗
s0

(t )e−i�st−i αs
2 t2

0 0


∗
as0

(t )e−i�ast 
∗
pr0

(t )e−i�ast−i
αpr

2 t2
0 0

⎞
⎟⎟⎟⎟⎠. (2)

Here, 
p0 (t ) = −μ31/h̄Ep0 (t ), 
s0 (t ) = −μ32/h̄Es0 (t ),

pr0 (t ) = −μ42/h̄Epr0 (t ), and 
as0 (t ) = −μ41/h̄Eas0 (t ) are
the Rabi frequencies of respective fields, μi j is a dipole mo-
ment, �s and �as are the one-photon detunings on transitions
|1〉 → |3〉 and |1〉 → |4〉, respectively.

To account for the propagation effects in the scattering
process, we combine the Liouville–von Neumann equation
for the states with Maxwell’s equations for the fields. The
displacement current is determined as D = ε0E + P, where
P is the expectation value of the induced dipole moment and
ε0 is the permittivity of free space. The effects arising from

magnetization are neglected giving B = μ0H , where μ0 is
the permeability of free space. The wave equation for a field
propagating in the ẑ direction and having polarization in the
XY plane reads

(
∂

∂z
+ 1

c

∂

∂t

)(
− ∂

∂z
+ 1

c

∂

∂t

)
E = −μ0

∂2P

∂t2
. (3)

Assuming the field is E (z, t ) = 1
2 [E0(z, t )e−i[ωt−kz−φ(z,t )] +

c.c.] and considering E0(z, t ) and φ(z, t ) as slowly varying
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functions of position and time, Eq. (3) can be written as

− 2k

(
∂E0(z, t )

∂z
+ 1

c

∂E0(z, t )

∂t

)
sin [ωt − kz − φ(z, t )]

= −μ0
∂2

∂t2
P(z, t ). (4)

Substituting P(z, t ) = 1
2 [P0(z, t )e−i[ωt−kz−φ(z,t )] + c.c.] on

the right-hand side, Eq. (3) becomes

−2k

(
∂E0(z, t )

∂z
+ 1

c

∂E0(z, t )

∂t

)
= μ0ω

2Im[P0(z, t )]. (5)

In quantum theory, the macroscopic polarization P is
given by the expectation value of the electric dipole moment
μ̂; 〈P(z, t )〉 = NsTr{〈ρ(z, t ) · μ〉}, where Ns is the atomic
density of the target molecules. Applied to the four-level
system of CARS, the four components of P can writ-
ten as P0p(z, t ) = Nsμ13ρ13(z, t ), P0s(z, t ) = Nsμ23ρ23(z, t ),
P0pr (z, t ) = Nsμ24ρ24(z, t ), and P0as(z, t ) = Nsμ14ρ14(z, t ).
Eliminating the space component by substituting ∂

∂z = 1
c

∂
∂t

and using these expressions of polarizations, Eq. (5) casts into

1

c

∂Eq

∂t
= −Nsμ0μi j

Eq(t )

h̄
Imρi j, (6)

where q = p, s, pr, as and i, j are the indices of the states
involved in the respective transitions.

The density matrix elements ρi j are found from the
Liouville–von Neumann equation ih̄ρ̇ = [H, ρ] with the
Hamiltonian from Eq. (2). After applying the rotating-wave
approximation and the adiabatic elimination of the ex-
cited states assuming that ρ̇13, ρ̇14, ρ̇23, ρ̇24, ρ̇34 ≈ 0, ρ34 ≈
0, ρ33, ρ44 � ρ11, ρ22, and ρ̇33, ρ̇44 ≈ 0, and using the con-
trol condition on the chirp parameters αs − αp = αpr , the
density matrix elements ρ13, ρ23, ρ14, ρ24 read in terms of ρ11,
ρ22, and ρ12 in the field interaction representation as follows:

ρ13 = 1

2(�s + αpt )

p0(t )ρ11 + 1

2(�s + αpt )

s0(t )ρ12,

ρ23 = 1

2(�s + αst )

s0(t )ρ22 + 1

2(�s + αst )

p0(t )ρ21,

ρ14 = 1

2�as

as0(t )ρ11 + 1

2�as

pr0(t )ρ12,

ρ24 = 1

2(�as + αprt )

pr0(t )ρ22 + 1

2(�as + αprt )

as0(t )ρ21.

(7)

The details of the derivation of Eqs. (7) are presented in
Appendix A. Furthermore, substituting Eq. (7) into Eq. (6)
and rewriting the equations in terms of Rabi frequencies lead

to the following Maxwell’s equations:

∂
p0

∂t
= c

∂
p0

∂z
= − η

2(�s + αpt )
κ13ωp
s0(t )Im[ρ12],

∂
s0

∂t
= c

∂
s0

∂z
= η

2(�s + αst )
κ23ωs
p0(t )Im[ρ12],

∂
pr0

∂t
= c

∂
pr0

∂z
= η

2(�as + αprt )
κ24ωpr
as0(t )Im[ρ12],

∂
as0

∂t
= c

∂
as0

∂z
= − η

2(�as)
κ14ωas
pr0(t )Im[ρ12]. (8)

Here, κi j = Nμ0μ
2
i jc

2/(3h̄), N is the number density of
molecules given by NA/V0 under the ideal gas conditions
(where NA is Avogadro’s number), V0 is the molar volume, and
η is the fractional number density, which will be described in
detail in the next section. The factor 1/3 comes from the aver-
aging over all orientations of the molecular dipole 〈μxμy〉 =
〈μxμz〉 = 〈μyμz〉 = 0 and 〈μ j〉 = (1/3)μ2, j = x, y, z [37].
Considering the dipole moment of methanol μi j = 1.70D, the
constant κi j is found to be 3.636 × 10−3[ω21].

Equations (8) coupled with the multilayer model described
below are numerically solved using the transform-limited and
the control pulse trains to find the scattered anti-Stokes signal.
Note that the right-hand side of Eqs. (8), which describes the
induced polarization in the target molecules, depends only on
the imaginary part of coherence ρ21 out of all density matrix
elements. Thus the maximum value of this coherence provides
the optimal amplitude of the scattered signal.

To analyze the impact of decoherence due to spontaneous
decay and collisional dephasing of molecules, the Liouville–
von Neumann equations are augmented by the relaxation
terms. Spontaneous decay from state |i〉 to state | j〉 is de-
noted by γi j , while collisional dephasing between states |i〉
and | j〉 is denoted by �i j . Spontaneous decay impacts state
populations and coherence via the diagonal and off-diagonal
reduced density matrix elements, respectively, while colli-
sional dephasing is assumed to be weak enough not to change
state populations but strong enough to cause dipole phase
interruption via off-diagonal reduced density matrix elements.
Vibrational energy relaxation [38,39] within the ground elec-
tronic state is accounted for through parameter γ21. We neglect
vibrational energy relaxation within the excited electronic
state since the respective vibrational states |3〉 and |4〉 are
negligibly populated during dynamics. Vibrational energy re-
laxation is an important topic in chemical physics, since it
relates to fundamental reaction processes [40,41], conforma-
tional changes [42], or spectroscopic measurements [43,44],
and its understanding is the first step toward controlling these
phenomena.

ρ̇11 = −i/h̄[H, ρ]11 + γ21ρ22 + γ31ρ33 + γ41ρ44, ρ̇12 = −i/h̄[H, ρ]12 − (γ21/2 + �21)ρ12,

ρ̇13 = −i/h̄[H, ρ]13 − (γ31/2 + γ32/2 + γ21/2 + γ41/2 + �31)ρ13,

ρ̇14 = −i/h̄[H, ρ]14 − (γ41/2 + γ42/2 + γ21/2 + γ31/2 + �41)ρ14,

ρ̇22 = −i/h̄[H, ρ]22 − γ21ρ22 + γ32ρ33 + γ42ρ44, ρ̇23 = −i/h̄[H, ρ]23 − (γ31/2 + γ32/2 + γ21/2 + γ42/2 + �32)ρ23,

ρ̇24 = −i/h̄[H, ρ]24 − (γ41/2 + γ42/2 + γ21/2 + γ23/2 + �42)ρ24, ρ̇33 = −i/h̄[H, ρ]33 − (γ31 + γ32)ρ33,

ρ̇34 = −i/h̄[H, ρ]34 − �43ρ34, ρ̇44 = −i/h̄[H, ρ]44 − (γ41 + γ42)ρ44. (9)
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FIG. 2. The Gaussian distribution of the target molecules in (a) is
based on the density of molecules and in (b) is converted into the
multilayer model; molecules are given different colors to distinguish
the layers. Each layer in the multilayer model is characterized by
the fractional number density η and the distance to its adjacent layer
(�z)η. If Ns is the number of the target molecules and N is the
number of total molecules associated with the layer, the fractional
number density of that layer is defined as η = Ns/N . The distance
between the adjacent layers (�z)η changes according to the Gaussian
distribution of molecules. The incoming pulses pass through a series
of scattering events with the target molecules within each layer to
produce a detectable backscattered CARS signal.

B. The target molecules’ distribution

We consider the target molecules as a cluster of molecules
with its center located a large distance away from the source
and its density following a Gaussian distribution. We in-
troduce a multilayer model to analyze the propagation and
scattering of the pump, Stokes, probe, and anti-Stokes pulses
through this spatial distribution of molecules (Fig. 2). The
model mimics the distribution of molecules in the air and
allows us to solve the propagation and scattering tasks in an
elegant and simple way. In this model, each layer is character-
ized by the fractional number density η and the distance to its
adjacent layer (�z)η. The distance between the layers changes
according to the Gaussian distribution of molecules. If Ns is
the number of target molecules and N is the number of total
molecules associated with the layer, the fractional number
density of that layer is defined as η = Ns/N . Suppose all target
molecules in the central layer are arranged vertically next
to each other with no background molecules between them;
then the area occupied by these molecules is S = π (d/2)2Ns

giving Ns = 4S/πd2, where d is an approximate diameter of
the target molecule. If (�z)η is the width of this layer, the
total number of molecules N is [S(�z)η/V0]NA, where V0 is
the molar volume and NA is Avogadro’s number. This gives

η = Ns

N
=

4S
πd2( S(�z)η

V0

)
NA

= 4V0

πd2(�z)ηNA
. (10)

We consider Ns to be constant within each layer. Now, we take
N = Ns for the central layer and calculate its width. For any
subsequent layer the total number of molecules is different.
Given Ns, the increase in the layer width by �zη increases the
layer’s volume and thus decreases the target’s density by the
factor (1 + �zη/�z0). The width of each sequential layer is
calculated using Eq. (10). Consider that the density changes
as per the Gaussian distribution function having the full width
at half maximum (FWHM) σ and its maximum value at the

FIG. 3. An example of the multilayer model of a molecular dis-
tribution for the width of the Gaussian distribution in Eq. (11) of the
target molecules σ = 0.19 m. Here, each of the 200 vertical lines
represents the location of the scattering event, and the scattering
layers become more dense as the density peaks at the center.

center z0 of the cluster of molecules as

η = NsV0

SNA

√
2πσ

e−(z−z0 )2/(2σ 2 ). (11)

The maximum density η0 of the central layer is found
by substituting z = z0 in Eq. (11). This value of η is then
substituted in Eq. (10) to find the width of the central layer
(�z)η = (�z)0. Once we find the width of the central layer,
the η of the adjacent layer is found by substituting the new
value of z, z0 + (�z)η, in Eq. (11). This process is repeated to
find the entire density distribution of the cluster of molecules.
The distance between scattering layers (�z)η increases to-
wards both ends of the distribution. So we converted the
three-dimensional cluster of molecules into a set of two-
dimensional layers of molecules. Figure 3 shows a set of
layers, the distance between them, and the density associ-
ated with each layer. In numerical calculations, we consider
σ = 0.2 m with its center 1 km away from the source, which
together with η0 determines the total number of layers to be
equal to 199.

C. Propagation through the atmosphere

For completeness of the picture, it is necessary to take
into account the effects of the atmosphere as pulses propa-
gate through the molecular distribution. The propagation of
femtosecond pulses through the atmosphere under various air
conditions has been broadly investigated, e.g., Refs. [45,46].
Various effects during the propagation including the disper-
sion and the nonlinear self-focusing are not within the scope
of this paper. We use Beer’s law under the ideal conditions
to account for the change in the amplitude of the pulses as
they propagate through the atmosphere [47]. Assuming there
is no turbulence and the air is homogeneous, the intensity of
the pulse trains attenuates exponentially due to scattering and
absorption as they propagate. The intensity I as a function of
the distance z can be written as I (z) = I0e−βez, where βe is the
extinction coefficient that contains factors of both scattering
and absorption. We use the clear air atmospheric coefficient of
0.55 km−1 in numerical calculations [48] shown in Sec. IV.
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III. A DEEP NEURAL NETWORK FOR EVALUATION
OF THE PHASE OF THE FIELDS SCATTERED

FROM THE TARGET MOLECULES

To investigate the controllability of population dynamics
and vibrational coherence in the target molecules by propa-
gating electromagnetic fields, we need to know the evolution
of the key fields’ parameters after each scattering event. This
allows us to accurately calculate the quantum coherence and
the induced polarization at the sequential steps of the nu-
merical calculation. In the case of using the chirped pulse
control scheme within the multilayer model of molecule dis-
tribution, the coupled Maxwell’s and Liouville–von Neumann
equations alter the initial, predetermined phase of the incident
pulses impacting the response of the target molecules. Thus
extracting the analytical phase from the numerical solutions
of Eqs. (8) and verifying that the chirping scheme is applied
to each scattering event become extremely important tasks
for evaluating the response from the quantum system. To ac-
complish this goal, we developed a mechanism for classifying
different kinds of pulses from the numerical data, based on
their chirping, and extracting the chirp parameters from these
classified pulses using a machine learning technique [49,50].
This approach of extracting the information about the phase
of the pulses from the numerical grid and obtaining an accu-
rate value of the chirp parameters may have a wide range of
applications in quantum control and spectroscopy.

The machine learning model we created is the deep convo-
lutional neural network (CNN). A CNN is built to classify a
given pulse into one of three kinds: linear, quadratic, and the
chirp shape according to our control scheme, namely, αs =
−αp and αpr = αs − αp for t � tc, and αs = αp and αpr = 0
for t > tc. Another CNN is built to do the regression work; it
calculates the parameters of the fields and has a structure sim-
ilar to that of the classification neural network. The structure
will be discussed later in Appendix B.

Of principal importance for studying the phase of the nu-
merical pulses is the availability of training data. A massive
quantity of training data is a necessary requirement for deep
learning training to concur a problem [51]. Since it is difficult
to collect thousands of pieces of actual data from the experi-
ments, we created a program that generated the scattered laser
pulses randomly based on an arbitrary laser pulse model

E (t ) = E0e− t2

2τ2 cos[ωLt + M(t )]. (12)

Here, τ is the single-pulse duration, E0 is the peak value
of the field having the Gaussian envelope, and ωLt + M(t )
is the phase of the field having the modulation M(t ), which
is the key to quantum control. A different parity of the phase
modulation leads to different control scenarios [52,53]. Here,
we present M(t ) as an expansion in the Taylor series

M(t ) = a0 + a1t1 + a2t2 + a3t3 + · · · . (13)

Since in most cases the higher orders have a very limited
contribution, we created data for three kinds of phase using
terms up to the third power in time: The “linear” phase is de-
termined by two parameters, the carrier frequency a1 and the
linear chirp a2; then the field phase reads φ(t ) = a1t + a2t2.
The “second” phase is determined by three parameters, the
carrier frequency a1, the linear chirp a2, and the second-order

chirp a3; then the phase reads φ(t ) = a1t + a2t2 + a3t3. The
“roof” phase comprises two parts, before central time and
after, and is determined by three parameters, the carrier fre-
quency a1, the linear chirp ã2 for the first half of the pulse,

and the linear chirp
≈
a2 for the second half of the pulse; then

the constructed phase of the field reads φ(t ) = a1t + ã2t2 for

t � 0 and φ(t ) = a1t + ≈
a2t2 for t > 0.

We simulated the pulses with these three kinds of phase
using characteristic values of the field parameters and gener-
ated training data in the quantity of 5 × 104 for each kind by
varying the carrier frequency and the chirp rate. During the
training process, we applied the ADAM optimizer algorithm
with a learning rate of 0.1 and regularization of 0.02 [54]. The
loss function of the classification model is the cross entropy,
but the mean-square error is the loss function for the regres-
sion model. The early stop technique was also used to control
the overfitting [55]. The details of the construction of the
neural networks for both the classification and the regression
models are presented in Appendix B.

After training the classification and regression models, they
are combined to be used as directed. The classification block
classifies the random pulse and sends it to the corresponding
regression block to solve for the analytical parameters of one
of the three kinds of phase. The classification reaches an
accuracy of 97.93%, and the overall root-mean-square error of
the regression is smaller than 0.1, yielding to accurate enough
results of the deep learning model. Both the classification
and regression models are evaluated via a separate test data
set, which contains 3 × 103 samples. To demonstrate the high
accuracy of the analytical fit to the numerical data of the phase
of the field, we show several prototypical phases in Fig. 4.

IV. NUMERICAL RESULTS

Numerical analyses of the effects of the pulse shaping
on the optimization of quantum coherence and mitigation
of decoherence in the target molecules as well as the im-
pact of multiple scattering from the target molecules are
performed using the methanol molecule and addressing the
Raman active symmetric mode having frequency 2837 cm−1

(85.05 THz) [5]. This mode is chosen as a frequency unit
(ω21). The control scheme provides the selectivity of excita-
tion of Raman active modes with a resolution up to 1/τ , where
τ is a chirped pulse duration, which is about 2–3 cm−1. Thus
the asymmetric stretch mode having frequency 2942 cm−1

(88.20 THz) is not excited by the control scheme. The se-
lectivity of excitation is not preserved when broadband but
transform-limited pulse trains are applied.

First we present the results of the investigation of the
dependence of the population and coherence on the peak
Rabi frequency of the control pulses and reveal an adia-
batic type of solution leading to the maximum vibrational
coherence. Then we analyze the four-level system dynam-
ics subject to the interaction with the control pulse trains
in the presence of decoherence and demonstrate a sustain-
able value of vibrational coherence. Finally, we show the
solution of the coupled Maxwell’s and Liouville–von Neu-
mann equations for the control pulse trains interacting with
an ensemble of methanol molecules illustrating growth of
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FIG. 4. Different shapes of the phase of the field obtained numerically (solid curve) and using the deep convolution neural network model
(dashed curve) with different types of phase of the input pulse: (a) linear chirp, φ(t ) = a1t + a2t2, both the real and predicted kinds are “linear”,
the real parameters are 3.00 and 0.60 and the predicted parameters are 3.02 and 0.61; (b) quadratic dependence of the phase on time having
a2 < 0 in φ(t ) = a1t + a2t2 + a3t3, both the real and predicted kinds are “second”, the real parameters are 8.45, −7.81 and 1.69 and the
predicted parameters are 8.43, −7.76 and 1.67; (c) “roof” chirp having positive chirp rate for the first part of the pulse and negative chirp rate

for the second part of the pulse [36], φ(t ) = a1t + ã2t2 for t � 0, and φ(t ) = a1t + ≈
a2t2 for t > 0, both the real and predicted kinds are “roof”,

the real parameters are 0.40, 9.28 and −2.83 and the predicted parameters are 0.29, 9.40 and −2.96; (d) quadratic dependence of the phase
on time having a2 > 0 in φ(t ) = a1t + a2t2 + a3t3, both the real and predicted kinds are “second”, the real parameters are 2.00, 0.80 and 0.20
and the predicted parameters are 1.88, 1.01 and 0.18. Note that there is no discrepancy in the determination of the kind of phase; only the
parameters have rare errors.

the vibrational coherence and the anti-Stokes component of
the propagating fields. Where appropriate, we compare the
results with those for the transform-limited pulse trains’ in-
teraction with the symmetric stretch mode in the CARS
configuration.

A. Analysis of the state population and coherence induced
by the control pulses

Figures 5(a)–5(d) show the dependence of the populations
and coherence as a function of the peak Rabi frequency for
the case of the transform-limited pump, Stokes, and probe
pulses with zero and nonzero one-photon detuning [Figs. 5(a)
and 5(c)] and control pulses with zero and nonzero one-photon
detuning [Figs. 5(b) and 5(d)], respectively. The envelope of
the Rabi frequency is the same for all three transform-limited
pulses, which are also used as an initial condition for chirping
in the control scheme. The values of the Rabi frequency on
the abscissa are presented for the transform-limited pulse.
Decoherence is not taken into account to get a clear picture of
the dependence of the state population and coherence on the
Rabi frequencies. Under the one-photon resonance condition
shown for the transform-limited pulses in Fig. 5(a) and for
the chirped pulses in Fig. 5(b), the population of the excited

states is significant, which prevents us from achieving an
equal population between the ground state |1〉 and the excited
state |2〉. In the transform-limited pulse scenario in Fig. 5(a),
coherence periodically becomes zero, which is not the case for
the control pulse solution shown in Fig. 5(b). Such a behavior
in Fig. 5(a) is due to the pulse area type of solution, when
the probability amplitude of the states depends on the pulse
area, with π value leading to the population inversion and
2π value leading to the population return. In contrast, the
control pulse scheme provides an adiabatic type of response in
the four-level system with nonzero value of coherence, which
depends on the strength of the fields as shown in Fig. 5(b). The
one-photon detuning �s = �as = � = 1.0 ω21 minimizes the
transitional population of the excited states |3〉 and |4〉 for both
the transform-limited pulse and the control pulse scenarios
shown in Figs. 5(c) and 5(d), respectively. The one-photon
detuning shifts the point of first zero coherence toward higher
values of the Rabi frequencies in the transform-limited case
in Fig. 5(c). In the control case in Fig. 5(d), the first point of
equal population giving the maximum vibrational coherence
occurs at the peak Rabi frequency 
p0 = 0.75 ω21 and is
achieved due to two-photon adiabatic passage with a negligi-
ble involvement of the excited state manifold in the population
dynamics. Beyond this point, the coherence value varies
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FIG. 5. The population and coherence in the four-level system as
a function of the peak Rabi frequency 
p (units of ω21), which is the
same for the pump, Stokes, and probe pulses, ω21 = 85 THz. Parame-
ters used in the calculations are τ0 = 4.66 ω−1

21 , � = γ = 0. In (a) the
transform-limited pump, Stokes, and probe pulses with zero one-
photon detuning are applied, �s = �as = � = 0; in (b) the control
pump, Stokes, and probe pulses with zero one-photon detuning are
applied, α′

s/τ
2
0 = −1.0, � = 0; in (c) the transform-limited pulses

with nonzero one-photon detuning are applied, � = 1.0 ω21; and in
(d), control pulses with nonzero one-photon detuning are applied,
α′

s/τ
2
0 = −1.0, � = 1.0 ω21. Once coherence is built by the control

pulses, it never drops to zero, in contrast to the transform-limited
pulse solution. The detuned control scenario is robust for applications
in CARS microscopy and spectroscopy because it provides a sustain-
able value of coherence resilient to fluctuations in the intensity of the
Raman fields.

within the range from 0.5 to 0.35 for the peak Rabi frequency

p0 = 1 ω21 and higher. Once coherence is built, it never
drops to zero, in contrast to the transform-limited pulse solu-
tion. Thus the detuned chirped pulse control scheme is more
robust for applications in CARS microscopy and spectroscopy
because it provides one with a sustainable value of coherence
resilient to fluctuations in the intensity of the Raman fields. To
demonstrate adiabatic passage generated under the condition
of nonzero one-photon detuning, a time-dependent picture is
presented in Figs. 6(a)–6(d). The time dependence of the
population and coherence in the four-level system interacting
with the transform-limited pump, Stokes, and probe pulses
[Figs. 6(a) and 6(c)] and with the control pulses [Figs. 6(b)
and 6(d)] shows the population dynamics and coherence for
two values of the peak Rabi frequency 
p = 1.08 and 1.5 ω21.
The value of the Rabi frequency 
p0 = 1.08 ω21 is chosen
according to Fig. 5(d), which generates the second equal pop-
ulation between the ground state |1〉 and the excited state |2〉
and the maximum coherence ρ21 in the control pulse scenario.
This leads to adiabatic population transfer from the ground
state |1〉 to the excited state |2〉. Meanwhile, the value of
the peak Rabi frequency 
p0 = 1.5 ω21 is chosen because it
gives the first zero coherence for the transform-limited pulse
scenario in Fig. 5(c), which is not the case for the control
scheme in Fig. 5(d). Parameter γ is nonzero in order to see
how spontaneous decay impacts state dynamics for the chosen
representative values of the Rabi frequency. The time depen-
dence of the populations and a significant coherence are still
observed in Fig. 6(d) demonstrating benefits of the control
scheme.

FIG. 6. Dynamics of the population of four states ρ11 (dashed red
curve), ρ22 (dash-dotted green curve), ρ33 (dotted black curve), and
ρ44 (solid yellow curve), and coherence ρ21 (solid black curve), in
the four-level system interacting with the transform-limited pump,
Stokes, and probe pulses [(a) and (c)] and the control pulses [(b) and
(d)]; α′

s/τ
2
0 = −1.0 for the peak Rabi frequency of the pump, the

Stokes, and the probe pulses (before chirping for the control scheme);

p = 1.08 ω21 in (a) and (b) and 1.5 ω21 in (c) and (d). Other pa-
rameters are τ0 = 4.66 ω−1

21 , all γi j = γ = 1.176 × 10−2 ω21, � = 0,
� = 1.0 ω21.

B. Analysis of the four-level system dynamics subject
to the interaction with the control pulse trains

in the presence of decoherence

We analyze the impact of decoherence in the four-level
system through its interaction with the control pump, Stokes,
and probe pulse trains, each consisting of ten pulses, in Fig. 7.
The results in Figs. 7(a)–7(d) are given for the peak Rabi fre-
quency 
p0 = 1.08 ω21, and the results in Figs. 7(e)–7(h) are
given for 
p0 = 1.5 ω21. The value 
p0 = 1.08 ω21 provides
the maximum coherence (1/2) for the control pulse and a
high value of coherence (0.45) for the transform-limited pulse
according to Figs. 5(c) and 5(d), and the value 
p0 = 1.5 ω21

gives contrasting values of coherence for the control pulse
and transform-limited pulse applications, 0.39 and 0.07, re-
spectively. We analyze the controllability and sustenance of
vibrational coherence in the four-level system subject to a fast
spontaneous decay and collisions (∼10 fs); then we investi-
gate the impact of vibrational relaxation considering the decay
on the order of 1 ps and demonstrate how the loss of coherence
due to this process may be mitigated by periodically restoring
the population of the excited vibrational state |2〉 of the ground
electronic state, and then we compare this result with the case
when collisional dephasing is of the same order of magnitude
(∼1 ps).

Fast spontaneous decay and collisional dephasing rates
(1014 Hz) of the transitional excited states |3〉 and |4〉 impact
population dynamics and coherence even though these states
are negligibly populated, as shown in Figs. 7(a) and 7(e).
Here, populations and coherence ρ21 are presented as a func-
tion of time for γ4i = γ3i = �4i = �3i = 1014 Hz, i = 1, 2.
The population of states |1〉 ≈ 0.6 and |2〉 ≈ 0.4 is stable
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FIG. 7. Dynamics of the population of four states ρ11 (dashed
red curve), ρ22 (dash-dotted green curve), ρ33 (dotted black curve),
and ρ44 (solid yellow curve), and coherence ρ21 (solid black curve),
in the four-level system interacting with the control pulse trains
having a repetition rate of 1 THz and value of the peak Rabi fre-
quency in (a)–(d) equal to 
p0 = 1.08 ω21 and in (e)–(h) equal
to 
p0 = 1.5 ω21. In (a) and (e), γ4i = γ3i = �4i = �3i = 1014 Hz,
i = 1, 2, but no vibrational relaxation, γ21 = �21 = 0; in (b) and (f),
γ4i = γ3i = γ21 = 1012 Hz and �4i = �3i = �21 = 0; in (c) and (g),
γ4i = γ3i = �4i = �3i = γ21 = �21 = 1012 Hz; and in (d) and (h) the
four-level system interacting with the transform-limited pulse trains
and γ4i = γ3i = �4i = �3i = γ21 = �21 = 1012 Hz. The rest field pa-
rameters are τ0 = 4.66 ω−1

21 , �s = �as = 1.0 ω21, and α′
s/τ

2
0 = −1.0

for the control pulse scenario.

between pulses; however, even though the |3〉 and |4〉 states
are negligibly populated owing to the control scheme applied,
their fast decoherence while the pulse is on (chirped pulse
duration is 55 fs) impacts the populations of states |2〉 and |1〉,
and the coherence ρ21 periodically drops to ∼0.02. Between
pulses, such a fast relaxation from the excited states leads to a
reduced but stable value of coherence ρ21 ∼ 0.2.

Figures 7(b) and 7(f) show the system dynamics in the
presence of the vibrational relaxation of state |2〉 described
by γ21 = 1012 Hz. Spontaneous decay from the excited states
is also present: γ4i = γ3i = γ21 = 1012 Hz; �4i = �3i = �21 = 0.

Figures 7(b) and 7(f) demonstrate that coherence ρ21 is peri-
odically built up by the chirped pulses and then insignificantly
reduces its value between the pulses in the trains. The sponta-
neous decay rate γ = 1 THz from the excited state |4〉 to |3〉
does not make any contribution to the population dynamics
and was neglected. However, because the pulse train period
is chosen to match the decay time T = 1/γ21 = 1 ps (and no
collisional dephasing, �i j = 0), the population of state |2〉 that
decreased due to spontaneous decay is periodically restored
by control fields providing a sustainable value of coherence.
When vibrational relaxation is much faster (e.g., 1014 Hz) than
the pulse repetition rate (1012 Hz), coherence ρ21 becomes

negligibly small between pulses (not shown here). Switch-
ing on collisional dephasing such that �21 = γ21 = 1 THz
results in a more dramatic reduction of coherence ρ21 as is
shown in Figs. 7(c) and 7(g) because collisional dephasing
cannot be mitigated by this mechanism being represented by
off-diagonal density matrix elements. However, the resultant
coherence ρ21 does not drop to zero between pulses. This is
due to the choice of the pulse repetition rate as well as the con-
trol scheme leading to a negligible population of the excited
states |3〉 and |4〉 in the dynamics. In contrast, the simultane-
ous application of the transform-limited pump, Stokes, and
probe pulse trains shown in Figs. 7(d) and 7(h) results in
strong dependence of coherence on the peak Rabi frequency
in accordance with the pulse area solution. The simultaneous
application of the transform-limited pulses in this calculation
aims to provide a comparison with the chirped pulse scenario.
{Note that within a different control scheme, e.g., fractional
stimulated Raman adiabatic passage (F-STIRAP) [56], which
imposes a time delay between the Stokes and the pump pulses,
the transform-limited pulses generate the maximum coher-
ence.}The results of the calculations presented in Fig. 7 for
various values of the Rabi frequency of the control pulses and
the transform-limited pulses lead to the conclusion that for the
control scheme there is vibrational coherence in the system
for any value of the peak Rabi frequency within the adiabatic
range, while for the related transform-limited pulse scenario
this is not the case.

C. The impact of Beer’s law on the average intensity
of the propagating anti-Stokes signal

We apply Beer’s law under the ideal conditions to evaluate
the change in the amplitude of the anti-Stokes signal as pulses
propagate through the atmosphere. We apply ten transform-
limited pulses in the pulse train. Numerical analysis shows
that the amplitude of the pump, Stokes, and probe pulse trains
is reduced upon propagation, while the average intensity of
the anti-Stokes pulse trains is amplified as shown in Fig. 8
for propagation through 699 layers for both cases, with and
without impact from the air. The intensity of the anti-Stokes
pulse trains in the presence of the air is depreciated due to the
scattering and absorption effects.

D. Analysis of the coupled Maxwell’s and Liouville–von
Neumann equations and demonstration of the generation

of an anti-Stokes signal

Using Maxwell’s equations (8) coupled to the Liouville–
von Neumann equations (9), we numerically analyzed the
propagation effects of the control pump, Stokes, probe,
and generated anti-Stokes fields scattered from the target
molecules and observed the amplification of the anti-Stokes
component. A machine learning approach was implemented
to reveal the modulation of the phase of four field components
after each scattering. Figure 9 shows the control pump, Stokes,
probe, and built-up anti-Stokes pulses after each of five con-
secutive scattering events for the parameters of the fields

p(s,pr) = 85 THz (Ep(s,pr)0 ∼ 1.6 × 109 V/m), τ0 = 54.8 fs,
αs = −7 THz/fs, and �s = �as = � = 850 THz. The neural
networks explained in the previous section were optimized
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FIG. 8. Average intensity of the anti-Stokes pulses as a function
of the number of scattering layers calculated applying Beer’s law to
the propagation of a transform-limited pulse train consisting of ten
pulses. The black solid curve represents the change in the average
intensity as pulses undergo scattering through layers for the case of
βe = 0 (without taking air into consideration), and the red dashed
curve shows the case of βe = 0.55 km−1. The one-photon detuning
is � = 1 ω21 in (a) and � = 10 ω21 in (b). The standard deviation
of the target molecules’ distribution is σ = 1 m. The depreciation of
intensity is due to scattering and absorption in the air.

to work for these parameters. The classifier neural network
predicted the pulses to be the third kind described above, and
the regression neural network provided the chirping parame-
ters. After five scattering events, the change in the initial chirp
rate αs is less than 0.001% indicating that the control scheme
would work for a large number of layers. The anti-Stokes
component is built up having the peak Rabi frequency about
10−6
p after the fifth iteration.

We also analyzed propagation effects using the transform-
limited pump, Stokes, and probe pulse trains having the peak
Rabi frequency 
p(s,pr) = 85 THz = ω21 and being largely
detuned from the one-photon transitions; the detuning is
�s = �as = � = 10 ω21 = 850 THz for the adiabatic regime
(Fig. 10). We consider ten pulses in the pulse train having
period T = 1 ps. The increase in the peak value of the anti-
Stokes Rabi frequency 
as(t ) by two orders of magnitude is
observed 1 m (199 layers) away from the peak molecular den-
sity. The coherence is increasing from pulse to pulse, and the
population is adiabatically transferred from the ground state
|1〉 to the excited state |2〉 in the four-level system during the
interaction with four fields in the CARS configuration. Here,
an adiabatic regime is achieved due to a large one-photon
detuning � = 10 ω21 and the choice of the peak Rabi fre-
quency 
p(s,pr) = ω21, which result in a negligible population
of the transitional states |3〉 and |4〉.

From the results above it follows that the implementa-
tion of the control pulse trains in the four-wave mixing in

FIG. 9. The pump, the Stokes, the probe, and the built-up anti-
Stokes chirped pulses after each of five consecutive scattering events.
Here, 0, 1, 2, 3, 4, and 5 represent the incoming, first, second, third,
fourth, and fifth scattering events, respectively. The incident pulses
are chirped in accordance with the control scheme. The parame-
ters of the fields are 
p(s,pr) = 85 THz (Ep(s,pr)0 ∼ 1.6 × 109 V/m),
τ0 = 54.8 fs, αs = −7 THz/fs, and �s = �as = � = 850 THz. The
anti-Stokes field is built up gradually and constitutes ∼10−6 of the
amplitude of the incident field.

CARS is more robust for the generation of a sustainable anti-
Stokes backscattered signal compared with the use of a set of
transform-limited pulses. This is due to the adiabatic regime
of light-matter interaction, which preserves vibrational coher-
ence and facilitates a buildup of the anti-Stokes signal. For
the case in which the phase-matching conditions are relaxed,
given that the size of the molecules is less than the wavelength
of the incident fields, a collinear copropagating configura-
tion of CARS may be created using methanol as a surrogate
target. Because the anti-Stokes radiation is generated as a
result of the stimulated Raman scattering process, it is highly
directional and is built up in the forward and the backward
directions dominantly [22,57]. Therefore the backscattered
anti-Stokes signal will reach a detector near the laser source.
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FIG. 10. Scattering dynamics using the transform-limited pump,
Stokes, and probe pulse trains having the peak Rabi frequency equal
to the frequency between states |1〉 and |2〉, 
p(s,pr)0 = ω21, and being
largely detuned from the one-photon transitions; the detuning is
�s = �as = � = 10 ω21 = 850 THz for the adiabatic regime. There
are ten pulses in each pulse train. The first column shows ten anti-
Stokes pulses (top), the state coherence (middle), and populations
(bottom) after the first scattering event; the second column shows
the same after the 199th scattering event. Parameters: σ = 0.2 m;
199 layers provide a distance of 1 m away from the peak molecular
density; τ0 = 54.8 fs; T = 1 ps.

The following parameters of the fields may be used in an
experiment: a pulse duration of the order of 100 fs, a peak field
amplitude of E0p(s,pr) ∼ 1.6 × 109 V/m; control pulse chirps
obeying the relationship αs = −αp, αpr = αs − αp for the first
half of the pulse duration, t � tc, and obeying αs = αp, αpr =
0 for t > tc; a value of αs = −7 THz/fs, a pulse train period
of the order of the spontaneous decay time, and a one-photon
detuning of the order of � ∼ 1 fs−1.

V. SUMMARY

We present a semiclassical theory of the four-wave mixing
process in coherent anti-Stokes Raman scattering implement-
ing control pulse trains. The theory is based on a set of
Maxwell’s equations for propagation of the pump, the Stokes,
the probe, and the anti-Stokes components of the fields cou-
pled to the Liouville–von Neumann equations with relaxation
for dynamics in the target molecules. It is intended for inves-
tigations of the remote detection of biochemical molecules.
A multilayer model is developed to account for the spatial
distribution of the target molecules in the air mimicking the
environmental conditions. A machine learning approach is
developed to analyze the evolving phase of the pulse trains
as they undergo scattering within each layer. The approach
makes use of the deep convolutional neural network. The
quantum control method for the incident pulse shaping is
implemented, which optimizes the macroscopic induced po-
larization in the target molecules by maximizing vibrational
coherence. The method implies chirping of the incident pulse
trains, which induce adiabatic population transfer within four
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FIG. 11. The structure of the deep neural network. The same
structure is shared by the phase type classifier and the three phase
value regression models, except for the last output layer. Three con-
volutional blocks are used sequentially to extract the highly nonlinear
information from the input time-dependent tensor. The linear layer
is used after flattening the output from the last convolutional block.
Conv, convolution; MaxPooling, maximum pooling.

states in the CARS scheme leading to a sustainable, high
vibrational coherence. Importantly, the transitional excited
states get negligibly populated, thus minimizing the impact of
spontaneous decay and associated losses of coherence from
these states. Moreover, the choice of the pulse train period to
match the spontaneous decay time permits for mitigation of
the vibrational decay. Enhancement of the anti-Stokes field
is observed upon propagation through the ensemble of target
molecules, achieved by the control pulse trains as well as by
the transform-limited pulse trains with a large detuning and a
carefully chosen Rabi frequency. The coherent enhancement
of the anti-Stokes signal and mitigation of decoherence by
chirped control fields form a foundation for the propagation of
the anti-Stokes signal through distances on a kilometer scale.
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APPENDIX A: DERIVATION OF COUPLED MAXWELL’S
AND LIOUVILLE–VON NEUMANN EQUATIONS

Maxwell’s equations, with no free currents or charges, read

∇ · (ε0E + P) = 0, (A1)

∇ × E = −∂B/∂t, (A2)

∇ × B = μ0∂ (ε0 + P)/∂t, (A3)

∇ · B = 0. (A4)

From Eqs. (A2) and (A3) we obtain the wave equation

∇2E − ε0μ0
∂2E

∂2t
= ∇(∇ · E ) + μ0

∂2P

∂2t
. (A5)

It follows from Eq. (A1) that ∇ · E = ∇ · P/ε0 in a space free
from charges. In a plane-wave limit, when the wavelength is
much less than the beam radius and neglecting any diffraction
effects in the transverse direction, fields propagate in the ẑ
direction and have polarization in the XY plane. Then ∇ · P
may be set to zero, and the wave equation reads

(
∂

∂z
+ 1

c

∂

∂t

)(
− ∂

∂z
+ 1

c

∂

∂t

)
E = −μ0

∂2P

∂t2
. (A6)

Assuming the field is E (z, t ) = 1
2 [E0(z, t )e−i[ωt−kz−φ(z,t )] +

c.c.] and polarization is P(z, t ) = 1
2 [P0(z, t )e−i[ωt−kz−φ(z,t )] +

c.c.] and considering E0(z, t ) and φ(z, t ) as slowly varying
functions of position and time, we write

−∂E (z, t )

∂z
= −1

2
[e−iωt eikzeiφ(z,t ) ∂E0(z, t )

∂z
+ ikE0(z, t )e−iωt eikzeiφ(z,t ) + i

∂φ(z, t )

∂z
E0(z, t )e−iωt eikzeiφ(z,t ) + c.c.], (A7)

1

c

∂E (z, t )

∂t
= 1

2c
[e−iωt eikzeiφ(z,t ) ∂E0(z, t )

∂t
− iωE0(z, t )e−iωt eikzeiφ(z,t ) + i

∂φ(z, t )

∂t
E0(z, t )e−iωt eikzeiφ(z,t ) + c.c.]. (A8)

Then (
− ∂

∂z
+ 1

c

∂

∂t

)
E = − ik

2
[E0(z, t )e−iωt eikzeiφ(z,t ) − c.c.] − iω

2c
[E0(z, t )e−iωt eikzeiφ(z,t ) − c.c.]

= −ik[E0(z, t )e−i[ωt−kz−φ(z,t )] − c.c.]

= −2ik ImE . (A9)

By substituting Eq. (A9) into Eq. (A6), using ω/c = k, and later assuming real fields we arrive at

− ik

(
∂

∂z
+ 1

c

∂

∂t

)
[E0(z, t )e−i[ωt−kz−φ(z,t )] + c.c.]

= −ik
∂E0(z, t )

∂z
e−i[ωt−kz−φ(z,t )] + ik

∂E∗
0 (z, t )

∂z
ei[ωt−kz−φ(z,t )] − ik

c

∂E0(z, t )

∂t
e−i[ωt−kz−φ(z,t )] + ik

c

∂E∗
0 (z, t )

∂t
ei[ωt−kz−φ(z,t )]

= −ik

[(
∂E0(z, t )

∂z
+ 1

c

∂E0(z, t )

∂t

)
e−i[ωt−kz−φ(z,t )] −

(
∂E∗

0 (z, t )

∂z
+ 1

c

∂E∗
0 (z, t )

∂t

)
ei[ωt−kz−φ(z,t )]

]

= −2k

(
∂E0(z, t )

∂z
+ 1

c

∂E0(z, t )

∂t

)
1

2i

(−e−i[ωt−kz−φ(z,t )] + ei[ωt−kz−φ(z,t )]
)

= −2k

(
∂E0(z, t )

∂z
+ 1

c

∂E0(z, t )

∂t

)
sin [ωt − kz − φ(z, t )]

= −μ0
∂2

∂t2
P(z, t ). (A10)

For P(z, t ) = 1
2 [P0(z, t )e−i[ωt−kz−φ(z,t )] + c.c.],

∂2

∂t2
P(z, t ) = −ω2

(
1

2
[P0(z, t )e−i[ωt−kz−φ(z,t )] + c.c.]

)
= −ω2Re[P(z, t )]. (A11)

Substituting these into Eq. (A10) gives

− 2k

(
∂E0(z, t )

∂z
+ 1

c

∂E0(z, t )

∂t

)
sin [ωt − kz − φ(z, t )]

= μ0ω
2{Re[P0(z, t )] cos (ωt − kz) + Im[P0(z, t )] sin [ωt − kz − φ(z, t )]}, (A12)

leading to

−2k

(
∂E0(z, t )

∂z
+ 1

c

∂E0(z, t )

∂t

)
= μ0ω

2Im[P0(z, t )]. (A13)
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In quantum theory, a measurable quantity is the expectation value, which for macroscopic polarization is an expectation value
of the electric dipole moment operator μ̂, 〈P(z, t )〉 = NsTr{〈ρ(z, t ) · μ〉}, where Ns is the atomic density of the target molecules.
Applied to the four-level system of CARS, it contains four components corresponding to each of the four transitions:

Pp(z, t ) = 2NsRe[μ13ρ13(z, t )ei[ωpt−kpz−φ(z,t )]], Ps(z, t ) = 2NsRe[μ23ρ23(z, t )ei[ωst−ksz−φ(z,t )]],

Ppr (z, t ) = 2NsRe[μ24ρ24(z, t )ei[ωprt−kpr z−φ(z,t )]], Pas(z, t ) = 2NsRe[μ14ρ14(z, t )ei[ωast−kasz−φ(z,t )]], (A14)

giving P0p(z, t ) = Nsμ13ρ13(z, t ), P0s(z, t ) = Nsμ23ρ23(z, t ), P0pr (z, t ) = Nsμ24ρ24(z, t ), and P0as(z, t ) = Nsμ14ρ14(z, t ).
For the four components of propagating fields in CARS, Eq. (A13) reads as follows:

∂Ep

∂z
+ 1

c

∂Ep

∂t
= −Ns

μ0μ13ω
2
p

kp
Imρ13(z, t ),

∂Es

∂z
+ 1

c

∂Es

∂t
= −Ns

μ0μ23ω
2
s

ks
Imρ23(z, t ),

∂Epr

∂z
+ 1

c

∂Epr

∂t
= −Ns

μ0μ24ω
2
pr

kpr
Imρ24(z, t ),

∂Eas

∂z
+ 1

c

∂Eas

∂t
= −Ns

μ0μ14ω
2
as

kas
Imρ14(z, t ). (A15)

If t̄ = (t − z
c ), then dt

dz = ( dt̄
dz + 1

c ), which leads to ∂
∂z = ∂

∂t
∂t
∂z = 1

c
∂
∂t . Taking into account that kq = ωq/c and cωqh̄ = Eq, where

q = p, s, pr, as, Eq. (A15) becomes

1

c

∂Eq

∂t
= −Nsμ0μi j

Eq(t )

h̄
Imρi j . (A16)

We find the density matrix elements ρi j from the Liouville–von Neumann equation ih̄ρ̇ = [H, ρ] and using the above
Hamiltonian in Eq. (2). We start by opening the commutator and applying the substitutions

ρ12 = ρ̃12ei(αp−αs )t2/2, ρ13 = ρ̃13ei(�st+αpt2/2), ρ14 = ρ̃14ei�ast , ρ23 = ρ̃23ei(�st+αst2/2),

ρ24 = ρ̃24ei(�ast+αprt2/2), ρ34 = ρ̃34ei(�as−�s )t−iαpt2/2. (A17)

Next, we apply the rotating-wave approximation and use the control condition on the chirp parameters αs − αp = αpr , and we
arrive at

ρ̇11 = −i
p0(t )/2ρ̃31 + i
∗
p0(t )/2ρ̃13 − i
as0(t )/2ρ̃41 + i
∗

as0(t )/2ρ̃14,

ρ̇22 = −i
s0(t )/2ρ̃32 + i
∗
s0(t )/2ρ̃23 − i
pr0(t )/2ρ̃42 + i
∗

pr0(t )/2ρ̃24,

ρ̇33 = i
p0(t )/2ρ̃31 − i
∗
p0(t )/2ρ̃13 + i
s0(t )/2ρ̃32 − i
∗

s0(t )/2ρ̃23,

ρ̇44 = i
as0(t )/2ρ̃41 − i
∗
as0(t )/2ρ̃14 + i
pr0(t )/2ρ̃42 − i
∗

pr0(t )/2ρ̃24,

˙̃ρ12 = iαprt ρ̃12 − i
p0(t )/2ρ̃32 − i
as0(t )/2ρ̃42 + i
∗
s0(t )/2ρ̃13 + i
∗

pr0(t )/2ρ̃14,

˙̃ρ13 = −i(�s + αpt )ρ̃13 − i
p0(t )/2(ρ33 − ρ11) − i
as0(t )/2ρ̃43 + i
s0(t )/2ρ̃12,

˙̃ρ14 = −i�asρ̃14 − i
p0(t )/2ρ̃34 − i
as0(t )/2(ρ44 − ρ11) + i
pr0(t )/2ρ̃12,

˙̃ρ23 = −i(�s + αst )ρ̃23 − i
s0(t )/2(ρ33 − ρ22) − i
pr0(t )/2ρ̃43 + i
p0(t )/2ρ̃21,

˙̃ρ24 = −i(�as + αprt )ρ̃24 − i
pr0(t )/2(ρ44 − ρ22) − i
s0(t )/2ρ̃34 + i
as0(t )/2ρ̃21,

˙̃ρ34 = i(�s − �as + αpt )ρ̃34 − i
∗
p0(t )/2ρ̃14 − i
∗

s0(t )/2ρ̃24 + i
as0(t )/2ρ̃31 + i
pr0(t )/2ρ̃32.

After performing adiabatic elimination of the ex-
cited states assuming that ρ̇13, ρ̇14, ρ̇23, ρ̇24, ρ̇34 ≈ 0, ρ34 ≈
0, ρ33, ρ44 � ρ11, ρ22, and ρ̇33, ρ̇44 ≈ 0, the density matrix
elements ρ13, ρ23, ρ14, ρ24 read in terms of ρ11, ρ22, and ρ12

as follows:

ρ13 = 1

2(�s + αpt )

p0(t )ρ11 + 1

2(�s + αpt )

s0(t )ρ12,

ρ23 = 1

2(�s + αst )

s0(t )ρ22 + 1

2(�s + αst )

p0(t )ρ21,

ρ14 = 1

2�as

as0(t )ρ11 + 1

2�as

pr0(t )ρ12,

ρ24 = 1

2(�as + αprt )

pr0(t )ρ22 + 1

2(�as + αprt )

as0(t )ρ21.

(A18)

Substituting Eq. (A18) into Eq. (A16) and rewriting the
equations in terms of Rabi frequencies provide the following
Maxwell’s equations:

∂
p0

∂t
= c

∂
p0

∂z
= − η

2(�s + αpt )
κ13ωp
s0(t )Im[ρ12],

∂
s0

∂t
= c

∂
s0

∂z
= η

2(�s + αst )
κ23ωs
p0(t )Im[ρ12],

∂
pr0

∂t
= c

∂
pr0

∂z
= η

2(�as + αprt )
κ24ωpr
as0(t )Im[ρ12],
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∂
as0

∂t
= c

∂
as0

∂z
= − η

2(�as)
κ14ωas
pr0(t )Im[ρ12].

(A19)

APPENDIX B: THE STRUCTURE OF THE DEEP
NEURAL NETWORKS

Both the classification and the regression neural networks
share the same core structure. Since the numerical pulses,
which we generated as the training data, have 2500 time
steps, all models have the input shape of 2500 × 1. There
are three blocks of the miniconvolutional neural network in
the models. The first block contains three one-dimensional
(1D) convolutional layers with a kernel size of 3. The second
block has two layers of the 1D convolutional network with a
kernel size of 5. The third block has a single 1D convolutional
layer with a kernel size of 7. All the convolutional layers are
activated by the rectified linear unit (ReLU) function [58] and
group normalization [59]. There is a maximum pooling layer

of pool size 4 after each block. There is a linear layer of size
1024 after the output of the convolutional blocks is flattened.

The structure of the neural network, shown in Fig. 11, is
determined by the validation results, together with the other
hyperparameters, such as the learning rate, the choice of op-
timizer, and the regularization. We adjust the kernel size, the
number of blocks, and the number of layers in each block to
have the optimal validation result. The 1D convolution layers
are used because they are suitable for extracting the infor-
mation within the subregion of the whole input tensor. This
matches our aim, which is to extract the instantaneous value
of the analytical parameter from the numerical sequential,
time-dependent data. Besides, we use several 1D convolution
layers as a block to extract the high-dimension information
from the input tensor. Three kernels of size 3 cover the same
area of the input tensor as a single kernel of size 7, but the
former catches higher-dimension information than the latter.
We did not set all blocks to three layers of kernel size 3
because we would like to control the overfitting problem.
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