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Absence of Galilean invariance for pure-quartic solitons
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Optical temporal solitons, arising from self-phase modulation and negative quadratic (β2) dispersion, are
Galilean invariant, and therefore their properties do not depend on their group velocity. This is no longer true for
pure-quartic soliton pulses arising from quartic (β4) dispersion, for which a change in group velocity necessarily
leads to nonzero quadratic and cubic (β3) dispersion. Analyzing the generalized nonlinear Schrödinger equation
for such dispersion relations analytically and numerically, we find that pure-quartic solitons are members of a
larger family traveling at other speeds. These solitons, which appear to be stable, have a complex phase structure
and have an asymmetric spectrum. Our results extend the understanding of solitons arising from high orders of
dispersion.
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I. INTRODUCTION

Temporal solitons are optical pulses arising from the in-
terplay between the nonlinear and dispersive effects in a
medium [1]. By balancing these effects, solitons propagate
while maintaining their temporal and spectral shapes. These
pulses have been used to develop numerous photonic applica-
tions including telecommunications [2,3], ultrafast lasers [4],
optical buffers [5], and frequency comb generation [6,7].
Generally, only negative quadratic dispersion (β2 < 0) is con-
sidered, as higher dispersion orders are usually weak and act
as perturbations [8–11].

These pulses are solutions to the nonlinear Schrödinger
equation (NLSE) [12]. To derive this equation, we choose a
carrier frequency ω0 which is close to the frequency of the
pulse we are considering and consider its associated wave
number via the linear dispersion relation of the medium or
waveguide. At ω0, the linear dispersion relation has a slope
β1 ≡ dβ/dω, and a curvature β2 ≡ d2β/dω2. Apart from
a multiplying factor describing the transverse shape of the
mode, the complex electric field of the pulse is written as
ψ (z, t )e−iω0t , where ψ is the envelope and t is time. It is then
found that ψ satisfies

i
∂ψ

∂z
+ iβ1

∂ψ

∂t
− β2

2

∂2ψ

∂t2
+ γ |ψ |2ψ = 0, (1)

where γ is the nonlinear parameter. The usual form of the
NLSE is obtained using the coordinates

Z = z, T = t − β1z, (2)

where T is the retarded time. In these coordinates, a pulse
propagating at the velocity 1/β1 is stationary. In terms of Z
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and T , Eq. (1) takes the form

i
∂ψ

∂Z
− β2

2

∂2ψ

∂T 2
+ γ |ψ |2ψ = 0, (3)

which is the standard NLSE [13]. Equation (3) implies that
we assumed the linear dispersion relation β = β(ω) to be
a parabolic function so that higher-order derivatives are ab-
sent or negligible. This is generally true in standard optical
waveguides at the central frequency ω0 away from the zero-
dispersion wavelength [13]. One implication is that if we
change the reference frequency ω0 then Eq. (3) is unchanged.
This property, that the evolution equation is independent of the
frame in which it applies, is referred to as Galilean invariance.

A consequence of Galilean invariance is that solutions of
Eq. (1) do not depend on the speed at which they propagate.
In particular, its fundamental soliton solutions, which require
β2 < 0, form a two-parameter family, with the first parameter
(μ) determining the soliton’s amplitude and energy, whereas
the second parameter is the group velocity v with respect to
the frame that is used to describe it. However, the latter can
always be made to vanish by choosing an appropriate refer-
ence frame via Eq. (2). Solitons lacking Galilean invariance
were earlier studied in the context of Bose-Einstein conden-
sates [14–18].

Recent studies have demonstrated experimentally and nu-
merically the existence of pure-quartic solitons (PQSs), which
arise from the balance between self-phase modulation and
negative fourth-order dispersion (β4 < 0) [19–22]. They have
different properties than conventional solitons, with potential
applications in high-energy pulse lasers and microresonator
frequency combs [21–23]. PQSs exist at a unique carrier
frequency ω0 where both the quadratic (β2) and cubic (β3)
dispersion vanish. PQSs satisfy the modified NLSE [19,20]

i
∂ψ

∂Z
+ β4

4!

∂4ψ

∂T 4
+ γ |ψ |2ψ = 0, (4)
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with β4 < 0, and they propagate at the group velocity associ-
ated with the frequency ω0. However, Eq. (4), in contrast to
Eq. (3), is not Galilean invariant: changing the reference fre-
quency ω0 not only changes the group velocity but also leads
to nonzero quadratic and cubic dispersion terms. Concretely,
for a quartic dispersion relation centered at ω0 and defined
as β(ω) = β4(ω − ω0)4/24, a detuning � in the carrier fre-
quency introduces quadratic and cubic dispersion terms, and
Eq. (4) becomes

i
∂ψ

∂Z
− �2 β4

4

∂2ψ

∂T 2
− i�

β4

6

∂3ψ

∂T 3
+ β4

4!

∂4ψ

∂T 4
+ γ |ψ |2ψ = 0,

(5)
in the frame associated with the frequency ω0 + �. Thus,
changing frames leads to effective quadratic and cubic disper-
sions β̄2 = �2β4/2 and β̄3 = �β4, respectively. The effects
of this additional dispersion on the properties of PQSs have
yet to be reported.

In this paper, we investigate theoretically and numeri-
cally the consequences of a lack of Galilean invariance of
Eq. (4) for the PQS properties. We find that the resulting
soliton pulses form a continuous family of solitons that can be
parametrized by their amplitude and by their detuning � and
that differ in shape from PQSs. Our results show that although
the temporal power remains symmetric, for � �= 0 the phase
is no longer constant and the spectrum becomes asymmetric.
Using propagation simulations, we show that these soliton
solutions are stable. These results provide insights on tem-
poral solitons in the presence of higher-order dispersion and
we expect them to stimulate future studies in other areas of
physics and applied mathematics.

The outline of this paper is as follows. In Sec. II we inves-
tigate stationary solutions of Eq. (5) using two approaches.
First, in Sec. II A we use an analytic approach that gives the
properties of the solitons’ tails. In Sec. II B we use a numerical
approach to find full stationary solutions. We investigate the
stability of these solutions using propagation simulations in
Sec. III. The expression for the energy flow in the presence
of high-order dispersion is discussed in Sec. IV. In Sec. V we
briefly discuss the dynamics of these solutions in simulations
of collisions. Finally, in Sec. VI we discuss our results and
conclude.

II. STATIONARY SOLUTIONS

In this section we investigate stationary solutions of Eq. (5)
using an ansatz of the form

ψ (Z, T ) = u(T )eiμz (6)

so the shape is preserved during propagation. Function u thus
satisfies

−μu − �2 β4

4

∂2u

∂T 2
− i�

β4

6

∂3u

∂T 3
+ β4

4!

∂4u

∂T 4
+ γ |u|2u = 0.

(7)
Although in the presence of quadratic dispersion u can be
taken to be real, in the more general case considered here,
this is not so.

We first consider the low-intensity limit of Eq. (7) in
which the nonlinear term is neglected. This gives analytic
results about the tails of the solutions [20,24]. We then solve

Eq. (7) numerically using the Newton-conjugate-gradient
method [25,26] to find full stationary solutions. In all of our
numerical calculations we take β4 = −2.2 ps4 mm−1, μ =
1.76 mm−1, and γ = 4.07 W−1 mm−1.

A. Linear limit–tail analysis

We consider the low-intensity limit in which the nonlinear
term in Eq. (7) can be neglected. The resulting linear differen-
tial equation has solutions of the form

4∑
j=1

a je
λ j T , (8)

where the a j’s are complex constants and the λ j’s satisfy the
algebraic equation

λ4 − 4i�λ3 − 6�2λ2 + 24μ

|β4| = 0, (9)

where we have explicitly indicated that β4 < 0. It is straight-
forward to see that, if λ is a solution, then so is −λ	. Therefore,
the solutions are symmetric with respect to the imaginary
axis, with the roots for which Re(λ) > 0, i.e., exponentially
increasing with time, corresponding to the leading edge of the
pulse, and similarly the roots with Re(λ) < 0 correspond to
the trailing edge. As we see in Sec. II B, this symmetry is
consistent with the finding that the power of the solutions is
symmetric in time.

When � = 0, Eq. (9) has the four solutions λ =
(6μ/|β4|)1/4(±1 ± i) ≡ η(±1 ± i), forming a square in the
complex plane [20]. This implies that the tails of the solitons
are real and take the form e±ηT cos(ηT + φ), where φ is a
phase that can only be found from solving the full nonlinear
equation, and where the signs apply to the leading and the
trailing edges.

For � �= 0, but sufficiently small so that the term in �2 can
be neglected, the roots are found to be λ ≈ η(±1 ± i) + i�.
Thus the roots move vertically in the complex plane, reflecting
the change in the reference frequency.

We determine the roots numerically when the linear and
quadratic terms in � are comparable in magnitude. However,
when � is sufficiently large so that the quadratic term in λ

dominates the cubic and quartic terms, then we find that λ =
±√

4μ/|β4|/�. Including the cubic term in Eq. (9) then gives
the better approximation

λ = ±
√

4μ

|β4|
1

�

(
1 ∓ 2

3
i
√

μ

|β4|
1

�2

)
. (10)

Substituting the result without the correction into Eq. (9), it
is then found that the other two roots are approximately λ =√

2(±1 + i
√

2)�. The transition between the regime where
� is small, in which the roots move vertically, and where �

is sufficiently large to cause the solutions to change substan-
tially can be estimated as the intersection of the approximate
expressions for the positions of the roots. By setting the real
part of Eq. (10) equal to η, we find the critical detuning

�c = 2

61/4

(
μ

|β4|
)1/4

≈ 1.28

(
μ

|β4|
)1/4

. (11)
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FIG. 1. Roots λ in the complex plane with � increasing from
� = 0 (large dots) to � = 2 rad ps−1 in steps of 0.1 rad ps−1 in
the directions of the arrows. The vertical dashed lines give the
asymptotes as � → 0, whereas the diagonal dashed lines and the
dashed curves are the asymptotes as � → ∞. The blue stars give
the location of the roots when � = �c.

A numerical calculation of the roots is shown in Fig. 1.
For � = 0, the roots form a square in the complex plane,
indicated by the four large dots. As � increases, they move
in a way consistent with the previous discussion, with two of
them moving toward the origin and two moving to infinity.
One may expect that the roots for which |Re(λ)| is smallest to
dominate, as they correspond to the lowest decay rate [20].
Hence, as � increases, the two roots moving to the origin
become increasingly dominant. This reflects the fact that, far
from the apex, a quartic curve locally approaches a parabola.
When � < 0, the root structure is identical as described here,
but the roots move down rather than up.

B. Stationary solutions

In this section, we show numerical stationary solutions to
Eq. (7). We use a Newton-conjugate-gradient method devel-
oped by Yang [26], which acts as an optimization method and
converges to a solution if the initial guess is appropriate. This
method is adapted for complex solutions based on Yang’s code
for computing complex eigenvalues of vortex solitons. The
difficulty in determining these solutions is related to finding
appropriate initial guesses and selecting appropriate acceler-
ators for the numerical method [25]. For � �= 0, we use the
(real) solution to the PQS for � = 0 as the input guess [20].
We numerically solve Eq. (7) for three different values of
detuning, �.

The numerical solutions for � = 0, � = 0.75�c, and � =
1.5�c are shown in the first, middle, and bottom rows of
Fig. 2, respectively. The left column shows the temporal

power and phase profiles, while the middle column gives the
corresponding spectrum. Finally, the right column shows the
two-dimensional Fourier transform with respect to time and
position [24]. For � = 0, the solution is a PQS, similar to
those obtained earlier, that we include for comparison. In
particular, the temporal shape exhibits oscillating tails and
associated π phase jumps, as seen in Fig. 2(a), while the
spectrum is symmetric with a somewhat flattened peak, as
seen in Fig. 2(b). Finally, the two-dimensional Fourier trans-
form, shown in Fig. 2(c), forms a straight horizontal line
with the colors indicating the amplitude following the curve
in Fig. 2(b). We also provide the linear dispersion relation.
The two-dimensional Fourier transform of the soliton and
the linear dispersion relation are separated by μ and do not
intersect, indicating that the soliton cannot radiate into linear
waves [24].

Figures 2(d)–2(f) are similar to Figs. 2(a)–2(c), but for � =
0.75�c ≈ 0.906 rad ps−1 for our parameters. Figure 2(d)
presents again the power versus time (blue curve). It shows
that the oscillations in the tails have been substantially sup-
pressed because the roots moving to the origin via the real
axis are starting to dominate. The phase now exhibits a ramp
associated with the vertical shift of the roots, though it re-
tains remnants of the phase jumps shown in Fig. 2(a). The
spectrum given in Fig. 2(e) is distinctly asymmetric. This
can be understood by considering Fig. 2(f), showing the two-
dimensional Fourier transform of the soliton superimposed
on the linear dispersion relation. The latter is also asymmet-
ric due to the frequency shift and the subsequent change of
frame. As a consequence, high frequencies tend to be further
away from the linear dispersion relation than low frequen-
cies, and they, therefore, have a lower amplitude. This can
also be understood as following from the presence of cubic
dispersion.

The trends mentioned in the previous paragraph con-
tinue in Figs. 2(g), 2(h), and 2(i), giving the solution
for � = 1.5�c ≈ 1.813 rad ps−1. This is truly the asymp-
totic regime for which the quadratic dispersion is large.
The power in Fig. 2(g) appears to have a hyperbolic se-
cant shape and the phase profile exhibits an approximate
linear ramp, with a modest feature in the center. This indi-
cates that the quadratic dispersion is dominating, consistent
with � > �c. Although the spectrum is asymmetric, par-
ticularly down in the tails, it is less so than in Fig. 2(e).
This is consistent with Fig. 2(i), which shows that the lin-
ear dispersion relation is approximately parabolic around
the maximum and that the cubic dispersion, which causes
the asymmetry, is only apparent for frequencies far from the
maximum.

We now consider the energy U = ∫ |u|2dT of these soliton
solutions. Results of such calculations are shown in Fig. 3, in
which the solid curve shows the energy versus the normalized
detuning �/�c. The top axis shows the associated inverse
speed β1. The fact that the soliton energy depends on the
speed is consistent with the lack of Galilean invariance. More
specifically, the figure shows that the pulse energy appears
to vary slowly when � � �c, but for � � �c, for which
β̄2 dominates, it varies approximately linearly with �. This
can be understood as follows. It is straightforward to ascer-
tain that for a conventional, nonlinear Schrödinger soliton,
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FIG. 2. Solutions to Eq. (7) for different values of �. The solution for � = 0 rad ps−1 is given along the first row, showing (a) power (blue
curve, logarithmic scale) and phase (orange dashed curve) versus time. (b) Normalized spectral amplitude. (c) Normalized two-dimensional
Fourier transform in arbitrary units (see color bar), with the crosses indicating the full-width at half maximum. The linear dispersion relation
about ω0 is shown for comparison (blue curve). Analogous results are shown for � = 0.75�c ≈ 0.906 rad ps−1 in panels (d), (e), and (f) along
the second row and � = 1.5�c ≈ 1.813 rad ps−1 in panels (g), (h), and (i) along the third row.

U = √
8μ|β2|/γ . We discussed in Sec. I that here β̄2 =

�2β4/2. Combining this with the definition of �c in Eq. (11),
it is then found that

U = 4

γ

(
μ3|β4|

6

)1/4
�

�c
. (12)

This asymptotic result, which is superimposed in Fig. 3, is in
excellent agreement with the full calculations.

Having illustrated that Eq. (4) has no Galilean invariance,
we have shown that there exists a continuous set of solu-
tions for every detuning �. Although we give results for a
single value of μ, similar solutions exist for other values of
this parameter. However, finding solutions to Eq. (7) does

not guarantee their stability—this can only be established by
considering Eq. (5) which describes how the solutions evolve
upon propagation. We turn to this next.

III. STABILITY OF THE SOLUTIONS

Establishing the stability of a nonlinear solution can be car-
ried out using a formal stability analysis [20,25,27]. Perhaps a
more direct way is to use the solutions from Sec. II B as an ini-
tial condition and then solve the evolution equation (5). This
provides an excellent indication of stability, particularly when
noise is added to the initial condition. This is the approach we
take here. We consider � = 0.75�c in the most detail since
the stability for � = 0 was established earlier [20], whereas
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FIG. 3. Soliton energy versus normalized detuning �/�c for a
nonlinear system with pure-quartic dispersion, and μ = 1.76 mm−1

in their stationary frames. Top axis gives the associated inverse group
velocity β1 in the frame where the dispersion is purely quartic.
Dashed lines give the asymptotic result in Eq. (12). The labels refer
to numerical experiments discussed in Sec. V.

for � = 1.5�c the pulse is close to a nonlinear Schrödinger
soliton, the stability of which follows from the integrability of
the governing equation.

Using the results from Sec. II B as initial conditions, we
propagated for a distance of 100 L4, where L4 is the quartic
dispersion length, the length scale over which the dispersion
is expected to operate, which we define as [20]

L4 = T 4
0

|β4| , (13)

where T0 is the pulse’s full width at half-maximum. For
the detuning � = 0.75�c, we have T0 = 1.192 ps, so L4 =
0.916 mm. For all cases, the pulse propagates without ob-
vious changes to the profile. We then added 0.5% complex
Gaussian noise to the solution, and the result is shown in
Fig. 4 for the solution with � = 0.75�c. Again there are no
obvious dynamics as the pulse propagates, implying that it is
stable. Carrying out a similar calculation for the solution with
� = 1.5�c gives similar results. We have occasionally found
that the soliton has a small residual speed. We attribute this
to a small amount of momentum in the initial condition as a
consequence of the inclusion of the noise.

IV. ENERGY FLOW

The fundamental soliton solutions to the NLSE can be
made real since they have a uniform phase. This reflects the

0 20 40 60 80 100

z/L4

-2

0

2

T
im

e 
(p

s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Power (W)

FIG. 4. Propagation simulation with 0.5% complex Gaussian
noise for the solution with � = 0.75�c ≈ 0.906 rad ps−1 using the
split-step Fourier method with spatial step size �z = 0.5 μm over
100 L4.

absence of an energy flow within the soliton—if this energy
flow was nonzero, then the energy would deplete at some
positions and increase elsewhere, which is inconsistent with
stationary eiμz dependence. Pure-quartic solitons can also be
made real, albeit with changes in sign, for the same reason. In
contrast, the solitons with � �= 0 we discussed in Sec. II B do
not have this property. This is particularly evident in Fig. 2(d),
which shows a highly nonuniform phase ϕ with an associated
nonuniform instantaneous frequency of −∂ϕ/∂T . We now set
out to understand this.

We derive an expression for the energy flow in the presence
of quadratic, cubic, and quartic dispersion. Our starting point
is the expression for energy conservation with one spatial
dimension:

∂J

∂T
= −∂ (ψ	ψ )

∂Z
, (14)

where ρ = ψ	ψ is the energy density and J is the energy
flow, the expression for which we aim to find. We note that
this expression differs from the usual conservation laws, since
in Eq. (5), Z is the evolution parameter, rather than T . Even
though J , therefore, does not have the units of an energy
flow [J m−1 (m s−1)−1 rather than J s−1 = J m−1 (m s−1)], it
is a related quantity and we will, therefore, refer to it as the
“energy flow.”

We now use the evolution equation (5) to evaluate the right-
hand side of Eq. (14), and then we write it as a time derivative
as on the left-hand side of Eq. (14). In doing this we consider
the general case with general β3,4, rather than the expressions
involving � that arise in the specific problem considered here,
and we include β1 for completeness. This calculation can be
done dispersion order-by-dispersion order. To illustrate this,
for quadratic dispersion, it is found that

ψT T = [u′′ + i(2u′ϕ′ + uϕ′′) − u(ϕ′)2]eiϕ, (15)

where the prime (′) indicates a time derivative and ψ is written
as ψ = ueiϕ . We, therefore, find

ψ	ψT T − ψψ	
T T = 2i(2uu′ϕ′ + u2ϕ′′) = 2i(u2ϕ′)′. (16)

Thus following Eq. (5), the energy flow associated
with quadratic dispersion is −β2u2ϕ′. Applying the same
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FIG. 5. Collisions of solitons with different values of � of the same family generated by μ = 1.76 mm−1. The initial conditions are
as follows: (a) �β1 = �β

(a)
1 , 〈β1〉 = 0; (b) �β1 = �β

(a)
1 , 〈β1〉 = �β

(a)
1 ; (c) �β1 = �β

(a)
1 , 〈β1〉 = 2�β

(a)
1 ; (d) �β1 = �β

(b)
1 , 〈β1〉 = 0; (e)

�β1 = �β
(b)
1 , 〈β1〉 = �β

(b)
1 ; and (f) �β1 = �β

(b)
1 , 〈β1〉 = 2�β

(b)
1 . Each collision is shown in the frame of reference which moves at this

average inverse velocity. Text labels indicate the solitons in Fig. 3.

procedure to the other dispersion orders, we find

J = β1u2 − β2u2ϕ′ − β3

6
[2uu′′ − (u′)2 − 3u2(ϕ′)2]

+ β4

12
[4uu′′ϕ′ + 2uu′ϕ′′ + u2ϕ′′′ − 2(u′)2ϕ′ − 2u2(ϕ′)3].

(17)

The β1 term expresses that in the absence of dispersion, a
pulse propagates as a rigid object with energy u2 propagating
at inverse group velocity β1. The β2 term shows that when
ϕ is constant, then the energy flow vanishes, consistent with
the discussion in the first paragraph of this section, and a
similar conclusion applies to the β4 term. The β3 term is
different in that ϕ′ = 0 does not guarantee that the energy flow
vanishes, because of the presence of the 2uu′′ − (u′)2 terms.
This confirms that in the presence of cubic dispersion, sta-
tionary solutions cannot have a constant phase. We explicitly
evaluated the energy flow for the soliton in Fig. 2(d) and have
confirmed that the energy flow is constant, even though the
phase has a complicated time dependence.

V. COLLISION DYNAMICS

In the frame with only β4 �= 0, the solutions from Sec. II
have a constant inverse velocity of β̄1 = −�3β4/6. Having
shown their stability and lack of Galilean invariance, we in-
vestigate collisions between these pulses using a fourth-order
propagation method [25]. However, the energy U dependence
on v (see Fig. 3) adds a complication. To ensure collisions
between comparable solitons, we can choose to keep either

μ or U the same but not both. In these collisions, we keep
μ = 1.76 mm−1 constant for all initial solitons, implying that
the nonlinear effects they induce are roughly constant. We
carry out our simulations as before, but with a propagation
step size of �z = 0.25 μm.

We find a wide variety of dynamical results when vary-
ing both the relative speeds of the pulses and their average
speeds with respect to the pure-quartic frame. We present
in Fig. 5 some representative collisions for pairs of soli-
tons with the same relative inverse velocities at �β

(a)
1 ≡

|2(0.75�c)3β4/6| ≈ 0.546 ps mm−1 (top row) and �β
(b)
1 ≡

|2(1.5�c)3β4/6| ≈ 4.369 ps mm−1 (bottom row), but with
different average inverse velocities with respect to the pure-
quartic frames of 〈β1〉 = 0, �β

(a,b)
1 , and 2�β

(a,b)
1 for the left,

center, and right columns, respectively. Note that �β
(a)
1 is

chosen such that, when 〈β1〉 = 0, the colliding solitons are the
solution observed in Fig. 2(d), with one having the opposite
phase. The same is true for �β

(b)
1 but referring to Fig. 2(g).

For convenience, each simulated collision has been trans-
formed to the frame of reference which moves at their average
inverse velocity, 〈β1〉. A summary of each collision shown is
detailed in Table I featuring numerically calculated inverse
velocities in this frame and peak powers for the solitons which
enter and exit the collision.

Figure 5(a) shows a collision between two solitons with
equal speeds |β (a)

1 | propagating in opposite directions, gener-
ated by the detuning |�| = 0.75�c. Labeled as points A and
A′ in Fig. 3, these pulses have the same energy, so the initial
condition is symmetric about T = 0. Likewise, the exiting
solitons are found to be symmetric about T = 0, but each
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TABLE I. Properties of entering and exiting solitons in the collisions in Fig. 5. Relative inverse velocities between initial solitons (�β1)
and average inverse velocity of initial solitons with respect to the pure-quartic dispersion frame (〈β1〉) are given. The inverse velocities with
respect to the average inverse velocity and peak powers for the top pulse localized to T > 0 are given by β

(+)
1 and P(+)

peak, and, similarly, for the

bottom pulse localized to T < 0 they are given by β
(−)
1 and P(−)

peak.

Entering solitons Exiting solitons

�β1 〈β1〉 β
(+)
1 β

(−)
1 β

(+)
1 β

(−)
1

Panel (ps mm−1) (ps mm−1) (ps mm−1) P(+)
peak (W) (ps mm−1) P(−)

peak (W) (ps mm−1) P(+)
peak (W) (ps mm−1) P(−)

peak (W)

(a) 0.5461 0 −0.2731 0.7496 0.2731 0.7496 0.2729 0.7492 −0.2729 0.7492
(b) 0.5461 0.5641 −0.2731 0.6972 0.2731 0.8022 0.2522 0.7294 −0.2396 0.7690
(c) 0.5461 1.0922 −0.2731 0.7496 0.2731 0.8438 0.3080 0.8828 −0.3165 0.7100
(d) 4.3689 0 −2.1844 0.9147 2.1844 0.9147 1.8018 0.6891 −1.8018 0.6891
(e) 4.3689 4.3689 −2.1844 0.6972 2.1844 0.8953 2.1368 0.8421 −2.1449 0.6739
(f) 4.3689 8.7377 −2.1844 0.9147 2.1844 0.8827 2.1518 0.9711 −2.3336 0.8576

pulse has slowed marginally (Table I) with the generation of
small amounts of radiation.

Figure 5(b) shows a stationary PQS colliding with a soliton
with an inverse velocity of β1 = 2|β (a)

1 |. Labeled O and B in
Fig. 3, the pulse energies are different and the initial condition
is asymmetric about T = 0. Likewise, the exiting solitons are
also asymmetric, with the top exiting pulse retaining a peak
power lower than that of the bottom exiting pulse, similar to
the initial solitons. Both exiting pulses appear to have a lower
inverse velocity, but to different degrees (see Table I).

Figure 5(c) is similar, but the solitons have initial inverse
speeds β1 = |β (a)

1 | and β1 = 3|β (a)
1 |, and thus they have the

same sign. These pulses have substantially different energies
(see points A and C in Fig. 3), which, as in Fig. 5(b), is
reflected in the asymmetry of the collision products. However,
in contrast to the earlier result, the inverse speeds of the exiting
solitons are now higher in the average inverse velocity frame,
and relative peak powers of the collision products are reversed
compared to Fig. 5(b).

For the collisions in Figs. 5(d), 5(e), and 5(f), the moving
solitons have |�| > �c. These collisions also demonstrate
obvious changes in dynamics as 〈β1〉 is changed. This is
most clear where Fig. 5(d) with a symmetric initial condition
produces a third pulse with β1 = 0 and non-negligible peak
power, while in Fig. 5(e), which is initially asymmetric, this
is not so. Meanwhile, close examination of the collision in
Fig. 5(f) indicates the presence of an extremely weak third
pulse with only ∼1/500 the peak power of the other exiting
solitons. We note that a change in the number of solitons
in a collision in a geometry lacking Galilean invariance was
observed previously [15].

The results in the table show that, whereas in most colli-
sions the peak power and the inverse speeds do not change
significantly, substantial changes can occur when the col-
lisions are made more asymmetric. These tabulated results
further indicate that, in most collisions, the soliton which
initially has the higher (lower) peak power has its peak power
reduced (raised) following the collision, though we find no
clear trend describing the extent to which this occurs. One
exception where this is not observed is for the collision in
Fig. 5(f). There is also no clear trend in the changes of β1

in these collisions.

VI. DISCUSSION AND CONCLUSION

We have shown that the generalized NLSE with pure-
quartic dispersion does not have Galilean invariance, and
we have illustrated this by demonstrating that the solutions
depend on their speed. This is distinct from earlier works
showing the lack of Galilean invariance due to spin-orbit cou-
pling in spinor Bose-Einstein condensates [14–18]. We find
numerically that the power of the solutions is symmetric in
time, consistent with an analysis of the tails. We also find that
the solutions have an asymmetric spectrum, which can be un-
derstood from the asymmetry of the linear dispersion relation.
Based on propagation simulations, with and without noise, we
conclude that these solutions are likely to be stable. Although
these solitons have a complicated phase, the associated energy
flow is constant. Simulating collisions between pairs of so-
lutions generates a plethora of different dynamics depending
on their relative speeds and average speeds with respect to
the pure-quartic frame. The unusual dynamics indicate further
consequences of the lack of Galilean invariance.

While the existence of soliton solutions to Eq. (7) at differ-
ent speeds may not be surprising, it is perhaps not obvious that
such pulses are stable. The effect of higher-order dispersion on
single solitons with dominant quadratic dispersion has been
extensively analyzed [8,9,28–30] with the conclusion that the
pulse distorts strongly and that a substantial part of the energy
transfers to linear waves and disperses [28]. However, it has
been shown that the inclusion of quartic dispersion stabilizes
the pulses [31], which is consistent with the results obtained
here. While we did not prove stability conclusively, we believe
that our numerical results are convincing without the need for
more rigorous methods. We note that to our knowledge the
validity of the Vakhitov-Kolokolov stability criterion [1] has
not been established for soliton solutions of Eq. (5).

We did not discuss the effects of phase differences between
the colliding initial solitons in Sec. V. However, we found
that this phase strongly affects the collision (as it does for
conventional solitons). For example, introducing a π phase
difference between the initial solitons in Fig. 5(d) prevents the
third central pulse from forming.

The overarching conclusion is that for a given disper-
sion relation, PQSs only exist at the frequency for which
β2 = 0 and β3 = 0 (if such a frequency exists), and they
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travel at the group velocity at this frequency. Solutions of
the type discussed here occur at other frequencies, and they
evolve towards conventional nonlinear Schrödinger solitons
at large detunings. Of course, in systems with a pro-
grammable dispersion [22,23], PQSs can exist for a range of
frequencies.
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