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Semiclassical analysis of ellipticity dependence of harmonic yield in graphene
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We theoretically investigate the ellipticity dependence of high-order harmonic generation in graphene driven
by the midinfrared laser field. The ellipticity dependence of the harmonic yield in the experiment [N. Yoshikawa,
T. Tamaya, and K. Tanaka, Science 356, 736 (2017)] is reproduced perfectly by solving the semiconductor Bloch
equations in the Houston basis under the tight-binding approximation. Based on the semiclassical recollision
model, it is found that the recollision distance of the electron-hole pair excited from the zone 0.5ω0 � �E �
2.5ω0 instead of the Dirac points can reach a minimum value at finite ellipticity, which enhances the harmonic
yield. In addition, the ellipticity dependence of harmonics can be controlled by varying the chemical potential
of graphene. When the chemical potential is decreased to −1.52 eV, the ellipticity dependence of harmonics can
transit into the normal behavior. This work uncovers the microscopic mechanism of the ellipticity dependence of
the harmonics in graphene and constructs a clear physical picture to understand the unique ellipticity-dependent
behaviors in graphene.
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I. INTRODUCTION

High-order harmonic generation (HHG) is an important
nonperturbative and nonlinear phenomenon in the interaction
of intense lasers and matters, which has attracted consider-
able attention over the past three decades because of its wide
applications, such as generating coherent soft x rays [1–3],
molecular orbital tomography [4,5], extracting the ionization
time [6,7], and probing nuclear dynamics [8–10]. In contrast
to gas media, since the first discovery of HHG in ZnO by
Ghimire et al. [11], many novel phenomena have been gradu-
ally observed in solids, such as multiplateaus [12–14], linear
scaling of cutoff energy with laser field amplitude [11], and
complex orientation dependence [15]. Besides, HHG in solids
has been successfully applied to reconstruct the band structure
[16–20], measure the Berry curvature [21], extract nonlinear
susceptibilities from sapphire [22], image valence electrons at
the picometer scale [23], etc.

As the ellipticity dependence of HHG in gases plays an
indispensable role in confirming the recollision mechanism
and producing isolated attosecond pulses [24–28], the ellip-
ticity dependence of HHG in solids has also been extensively
investigated and shows many rich and anomalous behav-
iors. For example, the harmonic yield of ZnO is suppressed
monotonously with increasing ellipticity [11,29]. In rare-gas
solids [30] and monolayer MoS2 [31,32], both of them exhibit
an atomiclike ellipticity dependence. However, a later work on
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MgO [15,33] shows that the ellipticity profiles are strongly de-
pendent on the angle of polarization. For semimetal graphene,
the anomalous ellipticity dependence is also observed that the
harmonic yield reaches a maximum at finite ellipticity [32,34].
The complex behavior of ellipticity dependence of solid HHG
blocks the further application of polarization gating and dou-
ble optical gating techniques in solids.

Although the more diverse and anomalous ellipticity-
dependent behavior of HHG in solids has attracted much
attention, the intrinsic mechanism is still controversial. In
MgO, You et al. [15] attributed the anomalous ellipticity
dependence of HHG to the anisotropy of crystal. However,
numerical calculations based on time-dependent density-
functional theory [33] indicated that the anomalous ellipticity
dependence in MgO results from the intricate nonlinear cou-
pling between the intraband and interband dynamics. In our
recent work on ZnO, we found that the recollision of electron-
hole pairs dominates the ellipticity dependence of HHG and
the ellipticity dependence can transit from atomlike (or nor-
mal) to anomalous cases when the vector potential of driving
lasers is strong enough [35]. For graphene, the vortex structure
of the transition dipole around Dirac points is considered
to be responsible for the anomalous ellipticity dependence
[34], while Sato et al. argued that the anomalous ellipticity
dependence in graphene originates from the nonlinear cou-
pling between the intraband and interband transitions [36]. In
addition, it has been provided in Ref. [34] that HHG from
graphene is mainly contributed by interband currents. This
indicates that the electron-hole recollision may play an impor-
tant role in the anomalous ellipticity dependence in graphene.
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FIG. 1. (a) Hexagonal lattice structure of 2D graphene. (b) Cor-
responding Brillouin zone in the reciprocal lattice. The diamond-
shaped region is equivalent with the first Brillouin zone in area.

In this work, we explore the cause of the anomalous el-
lipticity dependence of graphene using the recollision model.
It is found that the electrons excited from the zone 0.5ω0 �
�E � 2.5ω0 around the Dirac point mainly contribute to the
HHG at finite ellipticity. Then an intuitive physical picture
is established to understand the anomalous ellipticity depen-
dence of graphene. Finally, we propose a practical scheme to
control the ellipticity dependence of harmonics generation in
graphene.

This paper is organized as follows: In Sec. II, we introduce
our theoretical method. In Sec. III, the ellipticity dependence
of HHG in graphene is discussed in detail. We reproduce
the ellipticity dependence observed in Ref. [32] and discuss
the contributions of intraband and interband harmonics to the
ellipticity dependence in Sec. III A. Based on the recollision
model, the contributions of electrons from different excitation
zones to harmonics and the relation between the harmonic
yield and recollision distance are discussed in Sec. III B.
In Sec. III C, we present a physical picture of the electron-
hole dynamics to account for the ellipticity dependence in
graphene. In Sec. III D, we show that the ellipticity depen-
dence of HHG in graphene can be controlled by adjusting the
chemical potential. Finally, a summary is given in Sec. IV.

II. THEORETICAL METHOD

Graphene is composed of carbon atoms closely packed into
a single-layer two-dimensional (2D) honeycomb lattice struc-
ture, as shown in Fig. 1(a), where sites A and B denote the two
inequivalent atoms in a unit cell. a1 = (

√
3a/2, a/2) and a2 =

(
√

3a/2,−a/2) are the two primitive lattice vectors with the
lattice constant a = 2.46 Å. The corresponding Brillouin zone
(BZ) is shown in Fig. 1(b), where b1 = (2π/

√
3a, 2π/a) and

b2 = (2π/
√

3a,−2π/a) are the reciprocal lattice vectors,
and K = (2π/

√
3a, 2π/3a) and K ′ = (4π/

√
3a, 4π/3a) are

the two inequivalent Dirac points. Since the band structure
around the Dirac points varies drastically, we adopt 1000 ×
1000 grids in the diamond-shaped region, shown as the dashed
lines in Fig. 1(b).

The electronic structure of graphene is modeled by the
tight-binding approximation using π -electron states on the
two sublattices as basis functions. The reduced Hamiltonian
[37] in reciprocal space can be written as

H0 =
(

0 −γ f (k)
−γ f ∗(k) 0

)
, (1)

where the nearest-neighbor hopping γ equals 3.03 eV and the
structure factor f (k) is given by

f (k) = exp

(
i
akx√

3

)
+ 2 exp

(
−i

akx

2
√

3

)
cos

(
aky

2

)
. (2)

By diagonalizing the Hamiltonian, one can obtain the band
structure of the valence and conduction bands Ec(v)(k) =
±γ | f (k)|. The corresponding energy eigenvectors are

|n〉 = 1√
2

(
1

±e−iφ(k)

)
, (3)

where n labels the states in the valence (v) and conduction
(c) bands, and φ(k) = Arg[ f (k)] is the phase of f (k). The
negative and positive signs correspond to the valence band and
the conduction band, respectively. The interaction of lasers
and graphene is described by solving the semiconductor Bloch
equations (SBEs) in the Houston representation with the ve-
locity gauge [34,38–40] (atomic units are used throughout
unless otherwise stated):

i
∂

∂t
ρk(t )

nm =
[

Ek(t )
m − Ek(t )

n − i(1 − δnm)

T2

]
ρk(t )

nm

− E(t ) ·
∑

m′

[
dk(t )

m′n ρ
k(t )
m′m − dk(t )

mm′ρ
k(t )
nm′

]
. (4)

Here ρk(t )
nm is the density matrix element between the m band

and n band. Ek(t )
m is the energy of the m band and T2 is the de-

coherence time. The dk(t )
nm denotes the dipole matrix element,

which is calculated by

dk(t )
nm = i

〈
uk(t )

n

∣∣∇k
∣∣uk(t )

m

〉
. (5)

The electric field E(t ) of the laser is given by

Ex(t ) = 1√
1 + ε2

E0 f (t ) cos (ω0t ),

Ey(t ) = ε√
1 + ε2

E0 f (t ) sin (ω0t ), (6)

where E0 is the amplitude of the electric field, ε the ellipticity,
and ω0 the angular frequency. f (t ) has the form of a cos2

envelope. We solve the SBEs by the classical fourth-order
Runge-Kutta method with the time step 0.65 a.u. and the
results are tested for convergence with respect to the diamond-
shaped region, sampling points and time steps. The harmonic
spectrum is obtained by the modulus square of the Fourier
transform of the electric current. The electric current can be
calculated by

j(t ) = −
∑

(m,n)∈(c,v)

∫
BZ

pk(t )
mn ρk(t )

mn d2k, (7)

where the pk(t )
mn is the matrix element of the momentum op-

erator. Further, the intraband and interband currents can be
calculated by

jra(t ) = −
∑

m=c,v

∫
BZ

pk(t )
mm ρk(t )

mm d2k, (8)

jer (t ) = −
[∫

BZ
pk(t )

cv ρk(t )
cv d2k + c.c.

]
. (9)
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FIG. 2. Harmonic spectrum calculated by the SBEs with the
dephasing time T2 = 3 fs in the linearly polarized field (ε = 0).

III. RESULTS AND DISCUSSION

A. Ellipticity dependence of HHG in graphene

First, we calculate the ellipticity dependence of the har-
monic yield in graphene. Here, a ten-cycle laser pulse is
adopted with the wavelength λ = 4700 nm (ω0 = 0.26 eV)
(same as the parameter used in Ref. [32]). In order to obtain
the minimum difference between calculated and experimental
results, we scan the electric field strength E0 and the deco-
herence time T2, which finally gives E0 = 3.6 MV/cm and
T2 = 3 fs. The major polarization axis is set along �-M. The
high-order harmonic spectrum excited by the linearly polar-
ized pulse is shown in Fig. 2. One can see that the harmonic
peaks are clear and discrete. The harmonic intensity decreases
significantly with the increasing harmonic order, which is
consistent with the experimental results. Besides, we can see
that the harmonic peaks are shifted from the expected odd
values, as appeared in Refs. [32,34,41]. For this phenomenon,
Baudisch et al. performed a detailed investigation in Ref. [41].

Figure 3 shows the ellipticity dependence of the seventh
harmonic (HH7), where the yield of the nth harmonic is

FIG. 3. Ellipticity dependence of harmonics calculated by SBEs,
which is separated according to the polarization direction. The circles
and squares are the experimental data in Ref. [32]. For comparison,
the calculated harmonic yield is normalized to the maximum value
of the experimental data.

FIG. 4. Ellipticity dependence of seventh harmonic yield calcu-
lated by the intraband (red dotted line) and interband (blue curved
line) currents. The harmonic yield is normalized to the intraband
harmonic yield in ε = 0.

evaluated by

In =
∫ (n+0.5)ω0

(n−0.5)ω0

I (ω) dω. (10)

For comparison, the experimental data [32] are also presented
by circles and squares. As shown in Fig. 3, our results re-
produce the features of ellipticity dependence of HHG in
the experiment [32]. With increasing the ellipticity, the x
component (red thin curve) of HH7 yield decreases mono-
tonically, whereas the y component (blue thick curve) reaches
the maximum value at around ε = 0.25 and then decreases
monotonically. It indicates that the anomalous ellipticity de-
pendence of harmonic yield in graphene results from the
microscopic mechanism.

Currently, the intraband and interband harmonics are con-
sidered as the two main sources of solid HHG [12,42,43].
Next, we discuss which mechanism dominates the gener-
ation of harmonics in graphene. It has been demonstrated
in Ref. [32] that the intraband mechanism cannot explain
the ellipticity dependence of graphene harmonics. Thus, the
interband mechanism may dominate the HHG in graphene.
To verify it, we calculate the ellipticity dependence of the
interband and intraband harmonics and show the results in
Fig. 4. Here, both of the harmonic yields are normalized to the
intraband harmonic yield in the linearly polarized laser. We
can see that the interband harmonic yield is dominant through-
out the whole ellipticity range. The intraband harmonic yield
decreases monotonically with the increasing ellipticity while
the interband harmonic yield reaches the maximum value at
around ε = 0.25 and then decreases monotonically, which is
consistent with Fig. 4. Therefore, it indicates that the anoma-
lous ellipticity dependence of the harmonic yield in graphene
results from the interband mechanism, in which the electron-
hole recollision plays an important role.

B. Semiclassical recollision model

In order to investigate the intrinsic mechanism of anoma-
lous ellipticity dependence in graphene, the electron-hole
recollision model is employed. Derived from the SBEs, the
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formal solution of interband harmonics is given by

J (ω) = −
∫

BZ
dk

∫ ∞

−∞
dt

{
i
[
Ek(t )

c − Ek(t )
v

]
dk(t )

cv

∫ t

−∞
dt ′

× iE(t ′) · dk(t ′ )
vc

(
ρk0

vv − ρk0
cc

)
ei[S(k0,t ′,t )−ωt]dt ′ + c.c.

}
,

(11)

where ρk0
vv (ρk0

cc ) is the electron density in the valence (conduc-
tion) band, S(k0, t ′, t ) = ∫ t

t ′ [Ek(τ )
c − Ek(τ )

v ]dτ is the classical
action, and k(τ ) = k0 + A(τ ) is the transformed crystal mo-
mentum. Owing to the zero-gap property of the Dirac cone
structure in graphene, the recollision model must be improved
to describe the generation of interband harmonics in graphene.
According to Eq. (11) and the condition for the stationary-
phase method, the modified saddle-point equations are given
by

∣∣∣∣
∫ t

t ′
�v[k − A(t ) + A(τ )]dτ

∣∣∣∣ � Rc, (12a)

Eg[k − A(t ) + A(t ′)] = �E , (12b)

Eg(k) − ω + E(t ) · �r = 0, (12c)

where k = k0 + A(t ), �r = ∫ t
t ′ �vdτ , Eg(k) = Ek

c − Ek
v ,

and �v(k) = ∇kEg(k) = ve − vh is the velocity difference
between the electron and the hole. An electron-hole pair is
created at the time t ′ and the initial crystal momentum k0,
and they recollide with each other at the recollision time t .
Rc is the recollision threshold value and �r is the relative
distance of the electron-hole pair at the recollision time t ,
which comes from the imperfect recollision [35,44]. When the
relative distance between the electron and its associated hole
is smaller than Rc, the recollision is taken into account. Based
on this condition, the relation between the recollision distance
and the harmonic yield can be investigated.

In the unimproved recollision model, Eq. (12b) is usu-
ally written as Eg(k) = 0. However, because of the zero-gap
property of graphene, contributions of the zone around the
Dirac point cannot be ignored (see Refs. [34,45]). Therefore,
we consider the area 0 � �E � 2.5ω0 near the point as the
excitation conditions in the improved recollision model. That
is, the excitation can happen when the electrons are located in
this area. As is known, the probability of electron excitation
decreases exponentially as the band gap increases. Moreover,
we find that the electron and hole excited from the zone �E >

2.5ω0 can hardly recollide. Thus, the zone of �E > 2.5ω0 is
not considered in the recollision model. By adjusting �E , we
can find out which areas mainly contribute to the generation
of high-order harmonics. For the Dirac point with zero gap,
the solution of Eq. (12b) is real. For the zone with a gap
around the Dirac point, we make an approximation and ignore
the imaginary part of the solution. This is reasonable because
the band gap is very small and the imaginary part is a small
value. When the minimum relative distance �r is less than
the threshold value Rc, the recollision takes place and we can
obtain the excitation time t ′ and the recollision time t from
Eqs. (12a) and (12b). Then the emitting photon energy is
determined using Eq. (12c). In Eq. (12c), we also consider

FIG. 5. ρvv − ρcc as a function of time at the Dirac point.

the polarization energy of electron-hole pairs owing to the
imperfect recollisions [44].

For the gapless system, the interband transitions can take
place even with a weak laser field because of the zero-gap
property. Thus, it is necessary to clarify whether it is rea-
sonable to apply the stationary-phase method to derive the
saddle-point equations in Eq. (12c) from Eq. (11). For this
reason, we discuss the population difference ρvv − ρcc at the
Dirac point in the linearly polarized laser field because it
varies most dramatically. Figure 5 shows the variation of
ρvv − ρcc as a function of time. We can see that the period
of ρvv − ρcc is one optical cycle (o.c.); ρvv − ρcc changes sig-
nificantly near −0.5 and 0.0 o.c. This is because the electrons
undergo the Dirac point in these moments, and they can easily
transit between the valence band to the conduction band even
with a weak field. Fortunately, ρvv − ρcc is constant between
the birth and recombination times so that the saddle-point
condition can be satisfied well. To verify it, we numerically
calculate the following two parts in Eq. (11):∫ t

t ′

(
ρk0

vv − ρk0
cc

)
eiS(k0,t ′,t )dt, (13a)

∫ t

t ′
−0.12eiS(k0,t ′,t )dt,

[
ρk0

vv −ρk0
cc = −0.12(const)

]
. (13b)

In the saddle-point approximation, the applicability condition
for the stationary-phase method is that the phase in an inte-
grand oscillates much faster than the rest of the integrand.
Thus, we set ρk0

vv − ρk0
cc = −0.12 in Eq. (13b), which is ob-

tained from Fig. 5. If the result of Eq. (13a) is consistent with
that of Eq. (13b) from the excitation time (t ′) to the recollision
time (t), then the stationary-point approximation is applicable.
Figure 6 shows the integration values of the two equations for
the seventh harmonic, where the excitation time and recol-
lision time are obtained from the classical trajectory by the
recollision model. One can see that both real and imaginary
parts of the integration value obtained by the stationary-phase
method are the same as the numerical calculations from the
excitation time to the recollision time. This indicates that the
phase in the integrand oscillates much faster than the rest
of the integrand. Besides, similar behavior as the dramatic
reversal of the population in Fig. 5 has also been studied
in the gas HHG [46,47]. In this case, the classical trajec-
tories are still in good agreement with the time-frequency
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FIG. 6. Integration values of Eqs. (13a) and (13b) for seventh
harmonic.

distribution. Therefore, it is reasonable to apply the condition
of the stationary-phase method in the saddle-point equations
in graphene.

In the following, we discuss the recollision dynamics of
HHG from graphene by using the improved recollision model.
The case of the linearly polarized laser field is first considered.
Figure 7 shows the time-frequency distribution of the harmon-
ics and the corresponding classical trajectories (black dots)
calculated by the recollision model, in which the recollision
distance is set as 30 a.u. and the excited position (k0) is located
at the Dirac point. One can see that the classical trajectories
are in good agreement with the time-frequency distribution.
It is worth mentioning that in addition to the Dirac point, we
also consider the contributions of its nearby area by adjusting
the value range of �E in Eq. (12b). However, it is hard to
obtain a recollision trajectory even with a very large recolli-
sion distance (60 a.u.). Therefore, the electrons excited at the
Dirac point mainly contribute to the HHG of graphene in the
driving of the linearly polarized laser pulse. In addition, one
can see that the wiggling feature appears around the cutoff in
Fig. 7, which is not reproduced by the classical trajectories.
This phenomenon comes from the interference between the
quantum paths from different excitation zones owing to the
weak intensity of the main quantum path near the cutoff.

FIG. 7. Time-frequency distribution of the HHG driven by the
linearly polarized laser pulse, in which the black dots represent the
classical trajectories with the excited condition set as the Dirac point.
The recollision distance is set as Rc = 30 a.u.

FIG. 8. Time-frequency distribution and the classical trajectories
with the driving laser field at ε = 0.2. (a) The excitation condition is
set to the area 0 � �E � 0.5ω0 near the Dirac point and Rc = 30 a.u.
(b) The excitation area 0.5ω0 � �E � 2.5ω0 and Rc = 10 a.u.

Next, we turn to the case of the elliptically polarized laser
pulse (ε = 0.2), in which the harmonic yield is near the
maximum. Figures 8(a) and 8(b) show the time-frequency
distribution of HHG. To analyze the behaviors of the electron-
hole pairs, we divide the excitation areas into two parts in the
recollision model, i.e., 0 � �E < 0.5ω0 and 0.5ω0 � �E �
2.5ω0. The corresponding classical trajectories are presented
with black dots in Figs. 8(a) and 8(b). One can find that
when the excitation zone is set as 0 � �E < 0.5ω0, the clas-
sical trajectories survive only from first order to fourth order,
which obviously disagrees with the quantum paths. However,
when the excited zone is chosen as 0.5ω0 � �E � 2.5ω0,
the classical trajectories up to the cutoff energy can still be
obtained for a very small recollision distance of Rc = 10 a.u.
Furthermore, they are in good agreement with the quantum
paths. It is worth noting that near the cutoff region, the agree-
ment is rather poor and the time-frequency distribution is at
higher orders. This is because the quantum path in this region
results from the recollision with larger recollision distances
(25 < Rc < 30 a.u.) Thus, the electrons excited in the zone
0.5ω0 � �E < 2.5ω0 mainly contribute to the HHG while
the laser ellipticity equals 0.2. The enhancement of the har-
monic yield at the ellipticity of ε = 0.2 stems from the smaller
recollision distance.

To figure out the relation between the recollision distance
and the harmonic yield, we present the minimum recollision
distances and the total yield of HH7 at different ellipticities in
Fig. 9, where the excited zone is set by 0 � �E � 2.5ω0. It is
obvious that the yield of HH7 is negatively correlated with
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FIG. 9. Normalized total harmonic yield (blue solid line) and the
minimum recollision distance of HH7 (black dashed line) as a func-
tion of the ellipticity. The excitation zone is set as 0 � �E � 2.5ω0

in the calculations.

the minimum recollision distance and reaches a maximum
when the distance is around its minimum. This proves that the
recollision dynamics is still valid for the anomalous ellipticity
dependence in graphene.

C. Trajectory analysis

Having confirmed the relation between the harmonic yield
and the recollision distance, two questions have not been
clarified yet, namely, (i) why the recollision distance first
decreases and then increases with the increasing ellipticity and
(ii) why the main contribution of excitation area to the HHG
is different with the increasing ellipticity.

To answer question (i), we show the real-space trajectories
(solid lines) of the electron-hole pairs at different elliptici-
ties in Figs. 10(a)–10(d), where the recollision distances are
marked by the blue arrows. For ε = 0, after being created
and pulled apart, the electron and hole can reverse in the x
direction and recollide at a distance of 29.05 a.u., as shown
in Fig. 10(a). However, for ε = 0.2, the electron and hole
can reverse in both x and y directions and form an approx-
imately closed trajectory. Finally, the recollision takes place
at a distance of 7.49 a.u., emitting a harmonic photon. Such
a small recollision distance results in the enhancement of the
harmonic yield. As the ellipticity is further increased, the rec-
ollision distance gradually increases, leading to the decrease
in the recollision probability and the harmonic yield, as shown
in Figs. 10(c) and 10(d).

For question (ii), we take the case of ε = 0 as an example
and discuss the motion of the electron-hole pairs in detail.
The circles and squares in Fig. 10(a) represent the real-space
trajectories of electron-hole pairs excited away from the Dirac
point. Clearly, electron-hole pairs are pulled apart in the y
direction and their distance increases monotonously. Thus,
the electron and hole cannot recollide even by setting a vary
large recollision distance. To get more insight, we show the
distributions of the relative velocity between electrons and
holes in the x and y directions in Figs. 11(a) and 11(b),
respectively. For the linearly polarized laser pulse (ε = 0),

FIG. 10. Real-space trajectories of the electron-hole pair: (a)
ε = 0, (b) ε = 0.2, (c) ε = 0.5, and (d) ε = 1. Many recollision
events contribute to the seventh harmonic generation, so we pick out
the representative trajectories with the smallest recollision distance.
The blue arrows represent the recollision distance. Trajectory 1 in
(a) denotes the trajectory excited from a position away from the Dirac
point, and trajectory 2 in (b) represents the trajectory excited from the
Dirac point.

as shown by the black path 1 in Fig. 11(a), the electrons
excited away from the Dirac point can move in both the purple
and orange regions, which corresponds to the change of the
relative velocity from positive to negative. Thus the electron
and hole can reverse in the x direction. However, in the y
direction, the electrons always keep moving in the purple
region and cannot travel into the orange area [see path 1 in
Fig. 11(b)]; namely, the relative velocity between the electron
and hole in the y direction is negative at all times. Thus the
electron and hole cannot reverse in the y direction. Therefore,
the electrons excited away from the Dirac point hardly con-
tribute to the generation of harmonics for ε = 0. The similar
behavior can also be observed in the electrons excited from
the Dirac point at ε = 0.2 (see the blue path 2 in Figs. 10
and 11). In this case, the relative velocity in the y direction
is always positive, leading to that the electrons and holes are
pulled apart in the y direction. As a result, the electrons excited
from the zone 0 � �E < 0.5ω0 hardly contribute to the HHG
at ε = 0.2. This is the reason that the excitation area that
mainly contributes to the HHG is different with increasing the
ellipticity.

D. Control of ellipticity dependence of HHG in graphene

After understanding the intrinsic mechanism of the unique
ellipticity dependence of harmonic yield in graphene, we
further investigate the control for the ellipticity dependence
of HHG in graphene. According to our conclusions above,
this can be achieved by controlling the excitation. If we re-
move the electrons in the zone 0.5ω0 � �E � 2.5ω0, the
generation of harmonics driven by the elliptically polarized
laser may not be enhanced. In graphene, we can suppress
the excitation channels around the Dirac points by adjusting
the chemical potential. Indeed, varying the chemical poten-
tial has been proposed in Ref. [36] to enhance the intensity
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FIG. 11. Distributions of the relative velocity in k space in the (a) x and (b) y directions. The electron trajectories in k space of trajectory 1
in Fig. 10(a) and trajectory 2 in Fig. 10(b). The inner (outer) circle denotes the boundary of �E = 0.5ω0 (�E = 2.5ω0).

of the harmonic by canceling the destructive interference.
Differently, we focus on another aspect of the harmonic: el-
lipticity dependence as a function of the chemical potential.
In the experiment, the chemical potential can be controlled
by gate voltage, electric field, magnetic field, chemical dop-
ing [48–51], and so on. In the calculation of the SBEs, the
variation of the chemical potential can be achieved by set-
ting the initial diagonal element ρk

vv = 1 below the the Fermi
surface, which represents the initial population probability
in the valence band. Figure 12(a) shows the Fermi surfaces
with the different chemical potentials μ. As the chemical
potential decreases, the Fermi surface will decrease and the
electrons excited in the zone 0.5ω0 � �E � 2.5ω0 will be
gradually reduced. When the chemical potential decreases to
−1.06 eV, as shown in Fig. 12(a), some of the electrons are
still able to be driven into the zone 0.5ω0 � �E � 2.5ω0

by the laser field. At this point, the major excitation region
does not change and the enhancement of harmonic yield at
finite ellipticity will be weakened. As the chemical potential
further decreases to −1.52 eV, few electrons can be driven
into the zone 0.5ω0 � �E � 2.5ω0. Therefore, the major ex-
citation region changes and the enhancement of the harmonic
yield will vanish. The anomalous ellipticity dependence will
transform to a normal ellipticity dependence. To verify our
speculation, Fig. 12(b) shows the ellipticity dependence of
HH7 with different chemical potentials μ. It is obvious that
the harmonic yield at around ε = 0.25 gradually decreases
and eventually transits into the normal ellipticity dependence
at μ = −1.52 eV, which is in accordance with our expecta-
tions. Besides, it is noted that both increasing and reducing
chemical potential are the same in controlling the harmonic
generation of graphene due to the electron-hole symmetry in
graphene.

IV. CONCLUSION

We investigated the ellipticity dependence of HHG in
graphene by solving the SBEs. According to the saddle-point
analysis, we found that the excitation area contributing to
the HHG is different at different ellipticities. The electrons
excited from the zone (0.5ω0 � �E � 2.5ω0) are mainly
responsible for the enhancement of the harmonic yield at

finite ellipticity. In-depth analyses reveal that the motion of
the electron and hole from this zone can form a closed tra-
jectory, leading to a minimum recollision distance. Thereby,
the harmonic yield is enhanced. Besides, we propose a way
to control the ellipticity dependence of HHG in graphene
by varying the chemical potential. As the chemical poten-
tial decreases, the electrons excited in the zone (0.5ω0 �
�E � 2.5ω0) are gradually reduced. Thus, the enhancement
of harmonics at finite ellipticity progressively diminishes.

FIG. 12. (a) Top view of the Fermi surfaces at different chemical
potentials in the valence band. The red arrow marks the vector
potential of the laser field. The black annulus denotes the zone of
0.5ω0 � �E � 2.5ω0. (b) Ellipticity dependence of HH7 at different
chemical potentials μ. The inserted figure presents the sketch map of
varying the chemical potential.
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Eventually, the ellipticity dependence transits to be normal.
We expect this shift to be observed in the future experiments.
Previous works have presented that the zero-gap property and
the vortex structure of the dipole matrix element near the
Dirac point play a key role in the anomalous ellipticity de-
pendence [32,34]. Our results further uncover the underlying
mechanism and provide a deeper understanding of the anoma-
lous ellipticity dependence in graphene. In addition, this
also provides an intuitive physical picture for understanding
the ellipticity-dependent behaviors in a variety of materials
with the zero-gap band structure, such as three-dimensional

topological insulators, and AA- and AB-stacked bilayer
graphene.
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