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Bessel-modulated autofocusing beams for optimal trapping implementation
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Abruptly autofocusing beams were proposed and tested for a variety of applications such as optical ma-
nipulation, yet their trapping performance associated with the optical forces and trap stiffness remains largely
unexplored. In this work, we design and demonstrate specially modulated autofocusing beams. We theoretically
and experimentally show improved properties of such beams and their trapping capabilities as compared to
their unmodulated counterparts. In particular, an autofocusing beam tailored with a Bessel function exhibits
a shorter focal length and a much stronger peak intensity than that of an unmodulated circular Airy beam.
Moreover, we perform optical tweezer experiments using both the modulated and unmodulated autofocusing
beams to trap microbeads and red blood cells for direct comparison, and find that the Bessel-modulated beam
displays an enhanced trapping capability, thanks to a stronger optical trapping force due to its peculiar intensity
landscape. Compared with the conventional circular Airy beams, optical tweezers based on our modulated
autofocusing beams exhibit a superior performance, which may lead to new photonic tools for optical trapping
and manipulation.
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I. INTRODUCTION

In the past five decades, optical tweezers have attracted
a great deal of attention, leading to numerous applications
demonstrated in a variety of fields including optics and pho-
tonics, biophotonics and cell biology, colloid and aerosol
sciences, and statistical physics [1–5]. Conventional optical
tweezers, commonly based on Gaussian beams, are often af-
flicted with some invasive effects like photodamage or heating
of biological samples, partially arising from prolonged light
exposure or high trapping power [3,4,6,7]. To reduce these
adverse influences, many efforts have been taken for improv-
ing the tweezing techniques. Indirectly, the photodamage was
reduced via tethering biological samples to attached beads
[4,6]. More directly, structured light is employed aiming for
this improvement. For instance, the so-called “dark beams,”
represented by the higher-order Gaussian-Laguerre doughnut-
shaped beams and optical vortex beams [8], were utilized to
achieve a low photodamage. Along this line, various optical
tweezers techniques based on novel optical fields have been
developed, driven by the dynamically changing field of beam
shaping and structured light [9].
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About a decade ago, the so-called “abruptly autofocusing
beams” originated from self-accelerating radially symmetric
circular Airy beams (CABs) [10–25] brought about new tools
for shaping the optical tweezers. Compared with Gaussian
beams which build up the peak intensity gradually during
evolution, these intriguing CABs exhibit an abruptly focus-
ing behavior that leads to a huge intensity gradient in both
longitudinal and transversal directions. Due to the quite short
distance of power accumulation, both photodamage and heat-
ing can be somewhat reduced or more localized. Triggered by
this exotic feature, the autofocusing beams have been widely
touted and tested for applications in optical manipulations
and tweezers techniques [12,21–23]. However, to the best
of our knowledge, quantitative characterization of their trap-
ping forces and further optimizing their performance remain
largely unexplored, especially in the domain of experimental
studies [21–23].

In this work, we propose and demonstrate a class of mod-
ulated autofocusing beams (MABs), and directly compare
them with conventional circular autofocusing beams in the
aspects of trapping forces and stiffness both theoretically
and experimentally. We find that an MAB exhibits a sharper
contrast, a higher peak intensity, and a shorter autofocusing
distance as compared to a CAB. Based on the wave theory
analysis [26–28], these improved features are well explained
by the two components of the MAB. In the experiments with
trapping microparticles and red blood cells (RBCs), the MAB
always shows a larger trapping stiffness (thus accordingly a
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stronger trapping force) than that of the CAB. Our results may
bring about new possibilities for developing optical manipu-
lation tools based on such unconventional optical beams for
biomedical applications.

II. THEORY AND ANALYSIS

Generally, a traditional autofocusing CAB is designed via
a radially symmetric Airy beam with inward acceleration. At
the input, its intensity profile consists of many concentric
rings with the most intense one being inside. Theoretically, the
input amplitude is formulated as Ai(r0 − r) exp[a(r0 − r)],
where Ai(.) represents the Airy function, r0 is an initial radial
position of most intense ring, and a is an apodization factor
determined by the effective aperture of an optical system, r =√

x2 + y2 is the radial coordinate, and x and y are the transver-
sal coordinates [10]. To enhance the peak intensity, we impose
an additional Bessel modulation on the CAB (see details in
the Appendix). Specifically, the electric field of the modified
CAB (or MAB) is prescribed as

ψ (r, z = 0) = A0Ai
( r0 − r

w

)
exp

(
a

r0 − r

w

)
× exp

(
iv

r0 − r

w

)
J0

( r1 − r

w

)
, (1)

where J0 represents the Bessel function, w is a radial scale
factor determining the width of the most intense ring, and v =
θkw is a radially kicked velocity associated with the initial
launching angle θ of this beam, and r1 is a parameter to control
the modulation of the Bessel function.

To investigate the propagation properties of this modified
autofocusing beam in simulation, we use the field in Eq. (1)
as the input of the paraxial diffraction equation [29,30]:

∂2
xxψ + ∂2

yyψ + 2ik∂zψ = 0, (2)

where � is the complex amplitude of an electric field, k =
2πn/λ is the wave number, n is the refractive index, λ is
the wavelength of the incident light, and z is the propagation
distance.

For a better comparison, a CAB and its modified ver-
sion are designed for reaching the maximum peak intensity
at the same distance (where a focal point is defined). In
doing so, the following parameters are adopted as an ex-
ample: r0 = 120 μm, a = 0.13, and v = −2, λ = 960 nm,
w = 24 μm, r1 = 300 μm for an MAB, while w = 20.3 μm
and r1 = r for a CAB. The incident light powers are the same

(here 1 W) for both cases. Figure 1 shows the numerical
propagation results of the two beams. Kicked with the initial
launching velocity, the rings of CAB expand then shrink and
finally abruptly focus at a certain position [Figs. 1(a1)–(a3)].
As usual, the peak intensity is always located in the inner
ring. Once introducing the modification, the resulting MAB
exhibits a similar autofocusing propagation process, but dif-
ferently, its peak intensity shifts from the inner ring towards
outside during propagation accompanying with a narrowing
ring width [Figs. 1(b1)–1(b3) and 1(d)]. Such a feature leads
to a much higher peak intensity and stronger intensity contrast
at the focal point for MAB as shown in Figs. 1(c) and 1(e),
respectively. These distinctive results can be well interpreted
via analyzing the internal transverse power flow. Figures 1(a3)
and 1(b3) present the scenarios at the focal point for both
beams. Clearly, the inward power flow of MAB is stronger
and more concentrated comparing to CAB, thereby causing a
larger peak intensity.

We further examine how the autofocusing property of
MAB changes with the value of r1 in the Bessel modula-
tion. As shown in Fig. 2(a), for most cases, MAB shows a
stronger peak intensity than CAB. In particular, almost one
order of magnitude enhancement can be reached at around
r1 = 500 μm [Fig. 2(a)]. One should avoid the range of 0 <

r1 < 240 μm, where MAB exhibits otherwise a lower peak
intensity. For different values of r1, the autofocusing length
keeps nearly constant [inset in Fig. 2(a)].

To further understand how the Bessel function modulates
the property of MAB, an asymptotical wave analysis in the
framework of the geometrical optics is applied [26–28]. Based
on the asymptotic expression of the Bessel function, i.e.,
J0(x) ≈ (2/πx)1/2 cos(x−π/4), Eq. (1) can be simplified as

ψ (r, z = 0) ≈ A0

√
w

2π (r1 − r)
exp

(
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w

)
[ψ+(r, z = 0)

+ψ−(r, z = 0)], (3)

where ψ±(r, z = 0) = Ai( r0−r
w

) exp{i[(v ± 1) r0−r
w

± r1−r0
w

∓
π
4 ]}. Compared with a radially kicked CAB formulated as
Ai( r0−r

w
) exp(iv r0−r

w
), one can infer from Eq. (3) that MAB

indeed consists of two CABs with different kicked velocities.
The components with the velocity v + 1 and v−1 are denoted
as CAB+ and CAB−, respectively. Their interference leads
to an oscillatory dependence for the peak intensity of MAB
to the parameter r1. In order to obtain the exact trajectory
of MAB, the caustics are calculated with the help of ray
analysis. Via the geometrical optics method, Eq. (3) is further
transformed as
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To obtain the above formula, Ai(x) ≈ (−π2x)−1/4

sin[ 2
3 (−x)3/2 + π

4 ] (x < 0) is employed. Then, we can
calculate the corresponding radiation rays whose caustics
are described by R = r + z tan [sin−1(∂rϕ

±
0 )], as seen
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FIG. 1. Numerical simulations. Direct comparison of propagation dynamics between (a) a CAB and (b) an MAB. (a1), (b1) are side views
of 100-mm-long beam propagation. (a2), (a3) and (b2), (b3) are plots of corresponding beam profiles at locations marked by the dashed vertical
lines in (a1) and (b1), respectively. (a3) and (b3) also present the transverse power flow. (c) Peak intensity of CAB and MAB along propagation;
(d), (e) radial intensity distribution corresponding to (a2), (b2) and (a3), (b3), respectively. White dotted curves in (a1) and (b1) indicate the
trajectories of the innermost ring of the beams. Intensities in (a2) and (b2) are enlarged about 2 times for better visualization.

in Fig. 2(b). From these rays, we can get the exact
trajectory of MAB [marked by red line in Fig. 2(b)].
Also, Fig. 2(b) presents the trajectory of CAB calculated
by rCAB = r0 + vz/kw − z2/4k2w3 [14] with the parameters
adopted in Fig. 1 (rCAB indicates the radial position of the
innermost ring of CAB in propagation, marked by a blue
circle line). Clearly, these two trajectories are very close and
consistent with the simulating results in Fig. 1 [marked by the
white dotted line in Figs. 1(a1) and (b1)]. Furthermore,
from the trajectories of MAB and its components in
Fig. 2(c), one can see that the focusing points of CAB+
and MAB almost overlap, appearing much earlier than that
of CAB− during evolution. Without the Bessel modulation,
MAB reduces to CAB that always shows a longer focal
length in the absence of the faster autofocusing component
(see the CAB case that has the same parameter as MAB
w = 24 μm in the Appendix). That is the reason why we
should reduce the parameter w to reach an identical focal
position for the modulated and unmodulated cases. In Eq. (3),
since the parameter r1 merely introduces constant amplitude
and phase changes for the whole beam profile, it can hardly

alter the autofocusing dynamics and thus almost exerts no
influence on the autofocusing length. Using Eq. (3), the peak
intensity and the focusing length are recalculated, showing a
good agreement with the ideal case [Fig. 2(a)], validating our
theoretical approximation.

Next, we investigate the optical tweezer capabilities of
these autofocusing beams by characterizing their trapping
forces. Theoretically, in the framework of dipole approxima-
tion, their trapping forces Ftrap including the gradient force Fg

and the scattering force Fs on a Rayleigh particle are calcu-
lated via the following formulas [5,21–23]:

Fg = 1

4
ε0εmRe(α)∇|ψ2|,

(5)

Fs = 1

12π
ε0ε

3
mk4|α2||ψ2|,

where ε0 is the dielectric constant in vacuum, α =
4πR3(εp − εm)/(εp + 2εm) is the polarizability, R is the ra-
dius of the particle, and εp and εm are dielectric functions
of the particle and the surrounding medium, respectively.
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FIG. 2. (a) Peak intensity at the focal point and autofocusing length fz (inset) with different r1 for MAB [red curve from simulation and
black-blue circle calculated from Eq. (3)] and for CAB (blue dotted line). (b) Ray description (thin red line) of MAB overlapping with thick red
line and blue dotted circles indicating the trajectories of CAB and MAB in Fig. 1, respectively. (c) Trajectories of MAB and its two components.
(d) The transversal gradient forces, (e) transversal scattering forces, and (f) total trapping forces of CAB and MAB at the focusing point.

Figures 2(d)–2(f) show the calculated gradient force, scat-
tering force, and the total trapping force along the same

direction (F trap = Fg + Fs) for CAB and MAB to trap a
polystyrene bead (diameter is 40 nm) in water (εp = 2.5,

FIG. 3. (a) Experimental setup for optical tweezers based on autofocusing beams. L: lens, SLM: spatial light modulator, DM: dichroic
mirror, OL: high NA objective lens, CL: condenser lens, WLS: white light source, CCD: camera, QPD: quadrant photodiode. The inset
illustrates a trapped bead under the action of the tweezers. (b), (c) experimentally obtained transverse profiles of (b) a CAB and (c) an MAB
at two chosen propagation distances. Intensities in (b1) and (c1) are enlarged about 3 times for better visualization and comparison. (d) Beam
profiles of CAB and MAB along the dashed lines in (b2) and (c2). Note that the measurement is performed before the beam enters the
objective lens.
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FIG. 4. (a), (b) Measured power spectra from the optical tweezers showing the trap stiffnesses κr of a 2-μm polystyrene bead for (a) an
MAB and (b) a CAB that are presented in the insets. Solid lines describe their relative power spectrum fitting and black dashed lines mark the
positions of the corner frequency. (c), (d) Trapping stiffnesses κr for two different beams as a function of input power exerting on (c) a 2-μm
polystyrene bead and (d) an ∼ 5-μm RBC. The uncertainties are indicated by the shaded regions. (e)–(i) Calculated transverse trapping force
and trap stiffness of the CAB and the MAB based on the full-wave generalized Lorenz-Mie theory and Maxwell stress tensor technique [31]
for (e), (f) a polystyrene bead and (g), (i) an RBC. Note that the values in (g) and (i) are normalized by using the maximum values associated
with the MAB in (e) and (f), respectively.

εm = 1.7). We can see that the MAB seems to exhibit a
larger trapping force than the CAB does, as further an-
alyzed below using the full-wave generalized Lorenz-Mie
theory [31].

III. EXPERIMENTS AND DISCUSSION

In order to verify the above analysis, we performed a se-
ries of experiments to investigate propagation dynamics and
optical trapping capabilities of CABs and MABs. The exper-
imental setup is similar to the one used in our previous work
[19]: a linearly polarized Gaussian beam with a wavelength
of λ = 960 nm is launched onto a spatial light modulator
(SLM) with the predesigned phase modulations, and in the
following, a Fourier lens is used to turn the Gaussian beam
into a CAB or MAB. The imposed phases are obtained by
calculating the Fourier transform hologram of each beam.
Then a charge-coupled device (CCD) camera is employed
to monitor their intensity patterns. The measured profiles of
CAB and MAB are presented in Figs. 3(b) and 3(c), respec-
tively. Similar features are observed as in our simulation: The
main ring of MAB is narrower than that of CAB; The peak
intensity in MAB is larger than that of CAB at focal point
[Fig. 3(d)].

To study the trapping capability of the beams in optical
tweezers, we add one more lens in the propagation path to
form a 4 f system, delivering the Fourier distributions of
CAB and MAB to the front of an objective (oil immersion)
placed in a typical microscopic system, as shown in Fig. 3(a).
Under proper conditions, the trapping potential is approxi-
mately treated as in the scenario described by a spring [as

schematically shown in the inset of Fig. 3(a)]. The spring
stiffness is proportional to the trapping force, thereby enabling
the characterization of the trapping capability. Based on the
Langevin equation, one can get the trapping stiffnesses of
the beams via power spectrum analysis method [1–4,32]. In
this approach, the trapped particle positions in the trapping
are firstly measured by a quadrant photodiode that collects
(assisted with a condensed lens) the scattering light from the
particle or cells, and then their power spectra are obtained
using the Fourier transform for further calculating the trap-
ping stiffness κr (κr = −dFtrap/dr), by also employing the
corner frequency power spectrum fc,r : fc,r = κr/2πγ , where
γ = 6πηR is the particle friction coefficient, η is the vis-
cosity of the solution, and R is the radius of the trapping
object.

Figures 4(a) and 4(b) present the power spectra of CAB
and MAB tweezers with a 90-mW input power targeting for a
2-μm polystyrene bead as a test object in water. The beam
parameters are adopted following the simulation in Fig. 1.
In comparison of the two tweezers, clearly, MAB shows a
larger corner frequency, thus leading to an enhanced trap-
ping stiffness and accordingly a stronger trapping force. Since
the polystyrene bead has a larger scale compared with the
light wavelength, the theoretical model in the framework of
dipole approximation [i.e., Eq. (5)] is not quite applicable to
our experimental conditions. For such a regime of the Mie
scattering, one can use a modified version of Eq. (5) based
on multipoles up to the electric octupole or to any order
[33,34], or the method based on the full-wave generalized
Lorenz-Mie theory and Maxwell stress tensor technique [31].
Here, we employ the latter model to calculate the trapping
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FIG. 5. (a), (b) Direct comparison of the propagation dynamics of (a) Bessel beams [ ψ (r, z = 0) = A0J0( r1−r
w

), r1 = 300 μm] and (b) CAB
(r0 = 120 μm, α = 0.13, and v = −2, r1 = r) with same incident conditions as MAB (1W, w = 24 μm, λ = 960 nm), respectively. (a1) and
(b1) are the 100-mm side-view propagation of the beams. (a2), (b2) and (a3), (b3) plot corresponding beam profiles at locations marked by
the dashed vertical lines in (a1) and (b1), respectively. (c) Trajectories of CAB and MAB with same radial scale factor, i.e., w = 24 μm. (d),
(e) radial intensity distribution and radial gradient forces of Bessel beam, CAB and MAB at the focusing point. Intensities in (a2) and (b2) are
enlarged about 2 times for better visualization.

forces for MAB and CAB and further analyze their stiffness.
Note that the calculated trapping forces here are composed
of the gradient and scattering forces, which can be decom-
posed using the fast Fourier transform approach [33,35] or
the Cartesian multipole expansion theory [34,36]. Since the
concerned Mie particles experience a force that is mainly
the sum of the gradient force and the scattering force in our
experiment, we did not decompose the two components in our
analysis.

As shown in Figs. 4(e) and 4(f), for the same size of the
bead, an enhancement (∼ 45%) of the stiffness for MAB
is approached, which indicates that the difference obtained
experimentally for the trapping abilities of the two optical
fields is reasonable. But, the stiffness difference measured in
experiment is not as sharp as the theoretical prediction. This
may attribute to the imperfect experimental conditions. For
example, the SLM with a limited resolution is less efficient
for generating MAB that is associated with a more complex
phase modulation as compared with the case of CAB. The
enhancement of trapping stiffness for MAB is further veri-

fied by injecting different input powers. In the chosen power
range, the trapping stiffnesses of both tweezers are nearly
proportional to the power. In another experiment, an RBC
(about 5 μm) in hypotonic buffer (i.e., with a spherical shape)
[32,37] is employed, and two more features are observed:
firstly, the stiffness in the MAB tweezers exhibits a relatively
larger increase than that in the CAB tweezers [Fig. 4(d)];
secondly, the stiffness for each beam is smaller than that for
the same beam to trap the polystyrene bead, which is consis-
tent with the fact that the stiffness is inversely proportional
to the size of a trapped particle [1]. These observations are
in agreement with our simulations based on the full-wave
generalized Lorenz-Mie theory and Maxwell stress tensor
technique [Figs. 4(g)–4(i)].

Before conclusion, we should note that the trapping per-
formance of MAB can be further enhanced by choosing
proper parameters of the imposed Bessel modulation, as
found in our preliminary numerical simulations. These re-
sults and corresponding experimental studies will be reported
elsewhere.
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IV. CONCLUSION

In summary, we have proposed and demonstrated a scheme
to modulate and optimize the autofocusing beams for the
enhancement of optical trapping capabilities. Through a
Bessel modulation, the autofocusing beams are endowed
with a stronger peak intensity and a shorter autofocusing
length as compared with their unmodulated counterparts.
Accordingly, the modulated beams exhibit a larger trapping
stiffness (i.e., a stronger trapping force), which is well veri-
fied in our optical tweezers experiments with both dielectric
particles and RBCs. Our results provide a comprehensive
understanding of the optical trapping capabilities of the
modulated autofocusing beams, which may find unique ap-
plications for optical manipulation and biomedical research,
bearing in mind that the autofocusing beams can circumvent
obstacles.
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APPENDIX: COMPARISON OF BESSEL BEAM, CAB
WITH w = 24 μm AND MAB

As shown in Fig. 5(a), a Bessel beam defined by J0(r1 − r)
can focus itself to enhance its peak intensity. However, at
focal point, its peak intensity is smaller than that of MAB. In
addition, Fig. 5(b) shows the propagation of CAB with same
parameters as MAB except r1 = r. Compared with MAB, this
CAB focuses itself more slowly [Fig. 5(c)]. With the help of
the Bessel function, MAB is able to abruptly autofocus in a
shorter propagation length and can have more than two times
stronger peak intensity at focal point [Fig. 5(d)]. Moreover,
MAB shows a largest trapping force among the three cases,
implying a better performance in optical tweezer [Fig. 5(f)].
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