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The forces acting on an isotropic microsphere in optical tweezers are effectively conservative. However,
reductions in the symmetry of the particle or trapping field can break this condition. Here we theoretically
analyze the motion of a particle in a linearly nonconservative optical vacuum trap, concentrating on the case
where symmetry is broken by optical birefringence, causing nonconservative coupling between rotational and
translational degrees of freedom. Neglecting thermal fluctuations, we first show that the underlying deterministic
motion can exhibit a Hopf bifurcation in which the trapping point destabilizes and limit cycles emerge whose
amplitude grows with decreasing viscosity. When fluctuations are included, the bifurcation of the underlying
deterministic system is expressed as a transition in the statistical description of the motion. For high viscosities,
the probability distribution is normal, with a kurtosis of three, and persistent probability currents swirl around
the stable trapping point. As the bifurcation is approached, the distribution and currents spread out in phase
space. Following the bifurcation, the probability distribution function hollows out, reflecting the underlying
limit cycle, and the kurtosis halves abruptly. The system is seen to be a noisy self-sustained oscillator featuring a
highly uneven limit cycle. A variety of applications, from autonomous stochastic resonance to synchronization,

is discussed.

DOI: 10.1103/PhysRevA.104.043518

I. INTRODUCTION

An object held in optical tweezers is usually thought to be
resting in a potential well [1,2], formed by the concentrated
light intensity found in a tightly focused optical beam. Under
certain circumstances, described further below, this is a good
approximation which leads to a number of useful applications.
For example, the trap is at thermodynamic equilibrium and the
particle coordinates are distributed according to Boltzmann
statistics, e.g., P(x) o exp[—V (x)/kgT], for potential V (x).
This ensures that the particle is confined by the potential and
that deepening the well by, for instance, increasing the laser
power results in the particle being more tightly confined. Pro-
viding the particle remains in the linear range of the trap, we
can apply the equipartition of energy to associate the elastic
energy of the trap, K(x?)/2 (where K is a scalar stiffness
and (x?) is the variance in the position), with the thermal
energy, kgT /2. Thus the variance in the position is inversely
proportional to the stiffness which, in turn, is proportional to
the laser power, i.e., (xz) = kT /Pk (where P is the power
and k = K/P is the stiffness per unit power) [3,4]. Notably,
this analysis applies in both under- and overdamped regimes,
i.e., time-averaged quantities, such as (x?), are independent of
the viscosity of the ambient medium.
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The description given above assumes that the optical forces
provided by the tweezer are conservative, i.e., that they are
given by the gradient of a scalar potential. Countless stud-
ies confirm the validity of this assumption when applied to
spherical particles making small excursions in linearly po-
larized Gaussian traps, e.g., Refs. [5,6]. More recent work
shows that the optical forces are locally conservative in this
particular system, for reasons of symmetry rather than any
more fundamental requirement [7-12] and, furthermore, that
the nonconservative character of optical forces manifests itself
whenever the symmetry of the system is lowered or when
the particle roams widely in a weak trap [13,14]. In the over-
damped regime, this results in persistent probability currents
connected with a subtle, systematic bias in the Brownian mo-
tion of the trapped object [15]. In the underdamped regime,
where inertia is significant, the consequences are more dra-
matic. This systematic bias increases the particle momentum.
Reducing the ambient viscosity reinforces this effect, ex-
panding the amplitude of the stochastic motion. Eventually,
the trapping point destabilizes, as the nonconservative forces
exponentially amplify any small perturbation. Similar effects
have been observed for isotropic microspheres in circularly
polarized beams [16] and for birefringent spheres in linearly
polarized beams [17]. In the former case, symmetry is broken
by inhomogeneous optical spin, which generates transverse
momentum circulating about the beam axis. In the latter, op-
tical anisotropy introduces nonsymmetric coupling between
rotational and translational degrees of freedom: tilting the
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particle in the beam generates transverse forces (similarly to
other systems [11,18,19]), while displacing the particle gen-
erates a torque as well as a restoring force. These processes
are nonsymmetric, so that a closed path of alternate rotations
and translations involves an exchange of energy with the envi-
ronment. To some degree, these physical processes operate in
all lower symmetry vacuum traps, including those containing
nonspherical particles, e.g., Refs. [20-23]. The current paper
expands on previous work describing the motion of birefrin-
gent spheres in linearly polarized traps [17], which focused
on stochastic motion in the linear regime as the instability is
approached.

Here, we theoretically consider the general motion, before
and after the instability, including the behavior that depends
explicitly on nonlinearities in the force field. In order to draw
out the effect of thermal fluctuations, we separately consider
the deterministic case, which includes viscous damping but
ignores thermal fluctuations, and the equivalent stochastic
system, where fluctuations are properly accounted for. These
two cases are referred to as the equivalent stochastic and
deterministic systems.

To start with, we concentrate on the deterministic system.
We show that the nonconservative instability described in [17]
corresponds to a Hopf bifurcation wherein the stable trapping
point is replaced by limit cycles whose amplitude increases as
the ambient viscosity u is decreased beneath a critical value
wx . We identify the limit cycles numerically and characterize
them in terms of energy changes around the cycle.

In the second part of the paper, we include thermal fluc-
tuations. Prior to the bifurcation (viscosity greater than the
critical value, i > py), the particle remains within the linear
range of the trap. As a consequence, the probability distribu-
tion function is normal [24] and can be evaluated analytically,
along with the probability currents which appear due to the
nonconservative part of the force. For sufficiently high vis-
cosities, the probability distribution resembles the Boltzmann
distribution. The variance of the coordinates is equivalent
to the values that would be obtained if the nonconservative
part of the force field was neglected, and the variance in
the velocity is approximately given by the thermal velocity,
e.g., (%) ~ kT /m, for mass m. However, the distribution
contains covariances which would vanish identically if the
system really was conservative. In particular, some of the
position coordinates are correlated with some of the veloci-
ties. These couplings are connected with probability currents
that swirl around the trapping point. As the viscosity is
reduced and the bifurcation is approached, the distribution
function spreads out in phase space, but remains normal. The
probability currents decrease in amplitude and spread out.
After the bifurcation, the spreading distribution flattens and,
eventually, hollows out, characterizing a noisy, self-sustained
oscillation. The bifurcation itself is associated with an abrupt
change in the kurtosis of the probability distribution func-
tion, from a value of 3 (i.e., normal distribution) to a value
of ~1.5.

Finally, we briefly discuss a broader range of physical
systems (including neural [25,26] and laser dynamics [27,28])
that share stochastic and dynamical features with the op-
tomechanical system featured here, as well as the stochastic
phenomena that these systems can exhibit.

FIG. 1. Schematic showing the coordinate scheme used through-
out the paper and a closed cycle of repeated rotations and
translations.

In the following sections, we review background material,
and describe the relevant equations of motion and the form of
the force field before analyzing the deterministic and stochas-
tic motion.

II. BACKGROUND

We consider a system identical to that described previously
[17]. The coordinates and geometry are shown in Fig. 1. A
positively birefringent microsphere is levitated in a linearly
polarized optical trap in a vacuum chamber. The microsphere
has a unique symmetry axis, # in Fig. 1, corresponding to
the optic axis. The trapping beam is directed upwards so
that the radiation pressure is balanced by the weight of the
particle. At the trapping point, where the external forces on the
particle vanish, the symmetry axis of the particle aligns with
the polarization direction. The angle between u and the xy
plane is measured by 8. We are interested in how the motion
of the microsphere changes as the viscosity is reduced. In
an experiment, this is achieved by lowering the pressure in
the vacuum chamber. We avoid discussion of the relationship
between pressure and viscosity and simply quote viscosity
since this is the quantity appearing in the equations of motion.
Experimental measurements of viscosity for varying pressure
have been given previously [17,29] provides a commonly used
theoretical approximation. As suggested above, the bifurca-
tion parameter is the viscosity u and the system bifurcates
when p = uy, the critical value. Viscosities are therefore
given as ratios with puy.

Unless stated otherwise, the following physical parameters
are used in all calculations and simulations. The particle is
a birefringent sphere with radius @ = 2.2 pum, density p =
2.54 g/cm3, and refractive indices n, = 1.65 and n, = 1.55,
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according to the bulk parameters for vaterite. The trapping
Gaussian beam is linearly polarized in the x direction with
wavelength 1064 nm, focused with a numerical aperture of
0.95, with power 5 mW. As shown below, the critical viscosity
for these parameters is uy = 1.98 x 1079 Pa s, which corre-
sponds approximately to a chamber pressure of 1 mbar. Next
we discuss the equations of motion and the nature of the force
field acting on the particle.

A. Langevin equation

The motion of the particle is determined by the following
Langevin equation:

foP(r) + fL (1) — mgz — EF = MF. (1)

Here, f°P'(r) is the generalized optical force (i.e., forces
and torques) acting on the particle at position r, where r
specifies the coordinates of the center of mass and the ori-
entation. In this article, we are concerned with a nonlinear
force field which is nonconservative at first order and above;
see below. E is the pressure-dependent friction matrix with
diagonal elements E,, = & = 6rpua and Egp = & = 8 ua’
for translational and rotational motion, respectively. f* is the
stochastic, Langevin force, uncorrelated, with zero mean and
amplitude fixed by the fluctuation-dissipation theorem, i.e.,
(fE@) =0, (ff(t)ff(t’)) = 2kpT E;;6(t —t'), for orthogo-
nal components i, j. M is a diagonal matrix whose elements
are given by the mass (m) of the sphere and its moment of
inertia (I), and —mgZ is the weight.

We treat the motion of the particle in several different ways.
For viscosities above the critical value, it > py, the trapping
point is stable and the forces encountered by the particle are
approximately linear. Under these conditions, deterministic
trajectories (f* set to zero) can be found analytically. In addi-
tion, probability distributions and currents for the associated
thermal motion (f* is the usual Langevin force) can also be
computed directly. Below threshold (u < uy), the particle
motion exceeds the linear range of the trap and the motion
is simulated using an established numerical scheme [30], gen-
eralized to include rotation [17]. This is sufficient to explore
the stochastic motion. To analyze the underlying deterministic
motion, we simply set the Langevin force f* to zero and use
the same numerical scheme. This procedure provides initial
approximations to the limit cycles formed below threshold,
which are subsequently refined using a variational approach
[31]. Further comments about all of the methods are provided
at appropriate junctures below.

B. Forces and torques

For the system under consideration, the phenomena of
interest are generated by nonsymmetric coupling between
translational and rotational degrees of freedom [17]. This
coupling is intrinsically nonconservative so that a closed loop
consisting of repeated rotations and translations will generally
involve an exchange of energy between the optical field and
the particle. This particular geometry allows us to restrict
attention to two coordinates, x and 6 (see Fig. 1). There are
several reasons for this. First, the symmetry of the system
requires that all other optical forces and torques are uncoupled

at first order [17]. Second, rotational degrees of freedom are
uncoupled in the body frame since the moment of inertia
is isotropic. Third, the symmetry axis of the particle, @, is
tightly bound in the xz plane by the interaction with the
polarization. Optical torques about @t vanish identically [32]
so that the particle diffuses freely about this axis. As a result,
the angular momentum about 1 is too small and too irregular
to cause precession [21] which, in addition, is suppressed by
the confinement of i to the xz plane. To good approximation,
each of the uncoupled degrees of freedom acts as a separate
one-dimensional subsystem which is effectively conservative
(due to its dimension) and satisfies equipartition. The one
exception to this is the z coordinate, which couples with x at
second order. This effect is relatively minor and is discussed
in the conclusions.

To quantify our restricted force field, we perform general-
ized Lorentz-Mie calculations for a birefringent sphere with
the given parameters [17,33]. Optical forces f, and torques #,
are computed on a fine lattice of points in the range —1 < x <
1 um and —7 /4 < 7 /4; see Fig. 2. The strongest nonlinearity
is in the variation of f, with 6. Otherwise, these forces are
quite close to linear.

To aid analysis and simulation, we fit the exact forces and
torques (Fig. 2) with odd, low-order polynomials,

folx,0) &~ —kDx — k70 — 3 x e, (2a)
n=0,3

t(x,0) ~ —kPx — k0 — 3 x O 0" (2b)

n=0,3

These approximations fit the data quite accurately with
maximum errors of less than 5%. Numerical values for the
various coefficients are given in the Appendix. We note that
the simulations described below can also be performed using
forces and torques evaluated by interpolating the data depicted
in Fig. 2. There are minor discrepancies between the results
obtained using Eqgs. (2a) and (2b) and those obtained with in-
terpolated forces. These differences are discussed below. They
are negligible in comparison with experimental uncertainties
and leave the results qualitatively unaltered.

III. DETERMINISTIC MOTION

In this section, we consider the deterministic motion of
the birefringent sphere in the absence of thermal fluctuations.
First we analyze the stability of the trapping point (the point
at which the external forces vanish) for varying viscosity, and
state the conditions under which stability is lost. Next, we
consider the motion for viscosities below the critical value,
W < wx, where the stable fixed point becomes a repelling
fixed point. For purely linear force fields, all trajectories spiral
outwards and the particle is expelled from the trap. In real-
ity, small curvatures result in the formation of stable limit
cycles whose amplitude increases with decreasing viscosity.
These limit cycles are identified by integrating the equation of
motion, given by Eq. (1), with forces, given by Eq. (2), and
confirmed using a variational principle.
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X (um)

FIG. 2. (a) The x component of the optical force, f,(x, 6), and (b) the y component of the torque, #,(x, ). In (a), the contours correspond
to fy =4,2,0, -2, —4 pN from left to right, and in (b), the contours are att, = —3, —1.5, 0, 1.5, 3 pN um from top to bottom.

A. Linear stability

An analysis of the linear stability of this system has been
presented previously [17]. A summary is included here for
completeness. Omitting the stochastic force and linearizing
the equation of motion (1), with forces (2), gives

—kx — Ex=Mx < (k+iwE —Mw?)X=AX =0,
3)

where Kk is the matrix of the linear stiffness coefficients, kf%e),
in Eq. (2) and x = (x, 6) are the spatial coordinates of the
restricted system.

The right-hand side term of Eq. (3) is the Fourier transform
of the left-hand side and pertains to solutions of the form
x ~ Xe! with X = (X, ®). Setting the determinant |A| = 0
yields the four characteristic frequencies, w;, i =1,...,4.
Since the friction E o u, the characteristic frequencies also
vary with viscosity w. In this regime, trajectories are su-
perpositions of terms, ~X ;eRe(@) =M@ “for each w; and
the vector amplitudes X, ; are determined by the initial con-
ditions. If the imaginary parts of each of the characteristic
frequencies are positive [i.e., Im(w;) > 0 Vi], the trajectories
spiral into the origin. If one or more of the Im(w;) are negative,
trajectories spiral outwards, in general, and the trap is unstable
within the linear approximation.

A condition for the existence of this instability can be
derived by considering the behavior at u = 0. If the trap is
unstable for = 0, then it must lose stability for some critical
viscosity, © = ux. Examination of the values of w; at u =0
yields the following condition for the trap to destabilize for
some positive value of py:

2
1 k(e) A6 k(x)k(G)
Arp=—[-0- B S) 4
L 4( 1 m + ml = @)

where uy itself is given by
sesoy = mlwy — (mky + 1K) + (KO — k§Ok) o,

where the friction coefficients &, = 6mrua = s,u, & =
87 ua® = sy are proportional to the viscosity, and wy is the
corresponding real part of the frequency,

kfj‘)s@ + kég) Sy

2
w =
X msg + Is,

®)

The stiffness coefficients [see Eq. (2) and the Appendix]
satisfy the condition given by Eq. (4), and the resulting

frequencies w; have the form shown in Fig. 3. For the default
parameters, defined above, we have uy = 1.98 x 1070 Pas.
Two further frequencies exist. These have the same imaginary
parts as those shown in the figure, while the real parts have
the opposite sign to the values in the graph. As can be seen,
the real frequencies are relatively constant and one of the
imaginary values changes sign at px.

B. Hopf bifurcation and limit cycles

Any solution of the linear system, given by Eq. (3), is a
linear combination of terms, ~X;e®’, where X; is a vector
amplitude. As soon as (. < uy, all trajectories are dominated
by the exponentially growing term and no trajectories are
confined. In reality, the optical beam is of finite extent and
the nonlinear terms in the force field, given by Eq. (2), have a
qualitative influence on the motion. Instead of spiraling ever
outward, periodic motion, described by a limit cycle, emerges,
effectively confining the particle. This is an unusual scenario
for optical tweezers. Usually, we expect that a tweezed parti-
cle is trapped by linear terms in the force field. In this case,
the linearized force is unstable and the particle is confined by
nonlinearities.

We investigate this behavior by numerically integrating the
equations of motion [17,30], with approximate force field (2),
setting the Langevin force to zero. After the simulation has

1 T T T
0.75
N
= 0.5
=3
5
0.25
0
1 2 3 4
M/

FIG. 3. Eigenfrequencies w;, as functions of wu/uyx. Im(w,)
changes sign at & = uy, destabilizing the trapping position.
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FIG. 4. (a) Amplitudes of the Fourier coefficients of the limit cycle expansions, strongly dominated by the fundamental oscillations with
amplitudes |A;| and |C}|. (b) Variation of the fundamental frequency (£2,) relative to the threshold value (y), with w/uy. (c) Relative phases
of rotational and translational oscillation for the fundamental and third harmonic. (d) (x, 8) coordinates for limit cycles with various /iy .
The arrows indicate the sense in which the cycle is traversed. The smallest, inner cycle corresponds to p/uyx = 0.996 and the greatest has

w/mx =0.5.

reached the steady state, we fit the trajectory with a Fourier
series with fundamental frequency, €2,

x(1) = Re{ > Ayexpl—i(2n — 1)szoz]}, (62)

n=I1,N

0(t) = Re{ > Ciexpl—i(2n— 1)90t]}. (6b)

n=1,N

A variational approach is used to improve accuracy and
confirm that the trajectory is indeed a limit cycle. Following
[31], we numerically find solutions for the equations,

27 /R0 da:
/ Y P L —o, )
0 aOlj

i=x,0
where P; are the generalized forces which, in this case, reduce
to f; — mx for translations and t, — I 6 for rotations, q; are the
generalized coordinates [which reduce to x({«;}) and 6 ({o;})],
o; = {A;, C;, Ry} are the parameters defining the periodic
oscillation, and N indicates the highest-order term in the ex-
pansion. Equations (7) form a set of nonlinear equations, one
for each of the N parameters, {«;}. The derivatives are easily
evaluated with standard computer algebra [34], allowing the
solution to be sought with multivariate Newton-Raphson. We
note that this approach is quite cumbersome. The algebraic
equations, while simple, are long and unwieldy for the mod-
erate values of N used here (we use N = 4, which is more
than sufficient). We note that the variational approach does not

significantly improve the accuracy obtained by fitting Eqs. (6)
and (6b) and, in this respect, it is unnecessary. However, it
does provide reliable confirmation that we have found true
limit cycles, not weakly quasiperiodic oscillations resembling
limit cycles, and we include discussion of this method for that
reason.

As the ambient viscosity is reduced, the limit cycles tend
to increase in amplitude. In terms of the Fourier parameters,
this variation is shown in Fig. 4. The first two Fourier co-
efficients, Ay, Ci, Ay, Cp, are shown in Fig. 4(a). Although
the nonlinearity of the force field is necessary for the con-
finement of the particle, the periodic oscillation is dominated
by the fundamental, the amplitude of which is about two
orders of magnitude greater than the next highest harmonic. In
Fig. 4(b), we see that the fundamental frequency, which takes
a value Ry at the bifurcation point, varies only slightly with
viscosity. Figure 4(c) shows the relative phase between the x
and 6 oscillations for the fundamental and third harmonic. For
1 just less than py, the phase difference for the fundamental
oscillation is ~7 /2, so that the limit cycle is approximately
circular in phase space. As u decreases, the relative phase
drops and the cycle becomes increasingly anisotropic. Finally,
Fig. 4(d) shows the limit cycle itself in (x, ) space for a
range of values of t/uy: the limit cycle grows in amplitude,
becoming increasingly anisotropic and tilted as u is decreased
beneath py.

Over one complete cycle, the energy dissipated through
viscous damping [Eq. (8a)] must be exactly compen-
sated by energy transferred to the particle from the
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FIG. 5. (a), (c) Translational and (b), (d) rotational work done around a sample limit cycle with p/uy = 0.5. The work done against the
optical field is separated from the work done by viscous drag. (a), (b) The work done as a function of x and 6. (c), (d) The variation with time
() over one complete cycle with period (T'). As the particle traverses the limit cycle, it dissipates energy into the environment through viscous
drag. On completion of the cycle, the dissipated energy is exactly compensated for by energy added to the system by optical forces so that the

total work done over the cycle is zero.

optical field [Eq. (8b)], so that the total change in energy
is zero,

' . '
W) 4y = / dt &P, W) (1) = / di 1P, (8a)
0 0

t t
w;"""(t):/ dtf v, Wg(opt)(t):/ dit-,  (8b)
0 0

where v is the velocity, € is the angular velocity, given by
the time derivatives of the position and orientation, and f and
7 are the force and torque vectors. WX%”)/ ©) s the work
done by the viscous or optical forces for translational (x) or
rotational (6) motion.

This balance must be separately satisfied by translational
and rotational motion. This is demonstrated in Fig. 5, which
shows the integrated energy due to optical forces (red lines)
and viscous forces (green lines) for translational [Figs. 5(a)
and 5(c)] and rotational [Figs. 5(b) and 5(d)] work when
the relative viscosity is u/ux = 0.5. Figures 5(a) and 5(b)
show the changes in energy plotted as a function of the x
and 6 coordinates, while Figs. 5(c) and 5(d) show the same
variations plotted as a function of time (¢), normalized to the
fundamental time period (7T'). Figures 5(c) and 5(d) also show
the total work done. These changes take place as the particle
traverses the path shown by the curve marked p/uy = 0.5 in
Fig. 4(d). Evidently, the optical force accelerates the particle
over some regions of the cycle and acts as a brake, reducing
kinetic energy, in other regions. Overall, the optical force
increases the motional energy of the particle by an amount
equal to that dissipated by viscous drag. The two processes
can be seen to balance identically.

Figure 6 shows energy changes over limit cycles for vari-
ous values of u/ux projected onto the x and 6 axes. The figure
reveals the underlying symmetry of the energy changes. Since
translational work depends on v, through v2, and not R, this
quantity is an approximately single-valued function of x, i.e.,
for each value of x, there are two velocities, one positive and
one negative, of approximately equal magnitude [Fig. 6(a)].
By comparison, it is a double-valued figure eight when plotted
against 0 since each value of 6 corresponds to two different
values of v, as the particle traverses the cycle [Fig. 6(b)]. The
converse follows for rotational work Figs. 6(c) and 6(d).

In contrast to the case of the circular orbits, formed for
isotropic spheres in circularly polarized beams [16], the limit
cycles observed for birefringent spheres in linearly polarized
beams are highly uneven with rates of dissipation, accelera-
tion, and deceleration that vary substantially over the cycle.
This observation has a number of implications which will be
discussed in the last section.

Finally, we note that the use of an interpolated force field
[rather than the approximations of Egs. (2a) and (2b)] repro-
duces the fundamental frequencies [Fig. 4(b)] to within 1%
and the Fourier amplitudes [Fig. 4(a)] to within 4%.

IV. STOCHASTIC MOTION

In the previous sections, we have shown that the stable
fixed point of the deterministic system, which corresponds
to the trapping position, destabilizes as the viscosity passes
below a critical value ny and undergoes a Hopf bifurcation,
leaving a limit cycle whose amplitude increases with decreas-
ing viscosity. In the following section, we include thermal
fluctuations and investigate the changes in the probability
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FIG. 6. Work done for (a), (b) translational and (c), (d) rotational projected onto the x and 6 axes (left and right columns, respectively).

Limit cycles with varying values of u/uy < 1 are shown.

distribution function of the particle that accompany the ap-
proach to instability and the subsequent bifurcation of the
underlying deterministic system. We start by considering the
linearized force field, appropriate before the bifurcation, when
W > [y, and then progress to the general case.

A. Linearized forces

Returning to the linearized equations, given by Eq. (3), and
including the thermal fluctuations, we have

—kx — EX+fL(t) = Mx < (k+iwE — Mo?)
X = AX = FX(w). 9)

Here, F/(w) is the Fourier transform of the time-domain
Langevin force, with zero mean and covariance proportional
to the friction, i.e.,

(F'(w)) = 0,
(FX () @ FE(0')) = 2kgTES(w — o).

(10a)
(10b)

The linearity of Eq. (9) ensures that the resulting steady
state distribution function is normal [24],

o exp[—3(X"MX)]
P =—00 IC]

where X = (x, 6, v, &) are thcf, complete phase-space coordi-
nates, with v =x and 2 = 0, C is the covariance matrix,
and its inverse M = C~'. As described previously [17], C
can be evaluated directly from Eqs. (9) and (10). The process
can be summarized as follows. First, we write the right-hand
side of Eq. (9) as X = A~!'Fl(w). Using Eq. (10), we evalu-
ate the power spectral density (PSD), (X(w) ® X*(w)). The

) (1)

Wiener-Khinchin theorem then gives the covariance matrix
C, as the Fourier transform of the PSD. This last step can
be conveniently and accurately performed with residue cal-
culus (see [16,17]). Previously, this procedure was used to
find the covariance of the spatial coordinates (here, x and 0).
However, it can be trivially extended to include velocities by
observing that v = X = iwx and & = = iw0. This gives the
covariance of the velocities (e.g., (v(z)v(¢'))) as well as all
cross terms (such as {(x(z)v(¢'))). Elements of the covariance
matrix C are obtained by setting t =/, e.g., C,, = (x?), and
so on. M is obtained by direct inversion of C. Having found
C and M, P(X) can be evaluated directly. Distributions over
subsets of the coordinates can be found through integration,
e.g., P(x,0) = [[ P(x,0,v, 2)dvd Q.

One noteworthy result of this analysis is that the variance
in the coordinates diverges as 4 — . In particular,

1

2 —_—
X =

12)

where wy is given by Eq. (5) and (%) behaves similarly. We
note that Eq. (12) is an artifact of the linear approximation.
It provides a good approximation within the linear range of
the trap, prior to the bifurcation, but fails thereafter. Having
obtained the complete distribution function, given by Eq. (11),
associated quantities can be found by direct integration. For
instance, the integrated spatial probability currents [24],

(Sx) = f/ vP(x,0,v, R)dvd 2, (13a)

(So) = // QP(x,0,v, 2)dvd R, (13b)
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FIG. 7. (a) Nonzero cross correlations Corr(a, b) = (ab)/+/{a%){b*) for variables x, 0, v, 2. As u — uy, Corr(x, ) approaches 1
and Corr(0, v) approaches —1, as the bias towards deterministic cycling becomes stronger. (b) Analytical probability distribution P(x) =
Jf[ P(x, 6, v, )d0dvd R for varying values of x /u in the range u/muy = 2.0 (highest peak) to u/ux = 1.01 (broadest peak).

are given by the following simple form:
(Sxs6) = —P(x, 0)(Fy/0x + Gyj00),

where P(x,0) is the spatial probability density, P(x,0) =
[[ P(x,0, v, 2)dvdL, which, once more, is normal. The
scalar quantities Fyj9, Gy and the covariance matrix of
P(x, 0) are completely determined by C (and its inverse, M),
i.e., these quantities are independent of the coordinates x and
6. Explicit expressions are provided in the Appendix. The
complete set of currents, including S, and Sg, enters into
the continuity equation for the probability density, i.e., the
Klein-Kramers equation [24]. They describe flows of prob-
ability within the distribution. An immediate consequence
of Eq. (14) is that the mean velocities, (v) = (Sy)/P(x,6)
and () = (Sy)/P(x, 0), are linear in the coordinates, (x, 6),
e.g., (v)(ax,af) = a(v)(x, 0), for scalar constant a. In other
words, (v) and () increase linearly along position vectors in
x/0 space, although the probability density P(x, 6), which is
normal, decreases rapidly.

Numerical results for the default parameters are shown in
Figs. 7 and 8. Figure 7(a) shows nonzero elements of the
correlation matrix (derived from the covariance matrix by nor-
malizing, e.g., Corr(x, 8) = (x0)//C,xCop). Some elements
of the covariance matrix and, therefore, the correlation matrix
vanish identically. For example, (xv) = 0 since, for any fixed
value of x, the velocity is as likely to be positive as negative.
If this were not true, the distribution would not be stationary.
Similarly, (#€2) = 0. Other elements, such as (x2) and (6v),
take finite values. Figure 7(b) shows the integrated probabil-
ity distribution function, P(x) = [[[ P(x, 6, v, )d6dvd L,
evaluated from Eq. (11) by formal integration (see the Ap-
pendix). As can be seen, P(x) spreads out as the viscosity
is reduced towards the critical value wy. We note that for
i = Wy, elements of the covariance matrix become infinite,
as the imaginary part of one of the characteristic frequencies
reaches zero [16,17] and the corresponding distribution loses
validity. These results should be contrasted with the case for
motion in a potential. In this case, the Boltzmann distribu-
tion is attained. The variances of x and 6 are determined
by the potential, according to the equipartition theorem, as
are the variances in the translational and rotational velocities,
which are (v2) = kT /m and (%) = kT /I, respectively. For
motion in a potential, then, the covariance matrix and the

(14)

corresponding distribution function are completely indepen-
dent of viscosity. In addition, correlations between positions
and velocities are necessarily zero for the Boltzmann distribu-
tion, in contrast to the nonconservative system studied here.
This latter point underpins Fig. 8, which shows the integrated
spatial probability currents [see Egs. (13) and (14) and the
Appendix) as a vector field, ((Sy)(x, ), (Sp)(x, 8)), super-
posed onto the integrated probability distribution P(x, 6) =
[[ P(x,0, v, 2)dvd . These quantities relate to mean veloc-
ities via (v) = (Sy)/P(x, ) and similarly for (2). Again, for
a conservative system, the probability currents vanish identi-
cally [24]. Here, they swirl around the trapping point (Fig. 8).
As the viscosity is reduced towards the critical value, the
currents reduce in magnitude but spread over greater regions
of space. Interestingly, for high viscosities, e.g., u/ux ~ 2,
the currents persist, even though the distribution function ap-
proaches the shape of the Boltzmann distribution (Fig. 9); as
the viscosity approaches the overdamped regime, the proba-
bility currents have less and less influence over the particle
momentum and, consequently, the shape of the distribution
function.

B. Stochastic bifurcation

Finally, we consider the general system including non-
linearities in the force field and thermal fluctuations. In
particular, we numerically integrate the Langevin equation,
given by Eq. (1), with the force field, given by Eq. (2), us-
ing the scheme described previously [17,30]. Figure 9 shows
graphs of the probability distribution in one dimension, the re-
maining dimensions having been integrated out. Figures 9(a)
and 9(c) relate to viscosities above the critical value (i.e.,
> wx), and Figs. 9(b) and 9(d) are after the bifurcation (i.e.,
< py). The top pair is plotted against the x coordinate and
the lower pair against v.

Figures 9(a) and 9(c) (u > uy) include analytical curves
relating to the Boltzmann distribution that would be obtained
for a conservative system described by the linear terms in
the force field (2), with coupling coefficients kéx) and k¥
set to zero. For each numerical curve (continuous lines), we
have included an analytical approximation (dashed lines) ob-
tained using the approach described above, for the linearized
nonconservative system. The probability distributions increas-
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FIG. 8. Integrated probability distributions P(x,6) = f f P(x, 0, v, 2)dvd and probability currents (S) for u/ux = (a) 1.01, (b) 1.05,
(c) 1.1, (d) 1.5. P(x, 0) is shown as a heat map and the vector field (S) is represented by the red arrows. The currents swirl counterclockwise

about the origin.

ingly resemble the Boltzmann distribution as u increases which do not appear in the Boltzmann distribution in which
[Figs. 9(a) and 9(c)]. As discussed above, the similarity in the probability currents, present in the nonconservative case,
the shapes of the distribution functions should not be con- also vanish. For higher values of p, the analytical and numer-
fused with a qualitative similarity between the distributions ical distribution functions [Figs. 9(a) and 9(c)] agree closely
themselves: The covariance matrix of the nonconservative and the lines for the numerical and analytical results are su-
system contains nonzero elements, such as (x2) and (Ov), perposed. As before, reducing p causes the distributions to

a) 12
‘._A a0 N
E "
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o a .

1.5
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2000 02 r 1
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FIG. 9. Simulated 1D distribution functions for viscosities (a), (c) above and (b), (d) below the critical value. (a), (b) P(x); (c), (d) P(v).
Different values of p/uy are plotted in different colors. Continuous lines correspond to numerical simulations and dotted lines are analytical
approximations for an equivalent linearized system. In general, decreasing w/ux corresponds to broadening distributions. For viscosities
substantially greater than wy, the distributions are approximately Boltzmann. Results for 6 and € are similar to those of x and v.
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FIG. 10. Two-dimensional probability distributions for p/uyx = 0.985, (a) P(x, 6) and (b) P(x, 2).

spread out along both x and v. As they do so, the numerical
distribution functions depart from the analytical approxima-
tions, which become comparatively broad. This discrepancy is
caused by the fact that for viscosities approaching the critical
value py, the particle motion can exceed the linear range of
the trap [see Eq. (12)], and nonlinearities in the force field are
increasingly significant. In effect, the trajectories tend increas-
ingly toward stable limit cycles, rather than outward spirals,
and this serves to confine the particle more strongly than
would be expected from the linearized equations of motion.

Figures 9(b) and 9(d) show the corresponding distributions
for u < uy. Immediately after the bifurcation of the deter-
ministic system, the distribution functions are quite flat. As u
is further decreased, double-peaked distributions emerge, and
the peaks becoming progressively sharp with decreasing u.
The two-dimensional distributions P(x, 6) and P(v, ) reveal
more about the process (Fig. 10). As u is decreased, more and
more energy is associated with the underlying limit cycles,
exceeding the thermal energy kg7 /2. The motion becomes
progressively more deterministic and the thermal fluctuations,
taking the particle away from the limit cycle, become rela-
tively less significant. The system is a noisy, self-sustained
oscillator, fluctuating around an uneven limit cycle in phase
space.

Finally, we note that the bifurcation in the deterministic
system is associated with an abrupt change in the kurtosis
of the probability distribution function, from a value 3, when
W > ux (corresponding to the condition for normal distribu-
tions) to a value of 1.5 when pu < ux. Figure 11 explores this
observation for a range of parameters, beyond the default set
used previously. In Fig. 11(a), we plot the variance in the
position (x?) for birefringent particles with differing radii.
Variations in (x?) are loosely concentrated around p = iy,
but the changes are smooth and continuous, and the behav-
ior for u < uyx varies with particle size. Figure 11(c) shows
the corresponding variations in kurtosis, showing the abrupt
transition between two constant values, a zoomed-in version
of which is given in Fig. 11(d). We observe that the change
in kurtosis is relatively smooth at this scale, although the
range of absolute viscosities is quite narrow. The numerical
simulations often show unusual behavior close to & = uy, an
extreme example of which appears in Fig. 11(d), for sphere ra-
dius a = 2.3 um, where the kurtosis is seen to spike upward,
acquiring a value of ~4.25. This effect appears when p is
slightly greater than . For this narrow range of viscosities,
the trapping point is on the verge of destabilizing and the
linear approximation indicates a rapidly diverging variance,

given by Eq. (12), exposing the particle to nonlinearities in
the force field even though the limit cycles are not yet stable
themselves. Lastly, Fig. 11(b) shows the kurtosis for the other
coordinates, 6, v, and 2, confirming that a similar transition
takes place for all coordinates.

V. DISCUSSION

In this article, we have provided a detailed account of the
motion of a birefringent microsphere in a linearly polarized
Gaussian optical trap, in vacuum.

When thermal fluctuations are ignored, the underlying de-
terministic motion undergoes a Hopf bifurcation when the
viscosity u is reduced below a critical value wy. For viscosi-
ties above uy, the system has a stable fixed point. However,
the forces and torques acting on the particle are linearly
nonconservative, due to nonsymmetric rotation-translation
coupling. As the viscosity is reduced below the critical value,
the trapping point is destabilized. Any perturbation away from
it results in the particle trajectory spiraling into a stable limit
cycle consisting of a closed loop in the position and angle
coordinates x and 6. The limit cycles are highly uneven, with
the velocity and angular velocity varying significantly over the
cycle. Further reductions in viscosity have a weak influence
on the fundamental frequency of the cycle, but increase its
amplitude.

When thermal effects are included in this description, the
bifurcation corresponds to a change from one regime, con-
sisting of fluctuations around a stable fixed point, to another,
which consists of fluctuations around a stable limit cycle.
In the first regime (u > wyx), the particle is confined by
linear terms in the force field and the probability distribu-
tion is normal, to good approximation. It differs from the
Boltzmann distribution in several respects. For example, the
covariance matrix contains cross terms (such as (x€2) and
(6v)), which would otherwise be zero. In addition, the width
of the distribution increases sharply as i — ux. This is ac-
companied by increasing coherence and a sharpening peak
in the power spectral density [17], in a manner resembling
coherence resonance [35,36]. Associated with this, persistent
probability currents swirl about the stable fixed point. For
conservative systems, these currents would be completely ab-
sent. After bifurcation (1 < py), the probability distribution
function flattens and broadens, forming double peaks for the
one-dimensional (1D) distributions, P(x) and P(#). In two
dimensions, P(x, ) is increasingly concentrated in an oblique
elliptical ring, reflecting the limit cycle of the deterministic
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motion. The bifurcation is associated with a sharp change in
the kurtosis of the distribution function from a value of 3 (for
the normal distribution, when u > x) to 1.5 thereafter.

Although the preceding account has been quite general,
we have neglected to discuss what happens as the viscosity is
decreased much below py. Two qualitative comments can be
made. First, the limit cycles formed for u < pux must desta-
bilize at some point. Appropriate conditions can be found
through analysis of the Poincaré map [37]. For the system
considered here, the limit cycles remain stable for the range of
parameters considered above. Second, the influence of vertical
(z) optical forces has been neglected. These forces are even in
the x coordinate, i.e., ~x2, and act on the particle increasingly
as the amplitude of the x oscillation increases. As revealed in
detailed simulations (e.g., [17]), this effect is relatively weak
for the range of parameters considered here. However, as x
takes increasingly larger values, the vertical force, which will
oscillate at about twice the fundamental frequency of the limit
cycle, will start to produce nonperiodic motion. These theo-
retical considerations might be contrasted with what actually
happens in the laboratory. As shown in [17], double-peaked
distributions are readily observed, indicating the formation of
a limit cycle. However, decreasing the viscosity much below
this point results in the rapid loss of the particle from the trap
and these more complex motions, associated with the collapse
of the limit cycle or the interference of the z force, are hard to
investigate in the laboratory.

This system has a number of interesting and potentially
useful properties. First, it provides an opportunity for di-
rectly observing fluctuations in a bifurcating system with a
nonconservative instability. Such systems are representative
of a broader physical class including, for instance, firing of

neurons [25,26], laser dynamics [27,28], and electrochem-
ical reactions [38]. Although we have covered the salient
properties of this system, there remains much to understand
concerning the detailed stochastic dynamics, entropy produc-
tion [39-41], and so on. Second, the unevenness of the limit
cycles lends itself to various kinds of synchronization [42,43]
(which, in this case, may be mediated by optical interactions,
e.g., Ref. [44]) and resonance effects, including coherence
resonance [36,38] (which occurs during the approach to a
bifurcation) and autonomous stochastic resonance [45,46] (in
which motion about a limit cycle synchronizes with weak
periodic modulations in the external force), both of which
are exhibited by single neurons and neuronal networks (e.g.,
[47,48]). The latter phenomenon, autonomous stochastic res-
onance, may explain the response of oscillating birefringent
spheres to parametric forcing that has been observed previ-
ously [17].

The optomechanical limit cycle oscillators described above
may be designed or refined with combinations of beam shap-
ing technology [49] and tailored optical interactions [44,50].
More detailed investigation of their stochastic dynamics, es-
pecially with regard to coherence resonance, autonomous
stochastic resonance, and synchronization, could lead to novel
applications in sensing and metrology, while advanced cool-
ing protocols (e.g., [51,52]) could allow these effects to be
pushed towards the quantum regime [53-55].
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APPENDIX
1. Force field

In Table I we provide the numerical values for the approxi-
mate forces and torques, given by Eq. (2). The column headed
@) lists coefficients for the force, given by Eq. (2a), and the
column headed @ lists coefficients for the torque, given by
Eq. (2b). These coefficients give the force [Eq. (2a)] in pN

J

TABLE I. Numerical values for the parameters in the approxi-
mate force field, Eqs. (2a) and (2b).

(x) )
ky 3.095 —1.2125
ko 1.082 6.8904
Xo 0.8165 —-0.2172
X1 0.1939 0.0423
X2 0.9552 1.8317
X3 —1.2878 —3.9383

and the torque [Eq. (2b)] in pN pm, for displacements x in
pm and rotations in radians.

2. Probability distributions and currents

The spatial probability distribution and integrated spatial probability currents are given in terms of the covariance matrix C

and its inverse M as follows:

E\(x, 0)Ey(x, 0)E5(x, 0
P(x,6) = // P(x. 6. v, Ddvd@ = L1 DE OB, 0) (A1)
27TV |C|\/MuvMSZS2 - Mgg
(Sx) = —P(x, )[Fx + Gyyl, (A2)
(Sp) = —P(x, 0)[Fyx + Gyy], (A3)
where
Ei(x,0) = exp[ — $(Myux® + Mgo0* + 2M,5x6))], (Ad)
E>(x,0) = exp [(M},x* + M;,0% + 2M,My,x0)/(2M,,)], (A5)
Mx Mvv _Mvav M Mvv _M ‘UMU 2
Es(x. 0) = exp (Mo e)x + (Mpe : ooMy@)y] ’ (A6)
ZMUU(MUUMSZSZ - MUQ)
and
F, = M, Mgg — MyoM.q)/D, (A7)
G, = (My,Mgo — M,oMye)/D, (A8)
FO = (MxﬂMvv - MUQMXU)/D’ (A9)
G9 - (MQQMUU - MUQMGU)/Ds (AlO)
with
D = M,,Mgg — M?. (Al1)
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