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Vortex unbinding transition in nonequilibrium photon condensates
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We present a theoretical study of a Berezinskii-Kosterlitz-Thouless-like phase transition in lattices of nonequi-
librium photon condensates. Starting from linearized fluctuation theory and the properties of vortices, we propose
an analytical formula for the critical point containing four fitting parameters, that captures well all our numerical
simulations. We find that the ordered phase becomes more stable when driving and dissipation are increased.

DOI: 10.1103/PhysRevA.104.043516

I. INTRODUCTION

Thermalization of cavity photons through repeated ab-
sorption and emission by dye molecules [1] has led to the
creation of photonic Bose-Einstein condensates (BECs) [2–5]
and presents an invitation to study photonic systems from a
quantum fluid perspective [6,7]. However, the dimensional
reduction implied by the microcavity structure that serves to
confine the photons and to give them a nonzero rest mass, im-
mediately raises the issue of the Hohenberg-Mermin-Wagner
theorem that forbids BEC in two dimensions at a finite tem-
perature [8]. Experimentally, this no-go theorem has been
circumvented by adding a harmonic trapping potential that
enables condensation in the ground state owing to the mod-
ification of the density of states [2,4,5]. In the presence of a
harmonic trapping potential, however, the condensate is not
spatially extended, limiting its appeal as a quantum fluid.

Even though BEC is absent in two-dimensional Bose
gases, there is a Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition [8–11] that separates a normal phase with free vortices
from a superfluid phase where all vortex-antivortex pairs are
bound. For this phase transition to occur, interactions are cru-
cial: In their absence, the vortex core size tends to infinity and
vortices cease to be well-defined excitations. The necessity
of interactions seems to be fatal for the possibility of a ther-
mal equilibrium BKT transition in photon condensate systems
where interactions are negligible [12].

In experimental realizations of photon condensates, how-
ever, thermalization is never perfect, because photons can
escape through the confining mirrors. These losses have
to be compensated by the continuous pumping of the dye
molecules, so that currently available photon condensates are
actually driven-dissipative systems. We have shown recently
that the nonlinear dynamics of driving and dissipation renders
the vortex core size in an extended lattice of coupled photon
condensates finite [13], raising the hope for the existence of a
BKT-like transition in driven-dissipative photon condensates.

Motivated by experiments on exciton polaritons, it has
already been numerically demonstrated that nonequilib-
rium interacting Bose gases feature a BKT-like transition
[14–16]. At the same time it has been shown that the phase

dynamics is actually in the Kardar-Parisi-Zhang (KPZ)
universality class, which has been argued to destroy the super-
fluidlike phase [17–19]. In practice, however, the KPZ physics
can be limited to very large system sizes, so that in experi-
mental two-dimensional (2D) systems the BKT-like physics
dominates [14–16,20]. Exciton polaritons are quasiparticles
that arise from the strong coupling between a photon and an
exciton [21]. Their hybrid light-matter nature gives them siz-
able interparticle interactions. Their degree of thermalization
depends strongly on the polariton lifetime, that spans from a
few ps to a few hundred ps, with close to thermal states only
achieved in the samples with the longest lifetimes [15,22]. The
maturity in manufacturing gives polariton systems the edge
for what concerns the observation of physical phenomena in
spatially extended condensates, such as the observation of
quantized vortices, the polariton volcano effect, and the KPZ
dynamics of the phase (see Ref. [7] for a recent review). Un-
fortunately, due to the complicated processes that govern their
dynamics (scattering with excitons, scattering with photons,
disorder), microscopic models of their dynamics are not as
well rooted in microscopic physics as for photon condensates
where the dye absorption and emission are thoroughly un-
derstood. This actually makes it easier to make quantitative
theoretical predictions for photon condensates as for their
polariton counterparts.

We will address here the BKT transition in a nonequilib-
rium photon condensate with vanishing interparticle interac-
tions. We will show that numerical classical field simulations
on a finite lattice of photon condensates do predict a BKT-like
transition, stabilized by driving and dissipation even in the
absence of interactions. To corroborate our numerical results,
we construct an analytical expression containing a few fitting
constants that explains the numerically obtained dependence
of the critical point on the system parameters.

Our theoretical results are relevant for experiments on
lattices of photon condensates, that can be realized by pat-
terning the microcavity mirrors [23,24], analogous to lattices
for exciton polaritons [25]. We opt for this system instead of
a translationally invariant photon condensate, because of the
possibility to reduce the density and phase fluctuations [26]
and to have well-defined vortices [13]. Moreover, as long as

2469-9926/2021/104(4)/043516(7) 043516-1 ©2021 American Physical Society

https://orcid.org/0000-0002-9474-1883
https://orcid.org/0000-0003-1988-4718
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.043516&domain=pdf&date_stamp=2021-10-14
https://doi.org/10.1103/PhysRevA.104.043516


VLADIMIR N. GLADILIN AND MICHIEL WOUTERS PHYSICAL REVIEW A 104, 043516 (2021)

the tunneling amplitude remains much smaller than the tem-
perature, classical field theory is an excellent approximation
to the exact quantum dynamics. This stands in contrast to
translationally invariant systems where classical field theories
suffer from an ultraviolet catastrophe.

The remainder of this paper is organized as follows. We
recapitulate our model for a lattice of photon condensates in
Sec. II. Our analytical estimate for the critical point is derived
in Sec. III. The fitting parameters in this expression are fixed
by the numerical simulations presented in Sec. IV. We present
our conclusions and outlook in Sec. V.

II. MODEL

The simplest theoretical model to describe a lattice of cou-
pled photonic cavities in the quantum degenerate regime is the
generalized Gross-Pitaevskii equation (gGPE) [26],

ih̄
∂ψ (x, t )

∂t
= i

2
[B21M2(x, t ) − B12M1(x, t ) − γ ]ψ (x, t )

− (1 − iκ )J
∑

x′∈Nx

ψ (x′, t )+
√

2D(x, t ) ξ (x, t ).

(1)

Here, γ is the photon loss rate and J the coupling between
the nearest-neighbor cavities [23,24]. The photons thermalize
due to repeated absorption and emission by the dye with the
respective rate coefficients B12 and B21. The ground (excited)
molecular state occupation is denoted by M1(2) satisfying at
all times M1(x) + M2(x) = M, where M is the number of
dye molecules at each lattice site. The Kennard-Stepanov
relation [27–29] gives rise to energy relaxation with dimen-
sionless strength κ = B12M̄1/(2T ) (we set the Boltzmann
constant kB = 1) [26]. The last term describes the spon-
taneous emission noise [30,31]: D(x, t ) = B21M2(x, t ) and
ξ (x, t ) is Gaussian white noise with the correlation function
〈ξ (x, t )ξ (x′, t ′)〉 = δx,x′δ(t − t ′). The evolution of the number
of excited molecules due to interactions with the photons
is opposite to the change in the number of photons due to
emission (both deterministic and stochastic), absorption, and
energy relaxation. In order to compensate for the loss of en-
ergy in the system, external excitation with a pumping laser
is needed. Under the condition J � T , which assures that the
occupations of all momentum states are much larger than one,
the generalized Gross-Pitaevskii classical field model (1) is
valid for all the modes and there is no need to use a more
refined quantum optical approach [32–34].

The noise in Eq. (1) provides a description of the den-
sity and phase fluctuations. For the simplest case of a single
cavity, a crossover in the density fluctuations between a
“grand canonical” regime with large fluctuations (δn2 ∼ n̄2),
for n̄2 � Meff , and a “canonical” regime with small fluctua-
tions (δn2 � n̄2), for n̄2 � Meff , have been observed [35,36].
Here, the “effective” number of molecules is given by Meff =
(M + γ e−�/T /B21)/[2 + 2 cosh(�/T )], where � is the de-
tuning between the cavity and the dye zero-phonon transition
frequency. For e�/T � 1, one has Meff ≈ M̄2 ≈ ηMe�/T with
η = 1 + γ /(2κT ), while the energy relaxation parameter be-
comes κ ≈ B21Me�/T /(2T ).

III. BOGOLIUBOV ANALYSIS

While the linear Bogoliubov theory [8,26] breaks down
in the vicinity of the BKT transition, that involves large
phase differences between neighboring cavities, it neverthe-
less forms a good starting point to obtain insight into the
analytical dependence of the transition temperature on the
system parameters.

For the linear analysis, the stochastic density and phase
variables are written as their average value plus a small de-
viation: ψ (x) = √

n̄ + δn(x)eiδθ (x). The Fourier components
of the phase fluctuations are defined by

δθ (x) = 1√
L

∑
k

δθk eik·x, (2)

where L is the number of lattice sites, and analogous for δn(x).
In linear approximation to Eq. (1), the phase fluctuations obey
the equation of motion [26]

∂

∂t
δθk = −κεkδθk − εk

2n̄
δnk +

√
2Dθ ξ

(θ )
k . (3)

For a tight-binding Hamiltonian with hopping amplitude J ,
the single-particle dispersion equals εk = 2J[2 − cos(kx ) −
cos(ky)]. The white noise has zero average and vari-
ance 〈ξ (θ )

k (t )ξ (θ )
k′ (t ′)〉 = δk,−k′δ(t − t ′) where the phase noise

strength equals

Dθ = B21M̄2

4n̄
= ηκT

2n̄
. (4)

In the steady state, one obtains from d〈|θk|2|〉 = 0 the relation

κ〈|δθk|2〉 + 1

2n̄
〈δθ−kδnk〉 = Dθ

εk
. (5)

In equilibrium, invariance under time reversal (θ → −θ

and δn → δn) ensures that the second term in Eq. (5) vanishes.
In nonequilibrium photon condensates, time-reversal symme-
try breaks down and the density-phase correlator will play an
important role in our discussion of the phase fluctuations that
lead to the BKT transition.

At large momenta, the kinetic energy is much larger than
the time-reversal breaking rates that involve the pumping
and losses. The density-phase correlations therefore become
negligible at large k, so that the phase fluctuations assume
their thermal equilibrium value. At low momenta, on the
other hand, the nonlinear dissipative dynamics kicks in and
deviations from the thermal behavior appear. The lower bound
of the momentum region, where the thermal equilibrium ex-
pression for the phase fluctuations is a good approximation, is
given by [26,37]

kc =
[
γ κ

4J

(
1 + n̄2

M̄2

)
n̄2

M̄2

]1/6(
ηT

Jn̄

)1/3

. (6)

At low temperatures, where phase fluctuations are moderate,
Eq. (5) is accurate for all momenta, but close to the BKT
temperature the linear approximation breaks down and the
system properties are determined by the full nonlinear equa-
tions. Even then, at momenta k > kc, the linear relation (5) is
expected to hold approximately.
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FIG. 1. Combination of a uniform pumping with losses propor-
tional to the local density leads to outgoing particle flows from
regions with reduced density.

In order to proceed further, we integrate (5) over all mo-
menta [38] to obtain for the local fluctuations

κ〈δθ2〉 + 1

2n̄
〈δθ δn〉 = Dθ

2πJ
[c1 + ln(π/kc)], (7)

where the constant c1 approximates the contribution from the
momenta k < kc, where (5) breaks down. It is clear from the
logarithmic dependence of (7) on kc that phase ordering is im-
possible in the absence of dissipative nonlinearity (kc → 0),
reflecting the well-known fact that there is no phase transition
for conservative noninteracting bosons in two dimensions.

Since phase fluctuations at the BKT transition are large, the
parameter dependence of the transition point can be estimated
with (7) by setting 〈δθ2〉 ∼ 1, provided that an estimate is
available also for the the density-phase correlator. In order
to obtain a first approximation, we restrict temporarily to
one spatial dimension. Using partial integration to rewrite
the density-phase correlator as 〈δθδn〉 = L−1

∫
dx δθδn =

−L−1
∫

dx(∂θ/∂x)δN , where δN = ∫ x
0 δn(x′)dx′, it can be

related to the current by use of the identity ∂ jx/∂x = −γ δn.
This continuity relation shows that regions with density sup-
pression, such as a vortex core, behave as a source of currents
(see Fig. 1) [13,17,39–41]. With jx = 2Jn̄(∂θ/∂x), this yields

〈δθ δn〉 = 1

L

γ

2Jn̄

∫
dx δN2(x) = γ

2Jn̄
〈δN2〉. (8)

In order to estimate the expectation value 〈δN2〉 close to
the transition, one can first consider a plane density wave of
amplitude an̄, for which 〈δN2〉 ∝ n̄2a2. At the transition, vor-
tices have to nucleate, which requires in a continuum model
density fluctuations with amplitude n̄ and hence a = 1. In
a lattice geometry, however, the vortex core can be “in be-
tween” the lattice nodes and the density suppression smaller.
In Ref. [13], the vortex core size was argued to roughly behave
as r0 ∼ √

J/γ . Assuming an exponential wave function in
the vicinity of the vortex center, with density profile n(r) =
n̄[1 − exp(−r/r0)]2, one can estimate the minimal density
modulation depth sufficient to nucleate a vortex in the center
of a plaquette as

a = 2e−c3
√

γ /J − e−2c3
√

γ /J , (9)

where a constant c3 ∼ 1 was introduced. From the above argu-
ments, we come to the following estimate for the dependence
of the density-phase correlator on the system parameters close
to the transition point, 〈δθδn〉 = 2c2n̄a2γ /J , with c2 an addi-
tional fitting parameter.

lo
g 1
0

lo
g 1
0

lo
g 1
0

log10

FIG. 2. Dimensionless coupling constant Jn̄(ηT )−1, given by
Eq. (10), as a function of κ and γ /J for three different values of
n̄2/M̄2.

Using 〈δθ2〉 = c4 ∼ 1 together with the above estimate of
〈δθ δn〉 allows us to rewrite Eq. (7) as a relation for the critical
parameters,

Jn̄

T
= ηκ

4π

c1 + ln(π/kc)

c4κ + c2a2γ /J
, (10)

where kc and a are given by Eqs. (6) and (9). Because of the
quite hand-waving arguments that have led us to relation (10),
it cannot be expected to hold exactly. Nevertheless, we will
show below that it offers a good description of the critical
point, extracted from numerical simulations, for the following
values of the fitting parameters: c1 = 3.82, c2 = 0.139, c3 =
1.23, c4 = 0.510. As implied by the results corresponding to
moderate variations of the fitting parameters around the indi-
cated values [42], fair agreement between the analytical and
numerical results is mainly ensured by an adequate functional
dependence on the relevant physical parameters in Eq. (10)
rather than by an especially particular combination of the
fitting constants c1-c4.

Figure 2 shows the variations of the dimensionless cou-
pling constant Jn̄/(ηT ) according to Eq. (10) as a function
of the energy relaxation κ and the ratio of losses to hopping
γ /J (note that both axes are logarithmic) for three values of
the number of photons per cavity. We always restricted the
dissipation strength to γ /J < 2 in order to keep a resolved
photon dispersion.

Even though these parameters vary by orders of magnitude,
the variations in the coupling constant are quite moderate. For
large photon numbers (canonical regime, lower panel), the
coupling parameter is close to 0.6 except for small κ , where
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nonequilibrium effects are strongest. For smaller numbers of
photons (grand canonical regime), a larger coupling constant
is needed in general and its variations are enhanced.

It is instructive to compare our relation (10) to the equilib-
rium BKT transition. The most elementary approximation is
the reduction of the lattice Bose gas to the XY model, obtained
by ignoring the density degree of freedom. The critical tem-
perature has been determined to be Jn̄/T = 0.56 [43], which
is close to the value that we obtain in a large part of parameter
space in the deep canonical regime [see Fig. 2(c)].

In the limit of small γ , the second term in the denominator
in Eq. (10), originating from the density-phase correlator, can
be neglected and we obtain for the critical coupling parameter
Jn̄/T = η ln(ec1π/kc)/(4πc4), whose form is reminiscent of
the transition point of the weakly interacting Bose gas [11],
that has been realized with dilute gases of ultracold atoms
[44]. The main differences with the equilibrium case are that
the crossover momentum kc is now determined by losses in-
stead of interactions and the appearance of the excess noise
factor η. It is worth noting that in the limit of small γ , where
η → 1, the prefactor of the logarithm is in our fit equal to
1/(4πc4) ≈ 1/(2.04 π ), close to the equilibrium prefactor of
1/(2π ) [11]. Not surprisingly, a reasonable agreement with
the numerical data can be obtained also when fixing c4 at its
equilibrium value 1/2 and using only three fitting parameters
[42].

Formula (10) is also reminiscent of the heuristic expres-
sion DBKT/nBKT ≈ κ + 0.003c, which has been shown to
approximate fairly well the numerical results for the critical
noise-to-density ratio as a function of κ and the “nonequilib-
rium parameter” c ∝ γ in interacting-polariton condensates
[45].

IV. NUMERICAL RESULTS

Numerical simulations of the full gGPE (1) for an array
of 100 × 100 cavities with periodic boundary conditions were
done as explained in Ref. [26] and the location of the criti-
cal point was determined as in Ref. [45]: After a long-time
evolution in the presence of noise, the system was evolved
without noise for a short time (∼10 ns) before checking for
the presence of vortices. This noiseless evolution gives the
advantage of cleaning up the photon phase while it is too
short for the unbound vortex-antivortex pairs to recombine.
The propensity for their recombination is reduced [16] with
respect to the equilibrium case owing to outgoing radial cur-
rents that provide an effective repulsion between vortices and
antivortices [17]. To determine the critical coupling J for the
BKT transition, JBKT, we use the following criterion. If for
a coupling J vortex pairs are present after a noise exposure
time tnoise (and hence J < JBKT), while for a certain coupling
J ′ > J no vortex pairs appear even at noise exposures a few
times longer than tnoise, then J ′ lies either above JBKT or below
JBKT and closer to JBKT than to J . Therefore, the critical noise
intensity can be estimated as JBKT = J ′ ± (J ′ − J ).

Because the presence of vortices and antivortices is sus-
ceptible to statistical fluctuations, the numerical error on the
transition point is not only due to our finite steps in parameter
values, but also due to a statistical uncertainty. The stochastic
contribution to the error bar is hard to quantify precisely, but

FIG. 3. Numerically determined dimensionless coupling
strength Jn̄T −1 at the BKT transition (symbols) as a function of κ

for different values of M and γ /J . Here, M0 = 109, �/T = −5.2.
The curves correspond to Eq. (10).

the analysis of many realizations of the dynamics allowed
us to conclude that the statistical error bars are typically not
larger than the symbol sizes in the figures.

As a first example of the parameter dependence of the
critical coupling, we show in Fig. 3 Jn̄/T as a function of
κ , that was varied by changing both M and B21 around their
values in current experiments [46]. The numerically obtained
results are indicated with the symbols (symbols of the same
type and color correspond to the same M but different B21)
and the fits with relation (10) are shown with solid lines.
Good correspondence is observed over the whole range of κ ,
throughout which the critical coupling varies by one order of
magnitude. The initial rise and subsequent saturation is clear
from the explicit κ dependence in Eq. (10). As can be seen
from the denominator in Eq. (10), in the regime of small κ

the pumping and losses, proportional to γ , are dominant. The
reduction of the critical coupling at small κ can therefore be
interpreted as an increased robustness of the ordered phase
due to driving and dissipation, in analogy with Ref. [45].
The decrease of Jn̄/T at large values of κ originates from the
kc dependence on κ , while the increase with M is due to the
dependence of kc on M̄2 ∝ M.

The dependence of the critical coupling on the number
of photons per lattice site is illustrated in Fig. 4. Our rela-
tion (10) again captures most of the parameter dependence.
According to Eq. (10), the decrease of the critical coupling
parameter with the number of photons is due to the increase
of the crossover momentum with increasing n̄. This trend is
reflected in the numerical results, but the numerical n̄ depen-
dence shows some features that are not entirely reproduced
by our formula and require a more sophisticated theoretical
approach. At first sight, it could be surprising that a phase
transition still exists down to photon numbers as small as n̄ =
1000, well in the grand canonical regime with n̄2/Meff = 0.18
and 0.026 for M = 109 and M = 7 × 109, respectively. Our
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FIG. 4. Numerically determined dimensionless coupling
strength Jn̄T −1 at the BKT transition (symbols) as a function
of n̄ for different values of M, B21, and γ /J . Here, M0 = 109,
B0 = 10−7 meV, �/T = −5.2. The curves correspond to Eq. (10).

explanation is that for sufficiently strong coupling between the
cavities, a subset of N cavities behaves collectively, thereby
increasing the effective n2/Meff linearly with N .

At γ /J < 1 the critical coupling decreases with increas-
ing γ /J (compare magenta to cyan or dark cyan to orange
symbols and lines in Fig. 4; see also Fig. 2). For γ /J � κ

this decrease is determined by the behavior of ln(π/kc) in
Eq. (10), while for larger γ /J the effect of the term c2a2γ /J
dominates. In the case of γ /J ∼ 1, where the vortex core size
is comparable to the intercavity spacing and the density mod-
ulation depth a required for the BKT transition is significantly
reduced, the aforementioned decrease of the critical coupling

with increasing γ /J can be fully canceled or even reversed
due to a strong decrease of a2 in the term c2a2γ /J (compare
green to blue symbols and lines in Fig. 4; see also Fig. 2).

V. CONCLUSIONS AND OUTLOOK

Our numerical and analytical investigations of a lattice
nonequilibrium Bose-Einstein condensate of noninteracting
photons have shown that a BKT-like transition exists between
states with and without unbound vortex-antivortex pairs. Ac-
cording to Eq. (10), the vortex-free phase is actually stabilized
by driving and dissipation. Our findings are in line with previ-
ous numerical studies [14,15,45] of nonequilibrium polariton
condensates, where interactions were included.

The experimental verification of our prediction for the
spontaneous creation of vortices and antivortices should be
possible by directly measuring the phase profile of a photon
condensate by interferometry as used for the observation of
phase jumps of localized photon condensates [47].

In our numerics, we have not found evidence for the de-
struction of the ordered phase as was predicted on the basis of
the description of the phase dynamics by the nonlinear KPZ
model [17–19]. This could be due to our finite simulation area,
but the interplay of BKT and KPZ physics in nonequilibrium
condensates [48–50] should be explored further. The stability
of the vortex-free phase could be important for potential ap-
plications to analog optical computations [51–56] with photon
condensates [24]. From the side of fundamental physics, it
will also be interesting to study the dynamics of a photon
condensate lattice after a density quench through the phase
transition [20,57].
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