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Critical dynamics of an asymmetrically bidirectionally pumped optical microresonator
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An optical ring resonator with third-order, or Kerr, nonlinearity will exhibit symmetry breaking between
the two counterpropagating circulating powers when pumped with sufficient power in both the clockwise and
counterclockwise directions. This is due to the effects of self- and cross-phase modulation on the resonance
frequencies in the two directions. The critical point of this symmetry breaking exhibits universal behaviors
including divergent responsivity to external perturbations, critical slowing down, and scaling invariance. Here
we derive a model for the critical dynamics of this system, first for a symmetrically pumped resonator and then
for the general case of asymmetric pumping conditions and self- and cross-phase modulation coefficients. This
theory not only provides a detailed understanding of the dynamical response of critical-point-enhanced optical
gyroscopes and near-field sensors, but is also applicable to nonlinear critical points in a wide range of systems.
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I. INTRODUCTION

Spontaneous symmetry breaking is ubiquitous in physics,
occurring at every possible energy scale all the way from
the Higgs mechanism [1] down to superconductivity [2], su-
perfluidity [3], and other exotic quantum states of matter
at ultracold temperatures [4]. Associated with every spon-
taneous symmetry-breaking transition is a critical point [5].
This is a point in parameter space on the boundary of the
symmetry-broken regime where the symmetric state of the
system is neither stable nor unstable, and which exhibits cer-
tain universal features. Firstly, the system will have divergent
responsivity to external perturbations that break the symme-
try of the system, exhibiting large excursions in response
to tiny perturbations but always eventually returning to the
symmetric state if the perturbation is removed. Secondly, the
characteristic timescales and length scales (where relevant) of
the system’s response diverge: the system exhibits fluctuations
at all length scales that decay with time according to a power
law rather than exponentially and thus take exponentially
longer to reach the steady state. This is often referred to as
critical slowing down [5]. Thirdly, the equations of the system
around the critical point exhibit scaling invariance, meaning
that they are unchanged when the offsets of the various pa-
rameters from the critical point, as well as length and time,
are scaled by certain powers of each other.

One system that exhibits spontaneous symmetry break-
ing of the discrete group C2 (the cyclic group of order 2)
is that of a symmetrically bidirectionally pumped optical
microresonator with Kerr nonlinearity, in which the coun-
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terpropagating circulating powers will spontaneously deviate
from each other [6–9]. This is an example of what is known
as a pitchfork bifurcation due to the way in which one
stable solution splits into two. This effect gives rise to a
range of interesting and useful behaviors, including opti-
cal nonreciprocity [9], logic gates [10], memories [11], and
self-switching [12]. Since it is clockwise-counterclockwise
symmetry that is being broken, at a critical point the system
exhibits divergent responsivity to perturbations that distin-
guish between the two directions, including most notably
pump power and detuning differences. Since pump detuning
differences can be induced via the Sagnac effect by rotating
the entire setup, which causes the counterpropagating res-
onance frequencies to differ by an amount proportional to
the rotation velocity [13], this critical point can be used to
create a simple yet extremely sensitive gyroscope [14–16].
The Sagnac effect is related to but distinct from Fizeau drag,
which was recently demonstrated in a similar experiment in
which the microresonator was rotated but the rest of the setup
remained stationary [17].

Critical-point-enhanced gyroscopes and other sensors such
as those for refractive index changes [18,19] may be compared
to ones that achieve divergent responsivities using exceptional
points [20,21]. Although there has been significant interest
in these recently, there is growing consensus that while ex-
ceptional points enhance responsivity they do not actually
enhance sensitivity as noise is amplified by the same amount
as the signal [22–24]. The same is true for critical-point-
enhanced sensors, which unlike exceptional-point-based ones
are also sensitive to pump power noise due to their reliance
upon optical nonlinearity. We show explicitly in this paper that
the responsivities to pump detuning and power differences are
enhanced by the same factor. Nevertheless, the responsivity
enhancement provides a simple means to increase sensitivity
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by bypassing the noise floor of downstream components such
as photodiodes, as long as the pump power and detuning noise
sources can be sufficiently suppressed.

The development of critical-point-enhanced sensors re-
quires a detailed understanding of the critical dynamics of the
system, including its response to time-dependent and finite-
amplitude inputs. In this paper we show that, in the limit as
we approach the critical point, the dynamics are governed
by a simple equation, from which the divergent responsivity,
critical slowing down, and scaling invariance are manifestly
apparent. This is done first in Sec. II for the simplest case
of a symmetrically pumped resonator with a Kerr cross-phase
modulation (XPM) coefficient twice as large as that of self-
phase modulation (SPM), as is the case in any dielectric
solid [25]. In Sec. III we show that the same critical point
and behavior can occur even when the system itself is not
symmetric, but when two different asymmetries, for example
in pump power and detuning, balance each other [26]. We
derive the exact condition for the critical point, as well as the
equation for the critical dynamics, in an asymetrically pumped
resonator with arbitrary and even asymmetric SPM and XPM
coefficients.

The theory presented here applies not only to Kerr-related
symmetry breaking between counterpropagating light, but
also between different frequencies, propagation angles [27],
and opposite circular polarizations [28–32], all of which obey
the same equations. For instance, the asymmetric critical point
was recently demonstrated for the polarization case in a fiber
loop cavity [26]. Furthermore, this theory applies to systems
where the Kerr effect is substituted with a Kerr-like interaction
such as the magnetic nonlinearity [33], or even to similar
nonlinear systems outside the optical domain altogether.

The ratio between the XPM and SPM coefficients can take
different values in different materials, including less than 2
in semiconductors and gases due to diffusive effects, and as
much as 7 for interaction between opposite circular polar-
izations in Kerr liquids [25,34]. Differences between the two
mode volumes will lead to asymmetries in both the SPM and
XPM coefficients, while asymmetric effective SPM coeffi-
cients but symmetric XPM coefficients can arise if the light
in one of the modes is not monochromatic [16].

Finally, a condition is derived for decoupling the critical
dynamics from the thermal nonlinearity [35], which, although
perfectly symmetric in its action, is typically much larger than
the Kerr effect, and could thus disrupt the critical dynamics in
the case of asymmetric pumping conditions or SPM or XPM
coefficients.

II. SYMMETRIC PUMPING CONDITIONS

When an optical ring resonator with Kerr, or χ (3), nonlin-
earity is pumped with light of equal power and frequency in
both directions, a spontaneous splitting can occur between the
two counterpropagating circulating powers and resonance fre-
quencies [6–8]. This occurs due to the interplay between the
circulating-power-dependent Kerr shifts of the counterprop-
agating resonance frequencies and the detuning-dependent
circulating powers due to the pump frequency being on the
side of the resonance. The Kerr effect decreases each reso-
nance frequency by an amount proportional to the circulating

TABLE I. Dimensionless quantities used in this paper. ηin is
the resonant in-coupling efficiency equal to 4κγ0/γ

2 where κ , γ0,
and γ = γ0 + κ are the coupling, intrinsic and total half-linewidths
respectively. Pin,1,2 and Pcirc,1,2 are the pump and circulating powers
respectively. P0 = πn2

0V/(n2λQQ0 ) is the characteristic in-coupled
power required for Kerr nonlinear effects, where n0 and n2 are the
linear and nonlinear refractive indices, V is the mode volume, and
Q = ω0/(2γ ) and Q0 = ω0/(2γ0 ) are the loaded and intrinsic quality
factors respectively for cavity resonance frequency ω0 (without Kerr
shift). F0 = 	ωFSR/(2γ0) is the cavity’s intrinsic finesse for free
spectral range 	ωFSR, and ω1,2 are the pump frequencies.

Symbol Description Formula

p̃1,2 Pump powers ηinPin,1,2/P0

p1,2 Circulating powers 2πPcirc,1,2/(F0P0 )
Pump detunings from

	1,2 resonance frequency (ω0 − ω1,2)/γ
without Kerr shift

ẽ1,2 Pump field amplitudes p̃1,2 = |ẽ1,2|2
e1,2 Circulating field amplitudes p1,2 = |e1,2|2

power in that mode (from SPM) plus twice that in the counter-
propagating mode (from XPM). This means that the resonance
frequency is lower in the direction with less circulating power.
If the pump is blue-detuned from the resonance—a necessary
condition for passive thermal [35] and Kerr locking of the
resonance to the pump frequency—then the direction with less
circulating power will be shifted further from the pump, which
in turn increases the circulating power difference, creating
positive feedback that causes the symmetry to spontaneously
break.

This effect may be described by solving the following pair
of simultaneous equations for the circulating powers p1,2 in
the two counterpropagating directions in terms of the pump
powers p̃1,2 and detunings 	1,2 from the resonance without
Kerr shift [8]:

p1,2 = p̃1,2

1 + (p1,2 + 2p2,1 − 	1,2)2
. (1)

Here, and throughout this paper, we use the dimensionless
quantities defined in Table I. Equation (1) is simply the di-
mensionless form of the Lorentzian resonance curves for the
circulating powers, taking into account the Kerr shifts. Note
the factor of 2 in front of the counterpropagating circulating
power, corresponding to the ratio between the strengths of
XPM and SPM in a dielectric solid with Kerr nonlinearity;
this ratio is generalized in Sec. III. Under the symmetrical
pumping conditions p̃1,2 = p̃ and 	1,2 = 	, symmetry break-
ing occurs for a range of 	 if p̃ exceeds 8/(3

√
3) � 1.54 [6,8].

This is illustrated in Fig. 1 for p̃ a little above this threshold.
As the detuning approaches the symmetry-broken regime, the
difference between p1 and p2 exhibits increasing responsivity
to perturbations that break the directional symmetry, such as
pump power or detuning differences. This responsivity di-
verges at each of the critical points A1 and A2, at which the
finite-amplitude response is proportional to the cube root of
the perturbation.

We begin with the dimensionless equations for the time
derivatives ė1,2 of the electric field amplitudes e1,2 in the
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FIG. 1. Solutions to Eq. (1) under symmetric pumping condi-
tions p̃1,2 = p̃ and 	1,2 = 	, illustrated for p̃ = 1.75. Solid black
and grey lines represent stable and unstable solutions respectively.
Between the critical points A1 and A2, the symmetric solution p1 =
p2 is unstable and two new symmetry-broken stable solutions appear
in which p1 and p2 take the opposite branches shown. Another
unstable region lies between B1 and B2, which occurs even for a uni-
directionally pumped resonator and here corresponds to a symmetric
bistability.

two counterpropagating modes in the rotating frames of
their respective pump fields [8], which yield Eq. (1) in the
steady state:

ė1,2 = ẽ1,2 − [1 + i(|e1,2|2 + 2|e2,1|2 − 	1,2)]e1,2. (2)

Once again, the notation is given in Table I, and time is in units
of 1/γ . A rigorous derivation of Eq. (2) from first principles
is given in [36]. We shall assume for now that ẽ1 = ẽ2 = ẽ is
constant with time, while 	1,2 undergo small time-dependent
perturbations around a common value 	, with ẽ and 	 chosen
so as to place the system at a critical point. We are interested in
the perturbative dynamics of e1,2 around a symmetric steady-
state solution e1,2 = e that satisfies ẽ = [1 + i(3p − 	)]e,
where the circulating power in each direction p = |e|2.

Figure 2 shows the exact response of such a system to
a sinusoidal detuning perturbation δd(t ) that is purely dif-
ferential mode, i.e., equal and opposite, between the two
directions. Such a perturbation could be induced for example
by a rotation of the resonator. The response takes the form
of a differential-mode perturbation to the circulating powers,
namely pd(t ) = (p1 − p2)/2, a quantity that is easy to mea-
sure experimentally. It is explicitly shown that close to the
critical point, the response becomes invariant to the scaling
transformation represented by varying the parameter κ while
maintaining pd ∝ κ , δd(t ) ∝ κ3, and t ∝ κ−2, where taking
κ → 0 represents zooming into the critical point. The critical
behaviors of divergent steady-state responsivity and critical
slowing down can be seen from the facts that pd/δd ∝ κ−2

and t ∝ κ−2 respectively. All this suggests that in the limit
close to the critical point, the dynamics of the system can be
described by a simple effective theory that is invariant under
this particular scaling transformation. The rest of this paper
is concerned with rigorously deriving such a theory, which

FIG. 2. Response of a resonator to a sinusoidally modulated
splitting between clockwise and counterclockwise modes (e.g., from
a sinusoidal back-and-forth rotation of the resonator). The response
is scale invariant close to the critical point. Starting from the steady
state at the symmetric critical point p = 1, 	 = 2, a sinusoidal,
purely differential-mode detuning perturbation of the form 	1(t ) =
	 + δd(t ), 	2(t ) = 	 − δd(t ), with δd(t ) = δAC

d cos ωt , is applied
from time t = 0. This is done using δAC

d = 0.5κ3 and ω = 0.2κ2 for
three values of the scaling parameter κ , namely 1.0, 0.5, and 0.2. The
solid blue line shows δd(t )/κ3 vs κ2t/π , which is the same curve
in each case. The dotted lines show the resulting “true” differential-
mode circulating powers pt

d = (p1 − p2)/2 calculated directly using
Eq. (2), divided by κ , for each value of κ . As κ decreases, these
converge on a single curve, suggesting that close to the critical point
the system’s dynamics can be described by effective equations that
are scale-invariant with respect to κ . The solid green line correspond-
ingly shows pd/κ calculated using the scale-invariant leading-order
approximation (“LOA”) developed in this paper, which is the limit
of the true curves. The dashed lines show the differences between
the true and LOA solutions, Dp = pt

d − pLOA
d , plotted as 2Dp/κ

3.
The fact that these also converge to a single curve demonstrates that
the fractional error in the leading-order approximation scales as κ2.

indeed is shown in Fig. 2 to match the exact theory in the
limit κ → 0.

Choosing the phase of ẽ such that e is real and
positive, we let

	1,2 = 	 + δ1,2,

e1,2 = e + f1,2 + ig1,2, (3)

where δ1,2, f1,2, and g1,2 are all real, and represent perturba-
tions to the pump detunings and circulating field amplitudes
and phases respectively. Substituting these into Eq. (2), we can
express the dynamical equations of f1,2 and g1,2 in the form

ḟ = Mf + d + Df + k + l, (4)

where

f =

⎛
⎜⎝

f1

g1

f2

g2

⎞
⎟⎠, d = e

⎛
⎜⎝

0
δ1

0
δ2

⎞
⎟⎠, D =

⎛
⎜⎝

0 −δ1 0 0
δ1 0 0 0
0 0 0 −δ2

0 0 δ2 0

⎞
⎟⎠,

M =

⎛
⎜⎝

−1 3p − 	 0 0
	 − 5p −1 −4p 0

0 0 −1 3p − 	

−4p 0 	 − 5p −1

⎞
⎟⎠,
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k = e

⎛
⎜⎜⎝

g1(2 f1 + 4 f2)
−(

3 f 2
1 + g2

1 + 2 f 2
2 + 2g2

2 + 4 f1 f2
)

g2(2 f2 + 4 f1)
−(

3 f 2
2 + g2

2 + 2 f 2
1 + 2g2

1 + 4 f1 f2
)
⎞
⎟⎟⎠,

l =

⎛
⎜⎜⎜⎝

g1
(

f 2
1 + g2

1 + 2 f 2
2 + 2g2

2

)
− f1

(
f 2
1 + g2

1 + 2 f 2
2 + 2g2

2

)
g2

(
f 2
2 + g2

2 + 2 f 2
1 + 2g2

1

)
− f2

(
f 2
2 + g2

2 + 2 f 2
1 + 2g2

1

)

⎞
⎟⎟⎟⎠. (5)

We begin by considering the linear response of the system
around the steady-state solution, which is governed by ḟ =
Mf + d. Here we have kept only the terms that are first-order
in the perturbations fi, gi, and δi, discarding those that are
second or third order. Inspecting the eigenvalues of M, we
find that the steady-state solution is unstable when one of the
following two conditions is satisfied, as each condition causes
a different eigenvalue to be real and positive:

(p − 	)(3p − 	) < −1, (6)

(3p − 	)(9p − 	) < −1. (7)

Since p > 0, Eq. (6) can hold only when 3p − 	 > 0, and (7)
only when 3p − 	 < 0. Since 3p − 	 is the laser detuning
from the Kerr-shifted resonance, this means that (6) must cor-
respond to the symmetry-broken region between the critical
points A1 and A2 in Fig. 1, and (7) to the region between
B1 and B2. The critical points are thus characterized by the
boundary of (6):

(p − 	)(3p − 	) = −1. (8)

Under this condition, which shall be assumed to hold for the
rest of this section, the eigenvectors vi and corresponding
eigenvalues λi of M are

v1 =

⎛
⎜⎝

−a
−1
a
1

⎞
⎟⎠, λ1 = 0; v2 =

⎛
⎜⎝

a
−1
−a
1

⎞
⎟⎠, λ2 = −2;

v3 =

⎛
⎜⎝

−ir
1

−ir
1

⎞
⎟⎠, λ3 = −1 + ia/r;

v4 =

⎛
⎜⎝

ir
1
ir
1

⎞
⎟⎠, λ4 = −1 − ia/r, (9)

where a = 3p − 	 and r = √
(3p − 	)/(9p − 	) are real

and positive. The slow critical dynamics will thus be domi-
nated by v1 as this has a zero eigenvalue, whereas the other
three have eigenvalues with negative real parts of order unity,
and thus decay away on a timescale of the order of the cavity
lifetime. Note that v1 corresponds to an antisymmetric com-
bined amplitude and phase perturbation.

Turning again to Eq. (4) including all its nonlinear terms,
we will now express it in this eigenbasis by using the inverse
basis {ui} : ui · v j = δi j , where δi j is the Kronecker delta, to

decompose

f =
∑

i

μivi, d =
∑

i

divi,

D =
∑
i, j

Di jviuT
j , k =

∑
i, j,k

Ki jkviμ jμk,

and l =
∑

i, j,k,l

Li jkl viμ jμkμl , (10)

where i, j, k, l index the eigenvectors and hence run from 1 to
4, and μi is the projection of f along vi:

μ̇i = λiμi + di +
∑

j

Di jμ j

+
∑

j,k

Ki jkμ jμk +
∑
j,k,l

Li jklμ jμkμl . (11)

To extract the dynamics in the region immediately surround-
ing the critical point, we will start by removing the driving
terms di and Di j :

μ̇i = λiμi +
∑

j,k

Ki jkμ jμk +
∑
j,k,l

Li jklμ jμkμl . (12)

For small perturbations and responses around the critical
point, we may say that |μ1| � 1. Furthermore, since μ2, μ3,
and μ4, unlike μ1, have exponential decay times that are
short compared to the timescale of the critical dynamics as
discussed above, it is safe to assume that |μi| � |μ1|, i �= 1.
Nevertheless, we shall see that these cannot be ignored en-
tirely as they still contribute to the dynamics of μ1. Looking
at the case i = 1 in Eq. (12), since λ1 = 0, the leading term
in μ̇1 would be K111μ

2
1. However, K111 = 0 by considerations

of directional symmetry, i.e., switching the 1 and 2 directions.
This leaves

μ̇1 = 2
∑
i �=1

K11iμ1μi + L1111μ
3
1 (13)

to leading order, assuming that Ki jk = Kik j by construction.
Looking again at Eq. (12), we can see that to leading order,
the other μi obey the following quasi-steady-state equations:

0 = λiμi + Ki11μ
2
1, i �= 1. (14)

Noting that also K211 = 0 by directional symmetry, this can be
combined with Eq. (13) to give

μ̇1 =
(

L1111 − 2
∑
i=3,4

K11iKi11

λi

)
μ3

1. (15)

Both terms are of equal order, so indeed we cannot neglect
the effect of μ3 and μ4 on the dynamics of μ1. Furthermore,
we may observe that μ3,4 scale as μ2

1 and μ̇1 scales as μ3
1, the

latter confirming that the timescale of the dynamics increases
(as μ−2

1 ) as we zoom closer and closer into the critical point.
Equation (15) describes the free evolution of the system

to leading order. Now we reintroduce the driving terms di

and Di j at magnitudes that preserve the above hierarchy of
scalings. For this, it is useful to introduce the common-
and differential-mode detunings δc = (δ1 + δ2)/2 and
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δd = (δ1 − δ2)/2, and to note that

d1 = −eδd

2
, d3,4 = eδc

2
, D11 = (2p − 	)δc. (16)

Substituting the first two of these into Eq. (11) for the relevant
i, we deduce that δd scales as μ3

1 and δc as μ2
1, and there-

fore that the only element of Di j that can possibly affect the
dynamics to leading order is D11. This leaves us, to leading
order, with

μi = −Ki11μ
2
1 + eδc/2

λi
for i = 3, 4, (17)

satisfying μ4 = μ∗
3 since K114 = K∗

113 and λ4 = λ∗
3, and

μ̇1 = −eδd

2
+

[
(2p − 	) − e

(
K113

λ3
+ K114

λ4

)]
δcμ1

+
[

L1111 − 2

(
K113K311

λ3
+ K114K411

λ4

)]
μ3

1

= −eδd

2
+ 5p − 2	

4
δcμ1

+ (3p − 	)(4 + 4p	 − 15p2)

2
μ3

1. (18)

So far, for conciseness, we have not considered the effect
of pump power perturbations. It turns out that these have
a very similar effect to detuning perturbations; their treat-
ment is summarized as follows. We may represent small
fractional pump power perturbations ε1,2 by letting ẽ1,2 =
ẽ(1 + ε1,2/2) and consequently adding e(ε1, aε1, ε2, aε2)/2 to
d. Decomposing these into common- and differential-mode
components εc = (ε1 + ε2)/2 and εd = (ε1 − ε2)/2 and revis-
iting the above steps, we find that εd scales as μ3

1 and εc as μ2
1

just as with detuning perturbations, and that Eq. (18) becomes

μ̇1 = − e

2
(δd + pεd) +

(
5p − 2	

4
δc + 2	 − 3p

4
pεc

)
μ1

+ (3p − 	)(4 + 4p	 − 15p2)

2
μ3

1. (19)

Interestingly, if we include pump phase perturbations, for
example by allowing ε1,2 to be complex, we find that they
(as distinct from detuning perturbations which are analogous
to their time derivatives) play no role in the critical dynamics
to leading order. This is actually expected, since Eq. (2) is
invariant under static phase rotations of ẽ1,2, as long as the
same rotations are applied respectively to e1,2.

Importantly, the coefficient of μ3
1 in Eqs. (18) and (19) is

always negative, which can be seen by substituting in Eq. (8)
to give −(3p − 	)((2	 − 5p)2 + 2p2)/2. We can therefore
reexpress (19) in the form

ẏ = −y3 + xy + z, (20)

where

x = 5p − 2	

4
δc + 2	 − 3p

4
pεc,

y = −
√

(3p − 	)(15p2 − 4p	 − 4)

2
μ1,

z =
√

p(3p − 	)(15p2 − 4p	 − 4)

8
(δd + pεd). (21)

From the expression for v1 in Eq. (9) we can relate y to
the observable differential-mode (normalized) coupled power
pd = (p1 − p2)/2 to leading order as follows:

pd = e( f1 − f2) =
√

8p(3p − 	)

15p2 − 4p	 − 4
y. (22)

As expected, Eq. (20) is invariant under the transformation
in which x, y, z, and t (time) scale as κ2, κ , κ3, and κ−2

respectively for some parameter κ . Scaling invariances such
as this are a universal feature of critical points in many areas
of physics, such as ferromagnetism, superconductivity, and
liquid-gas transitions [5]. Equations (20) to (22) were used
to produce the curve of pLOA

d /κ in Fig. 2, which is the limit of
pt

d/κ for κ → 0.
The dynamics of y under Eq. (20) can be summarized as

an interplay between three simple behaviors, each of which
occurs in its pure form when two of the three terms con-
taining y can be neglected. These behaviors are cube root
(y = z1/3), proportional (y = −z/x), and integrator (ẏ = z).
Furthermore, Eq. (20) indicates the presence of two universal
critical behaviors, namely divergent steady-state responsivity
(|y/z| → ∞ as |x|, |y|, |ẏ| → 0) and critical slowing down
(|ẏ/y| → 0 as |x|, |y|, |z| → 0). These critical behaviors are
apparent in Fig. 2 from the fact that the ratio of the output pd

to the input δd, and the time lag between δd and pd, both scale
as 1/κ2 and hence diverge as κ → 0.

III. ASYMMETRIC SPM AND XPM COEFFICIENTS
AND PUMPING CONDITIONS

In this section we generalize the theory to asymmetric SPM
and XPM coefficients and pump powers and detunings. This
is based on an extension of Eq. (2) to general SPM and XPM
coefficients Ai j :

ė j = ẽ j −
[

1 + i

(∑
k

A jk|ek|2 − 	 j

)]
e j, (23)

which reproduces Eq. (2) for A11 = A22 = 1 and A12 = A21 =
2. This time, we expand this around a general asymmet-
ric steady-state solution 	i = 	0

i , ei = e0
i ∈ R+, ẽ j = ẽ0

j =
(1 + ia j )e0

j , where ai = ∑
j Ai j p0

j − 	0
i , p0

i = e0
i

2. For com-
pleteness, in addition to detuning perturbations δi, we include
fractional pump power and pump phase perturbations, εi and
φi respectively, from the start (although static phase perturba-
tions φi will again be found to have no effect on the critical
dynamics):

	i = 	0
i + δi,

ẽ j = ẽ0
j

(
1 + ε j

2
+ iφ j

)
,

e j = e0
j + f j + ig j . (24)
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We still express the time evolution of fi and gi in the form
given in Eq. (4), but with the following modifications:

d =

⎛
⎜⎜⎜⎝

e0
1ε1

e0
1(δ1 + ζ1)

e0
2ε2

e0
2(δ2 + ζ2)

⎞
⎟⎟⎟⎠, M =

⎛
⎜⎝

−1 a1 0 0
−b1 −1 −c1 0

0 0 −1 a2

−c2 0 −b2 −1

⎞
⎟⎠,

k =

⎛
⎜⎜⎜⎝

2g1
(
A11 e0

1 f1 + A12 e0
2 f2

)
−e0

1

(
A11

(
3 f 2

1 + g2
1

) + A12
(

f 2
2 + g2

2

)) − 2A12 e0
2 f1 f2

2g2
(
A22 e0

2 f2 + A21 e0
1 f1

)
−e0

2

(
A22

(
3 f 2

2 + g2
2

) + A21
(

f 2
1 + g2

1

)) − 2A21 e0
1 f1 f2

⎞
⎟⎟⎟⎠,

l =

⎛
⎜⎜⎜⎝

g1
(
A11( f 2

1 + g2
1

) + A12
(

f 2
2 + g2

2

))
− f1

(
A11

(
f 2
1 + g2

1

) + A12
(

f 2
2 + g2

2

))
g2

(
A21

(
f 2
1 + g2

1

) + A22
(

f 2
2 + g2

2

))
− f2

(
A21

(
f 2
1 + g2

1

) + A22
(

f 2
2 + g2

2

))

⎞
⎟⎟⎟⎠, (25)

where εi = εi/2 − aiφi, ζi = aiεi/2 + φi, bi = ai + 2Aii p0
i ,

c1 = 2A12e0
1e0

2, and c2 = 2A21e0
1e0

2. The condition for one of
the eigenvalues of M to vanish, which is a requirement for a
critical point as it enables the divergent responsivity and slow
critical dynamics, is that det M = 0, or [8]

(1 + a1b1)(1 + a2b2) = a1a2c1c2. (26)

As the solution space is now four-dimensional, parametrized,
e.g., by (p0

1, p0
2,	

0
1,	

0
2), as opposed to the two-dimensional

symmetric space parametrized by (p,	), and the space
of critical points is now two- rather than one-dimensional
[for example, given any (p0

1, p0
2) within some region, there

are one or more discrete points (	0
1,	

0
2) that are critical

points], this single condition is not sufficient for a given
solution to be a critical point. Rather, it describes a more
general three-dimensional space that we shall call the bound-
ary of the unstable region. The intersection of this with the
two-dimensional subspace p̃1 = p̃2 = 1.75 (for A11 = A22 = 1,

FIG. 3. Solutions to Eq. (1) under symmetric pump powers
p̃1,2 = p̃ = 1.75 as in Fig. 1 but for five values of the differential-
mode detuning 	d = (	1 − 	2)/2, plotted as circulating power p1

vs common-mode detuning 	c = (	1 + 	2)/2. The case 	d = 0
and points A1, A2, B1, and B2 are as in Fig. 1, and dotted lines
represent unstable solutions. The locus of the edge of the symmetry-
breaking-related unstable region for varying 	d is shown as a thick
black line.

A12 = A21 = 2 as in Sec. II) is shown as a thick black line
in Fig. 3. In fact Eq. (26) also encompasses the boundary
of the other unstable region that is a generalization of the
points B1 and B2; the symmetry-breaking-related one may
be specified by a1,2 > 0, i.e., both pumps being blue-detuned
from their respective Kerr-shifted resonances. We assume for
the remainder of this section that Eq. (26) and a1,2 > 0 hold.
The next question is how to identify which points on the edge
of the unstable region are critical points. To answer this, we
proceed in the same way as in Sec. II. Defining the quantities

Q = 1 + a1b1

a1c2
, R = 1 + a2b2

1 + a1b1
,

S =
√

1 + a1b1 + a2b2, (27)

and noting that (26) implies that

Q2R = A12 a2

A21 a1
, (28)

the eigenvectors and eigenvalues of M on the boundary of the
unstable region may be written as

v1 =

⎛
⎜⎝

−QRa1

−QR
a2

1

⎞
⎟⎠, λ1 = 0; v2 =

⎛
⎜⎝

QRa1

−QR
−a2

1

⎞
⎟⎠, λ2 = −2;

v3 =

⎛
⎜⎝

−ia1Q/S
Q

−ia2/S
1

⎞
⎟⎠, λ3 = −1 + iS;

v4 =

⎛
⎜⎝

ia1Q/S
Q

ia2/S
1

⎞
⎟⎠, λ4 = −1 − iS. (29)

The normalization of the eigenvectors is chosen to be con-
sistent with Eq. (9) in the symmetric case. Using these new
eigenvalues and eigenvectors and the corresponding inverse
basis {ui} : ui · v j = δi j , where again δi j is the Kronecker
delta, the reasoning in Sec. II can be replicated with just
two slight modifications. Firstly, whereas in Sec. II we have
K111 = 0 by symmetry, here that condition specifies the crit-
ical points. In other words, it distinguishes the critical points
from the rest of the boundary of the unstable region since it
implies that, in the absence of external perturbations, μ̇1 is
proportional to −μ3

1 rather than μ2
1 to leading order. This is

a necessary condition for a critical point since a nonzero μ2
1

term in μ̇1 would mean that μ1 is unstable for one sign of
perturbation, somewhat like a particle in an x3 potential. This
occurs everywhere on the boundary of the unstable region
except for the critical point, where the stability is analogous
to a particle in an x4 potential. Conveniently, K112 = −K111

on the boundary of the unstable region, so K111 = 0 implies
K112 = 0, another result of directional symmetry that was used
in Sec. II. The condition K111 = 0 can be expressed as(

1 − 3a2
2

)(
QA22e0

2 − A12e0
1

)
+ Q2R2

(
1 − 3a2

1

)(
QA21e0

2 − A11e0
1

) = 0. (30)

The second slight change from Sec. II is in the resolution
of the external perturbations into common- and differential-
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mode components. In the general asymmetric case, the ratios
of the coefficients of δ1,2 and ε1,2 are different in every rel-
evant di or Di j term. However, it is still true that d1 must
scale as μ3

1 and d3,4 and D11 as μ2
1 in order to preserve

the natural hierarchy of scalings of terms in the eigenbasis,
and that no other elements of di or Di j contribute to leading
order. Therefore we may define linear combinations δc’ and
δd’ of δ1,2 that scale as μ2

1 and μ3
1 respectively, requiring

only that ∂d1/∂δc’ = 0 (and ∂d3,4/∂δc’, ∂D11/∂δc’ �= 0), and
still satisfy the scalings of d1, d3,4, and D11 to leading order.
Since

d1 = Qe0
2δ2 − e0

1δ1

2Q(1 + R)
+ Qa1

(
1 + a2

2

)
e0

2ε2 − a2
(
1 + a2

1

)
e0

1ε1

4a1a2Q(1 + R)

(31)

we shall do this as follows:

δc’ = 1

2

(
δ1 + Qe0

2

e0
1

δ2

)
, δd’ = 1

2

(
δ1 − Qe0

2

e0
1

δ2

)
. (32)

Similarly, for ε1,2 we define

εc’ = 1

2

(
ε1 + Qa1

(
1 + a2

2

)
e0

2

a2
(
1 + a2

1

)
e0

1

ε2

)
,

εd’ = 1

2

(
ε1 − Qa1

(
1 + a2

2

)
e0

2

a2
(
1 + a2

1

)
e0

1

ε2

)
, (33)

so that ∂d1/∂εc’ = 0. Finally, as in Sec. II, we can express the
dynamics of μ1 in the form

μ̇1 = d1 + Deff
11 μ1 + Leff

1111 μ3
1, (34)

where

Deff
11 = D11 − 2

(
K113d3

λ3
+ K114d4

λ4

)
and

Leff
1111 = L1111 − 2

(
K113K311

λ3
+ K114K411

λ4

)
, (35)

applying the transformation

x = Deff
11 , y = −

√
−Leff

1111 μ1, z = −
√

−Leff
1111 d1 (36)

to reproduce Eq. (20), which works because Leff
1111 < 0. The quantities d1, Deff

11 (to leading order) and Leff
1111 [simplified a little by

assuming Eq. (30)] are given by

d1 = −e0
1

(
2a1δd’ + (

1 + a2
1

)
εd’

)
2Q(1 + R)a1

, (37)

Deff
11 = 1

2a2
1a2Q2(1 + R)

(
a1Q

(
a1

(
a2

2 − 1
)
e0

1 + (
a2

1 − 1
)
a2e0

2QR
)
δc’

e0
2

+ e0
1

1 + S2

(
a1

{
Q

[
a2

(
1 − 3a2

2

)
A22e0

2 + a1
(
1 − a2

2

)
A21e0

1Q
] + 2A12a2

2

(
a2e0

1 + a1e0
2Q

)}
+ a2Q

[(
1 − a2

1

)
A12a2e0

2 + a1
(
1 − 3a2

1

)
A11e0

1Q]R
)[

2a1δc’ + (
1 + a2

1

)
εc’

])
, (38)

Leff
1111 = 1

2a2
1a2(1 + R)

(
a1

[
a1

(
1 − a4

2

)
A22 + 2A12a2

(
1 − a2

1a2
2

)
R + (

1 − a4
1

)
A11a2Q2R3

]

− 2

Q2(1 + S2)

[
2a1A12

(
1 − a2

2

)
e0

1 − a1
(
1 − 3a2

2

)
A22e0

2Q + (
1 + a2

1

)
A12a2e0

2QR
]

(
a1

{
Q

[
a2

(
1 − 3a2

2

)
A22e0

2 + a1
(
1 − a2

2

)
A21e0

1Q
] + 2A12a2

2

(
a2e0

1 + a1e0
2Q

)}
+ a2Q

[(
1 − a2

1

)
A12a2e0

2 + a1
(
1 − 3a2

1

)
A11e0

1Q
]
R
))

. (39)

The deviations δp1,2 of the circulating powers p1,2 from their
steady-state values p0

1,2 are given to leading order by 2e0
i fi, or

δp1 = −2QRa1e0
1μ1, δp2 = 2a2e0

2μ1. (40)

As a final comment, it is worth noting that microresonators
generally possess strong thermal nonlinearity due to a combi-
nation of thermorefractive effects and thermal expansion [35].
This typically creates circulating-power-dependent resonance
frequency shifts between one and two orders of magnitude
larger than the Kerr shifts, but which require much longer
timescales to take effect, and could thus greatly complicate

the critical dynamics. Importantly, however, these effects de-
pend only on the total circulating power p1 + p2 and create
equal shifts for both directions, i.e., change 	1 and 	2, or
equivalently δ1 and δ2, by the same amount, assuming that
the two modes occupy the exact same region. This means that
they can be decoupled from the critical dynamics in two ways:
firstly by making δp1 and δp2 in Eq. (40) equal and opposite,
and secondly by making the coefficients of δ1 and δ2 in δd’

[Eq. (32)] equal and opposite. The latter condition may be
written as

Qe0
2 = e0

1, (41)
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while the former simplifies via Eq. (28) to

QA21e0
2 = A12e0

1. (42)

Thus the two conditions are equivalent if A21 = A12, which is
in fact necessarily true due to the reciprocity of the Kerr effect,
since the normalization factor for the circulating power is the
same for both modes.

IV. CONCLUSION AND OUTLOOK

We have derived a theory that explains the dynamics of a
bidirectionally pumped optical resonator with Kerr nonlinear-
ity in the region close to the critical point of the symmetry
breaking between counterpropagating light. The response of
the system to both pump detuning and pump power pertur-
bations is examined, and it is shown that a given fractional
pump power perturbation has a very similar effect to a pump
detuning perturbation that is roughly the same fraction of the
resonator’s linewidth. The analysis was done first for the case
of a perfectly symmetrical system in Sec. II, before being
generalized to asymmetrical pumping conditions and SPM
and XPM coefficients in Sec. III. A condition for compen-
sating the various asymmetries with each other to recover
a critical point is derived [Eqs. (26) and (30)]. The critical
dynamics are shown to be described by the simple Eq. (20) in
both the symmetric and asymmetric cases, for each of which
explicit formulas for the conversion factors to the generalized
variables x, y, and z are obtained. From Eq. (20), we see

that the system exhibits scaling invariance, divergent steady-
state responsivity and critical slowing down, all of which are
universal features of critical systems. Finally, a condition for
decoupling the critical dynamics from thermal nonlinearities
is discussed.

The theory presented here describes in detail the response
of critical-point-enhanced sensors such as gyroscopes [14,15]
and refractive index sensors [18]. Furthermore, it is applicable
to any optical resonator in which two modes interact via
the Kerr nonlinearity, including modes of different frequen-
cies, propagation angles [27] or opposite circular polarizations
[26,28–30]. It also extends to other Kerr-like effects such as
the magnetic nonlinearity [33], and even to similar nonlinear
systems outside the optical domain.
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