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Numerical investigations of cavity-soliton distillation in Kerr resonators
using the nonlinear Fourier transform
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Dissipative cavity solitons (CSs) in a Kerr resonator have wide applications from optical communications
to spectroscopy due to their broad bandwidth. Although the broadband spectrum ultrashort pulses are easy to
be generated in a high-Q microresonator, such kinds of solitons in the macroscopic fiber ring resonator are
difficult to be obtained. Dispersion management can be a feasible method to realize soliton compression, but the
Kelly-like sidebands in the frequency domain are increased inside the cavity. To achieve a perfect soliton from
a macroscopic cavity, an ingenious method of nonlinear Fourier transform (NFT) is utilized here to filter out
the sidebands. The CS is mapped to different components in the nonlinear spectrum and a pure soliton can be
reconstructed from the resonant continuous-wave background accordingly. Numerical simulations demonstrate
NFT can be an effective method for CS analysis both in the time and frequency domains. Our investigations
exemplify another application of NFT in a dissipative nonlinear system.
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I. INTRODUCTION

Dissipative cavity solitons (CSs), sustained by the coher-
ently driven passive Kerr resonators, have aroused consid-
erable attention over the past few years [1–3]. Since first
experimentally demonstrated in the macroscopic fiber optical
resonators for achieving an all-optical buffer [4], CSs have
been vigorously developed in the monolithic microresonators
with smaller footprints [5,6]. Essential for the existence of
bright CSs is the double balance between the Kerr nonlinearity
and anomalous group-velocity dispersion (GVD), as well as
periodic coherent driving and total losses. Once a soliton
emerges and sits atop the continuous-wave (CW) background,
it can maintain its pulse shape (amplitude and pulse width)
during the propagation inside the cavity. Due to the peri-
odic output of temporal pulses, the spectrum of CSs displays
a series of discrete frequency lines with equal separation,
which is usually called frequency comb [1] together with the
central CW. Thus the CSs have wide applications in high-
speed optical coherent communications [7], optical ranging
[8,9], microwave generation [10,11], astrocombs generation
[12,13], spectroscopy [14,15], etc. Compared to the ultrashort
pulse corresponding to a broadband comb in the high-Q mi-
croresonators, CSs in the macroscopic fiber resonator (low
Q) show low amplitude and wide pulse width (narrow spec-
trum). In mode-locked fiber lasers, to shorten the pulse width
and enhance the pulse energy, dispersion management of
the cavity has been widely exploited [16,17]. Similar to the
fiber lasers, dispersion management has been theoretically and
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experimentally adopted in the passive Kerr resonators [18,19].
By stretching and compressing twice in a single round-trip
propagation inside the cavity, the amplitude of CSs and the
bandwidth of their spectrum are increased. However, CSs
circulated in the dispersion-managed cavity are perturbed to
radiate strong sidebands on the spectrum [20], which are
known to be Kelly-like sidebands as those in fiber lasers [21].
These sidebands coherently interfering with CSs decrease the
smoothness of the spectrum. Therefore, how to filter out these
sidebands and recover a pure soliton (PS) could be a key point
for specific applications.

Recently, differing from the traditional Fourier transform
method, a novel spectrum analysis method has been applied to
investigate the characteristics of solitons in the mode-locked
lasers [22–25] and the passive resonators [26], which is called
nonlinear Fourier transform (NFT). Originally proposed for
solving certain nonlinear dispersive partial differential equa-
tions [27], NFT is soon after associated with the notion of
solitons in integrable models such as nonlinear Schrödinger
equations (NLSEs) [28]. The temporal pulses can be pro-
jected onto the nonlinear spectrum including continuous and
discrete components by NFT. Critically, NFT aims at inte-
grable conservative Hamiltonian models. Recent researches
suggest that NFT can also characterize solitons in dissipa-
tive nonintegrable systems, which is regarded as perturbed
NLSEs [26,29]. According to the distinct eigenvalue distri-
butions of solitons and background, we can reconstruct the
PS by separating the soliton eigenvalue from others. Thus
in the perspective of the frequency domain, NFT could be
a promising method to filter out the resonant sidebands in
a dispersion-managed cavity. Referring to related works in
mode-locked fiber lasers [22], we call this process CS distil-
lation in passive Kerr resonators. We note that although CS
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formation has similarities to soliton mode locking in fiber
lasers, it does not require additional saturable absorbers to
stabilize them, and they differ fundamentally because the
pump laser frequency is a part of the soliton spectrum. The
external coherent pump provides a central control parameter
of the soliton and in addition constitutes one of the comb lines
which has no counterpart in conventional mode-locked lasers
[30]. Therefore, it is deserved to investigate soliton distillation
based on CSs.

Based on this process, we report on the CS distillation
in a dispersion-managed Kerr resonator. In a longitudinally
homogeneous resonator made of a uniform single-mode fiber
(SMF), CSs can be successfully separated from the Kelly-
like sidebands by NFT. In the case of a dispersion-managed
cavity consisting of SMF and dispersion-shifted fiber (DSF),
we can achieve CS distillation according to the eigenvalue
distributions. Besides the spectrum filtering, we observe the
characteristics of Kelly sidebands concerning detuning and
net dispersion from the nonlinear spectrum, which could be
utilized in analyzing specific nonlinear states in the future.
On the one hand, we numerically demonstrate a feasible way
for spectrum filtering in the passive Kerr cavity. On the other
hand, our work can be a complementary part for understand-
ing PSs in dissipative systems.

II. THEORETICAL MODEL

According to the experimental setup depicted in Ref. [20],
we consider a dispersion-managed fiber ring resonator with a
total length of 95 m consisting of the SMF and DSF. To pre-
cisely describe CSs in the longitudinally nonuniform cavity
and the sidebands, we choose the infinite-dimensional Ikeda
map to run the following simulations:

∂E (z, τ )

∂z
= −i

β2

2

∂2E (z, τ )

∂τ 2
+ iγ |E (z, τ )|2E (z, τ ), (1)

E (m+1)(0, τ ) =
√

θEin +
√

1 − ρE (m)(z, τ )e−iδ0 , (2)

where z is the longitudinal coordinate along the resonator, τ

is the fast time in a reference frame moving with the intra-
cavity field, and m is the round-trip index. γ and β2 are Kerr
nonlinear coefficient and group velocity dispersion (GVD),
respectively. θ is the power coupling coefficient of the coupler
and ρ = 0.123 is the fractional power loss per round trip
including coupling loss and splicing loss between SMF and
DSF segments. δ0 is round-trip phase detuning between the
pump frequency ωp and resonance frequency ω0, defined as
δ0 = (ω0 − ωp)τR. L is the total cavity length; τR is the round-
trip time whose inverse is the free spectral range. Ein is the
pump amplitude, thus Pin is the injected pump power. Here,
Eq. (1) is the well-known NLSE which describes the evolution
of the slowly varying electric field envelope E (m)(z, τ ) over
a single round trip inside the cavity, while Eq. (2) describes
the coherent injection of the driving field into the resonator.
When combining the two equations, we can obtain a full map
equation by inducing a Dirac function δ(·) to express the

periodic boundary condition [31],
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The right-hand side of Eq. (3) can be regarded as a kind of pe-
riodically recurring function in z as reported in Ref. [25]. Then
the CSs in the passive Kerr cavity are stationary solutions of
the perturbed NLSE, which can be decomposed into nonlinear
spectral data. As for the generalized NLSE, we achieve this
process through the solution of a linear scattering problem,
known as the Zakharov-Shabat problem (ZSP) [28]. The NFT
is calculated from specific solutions of the ZSP:

d

dt

(
v1(t, λ)
v2(t, λ)

)
=

( − jλ E (t )
−E∗(t ) jλ

)(
v1(t, λ)
v2(t, λ)

)
, (4)

where j2 = −1. E (τ ) is the temporal waveform of CS calcu-
lated from Eqs. (1) and (2) (in normalized units [25]) and λ is a
spectral parameter, which plays the role of a nonlinear analog
of frequency. υ1,2 are auxiliary functions and the scattering
data a(λ) and b(λ) can be calculated from them:

a(λ) = lim
t→∞ v1(t, λ)e jλt , b(λ) = lim

t→∞ v2(t, λ)e− jλt . (5)

Then the nonlinear spectrum of signal E (τ ) is defined as

Ẽc(λ) = b(λ)/a(λ), λ ∈ R,

Ẽd (λ) = b(λn)/a′(λn), λn ∈ C+. (6)

Ẽc(λ) is the continuous part of the nonlinear spectrum, which
refers to the radiation component and converges to the ordi-
nary Fourier spectrum at the low-power limit, and Ẽd (λn) is
the discrete part corresponding to the soliton component of the
signal. λn is the eigenvalue in the upper half complex plane,
which is defined as

a′(λn) = da(λ)

dλ

∣∣∣∣
λ=λn

= 0. (7)

III. RESULTS AND DISCUSSIONS

We first consider a uniform cavity (SMF only, L = 95 m
and β2,SMF = −21.2×10−27 s2/m), and compare the temporal
waveforms and the corresponding spectra before and after
NFT. The pump power Pin and the detuning δ0 are set to be
5 W and 2.5 rad, respectively. Here, we normalize time to
a scale Ts = 4 ps. Also, the amplitude is normalized with
a scale Qs, which is the squared root of the power of a
hyperbolic secant signal with a time width equal to a time
window containing 99% of the pulse energy. As can be seen in
Fig. 1(a), a stable CS sits atop a resonant CW background with
a series of weak perturbed waves. In the frequency domain,
these perturbations correspond to the Kelly-like sidebands
depicted in Fig. 1(b). When the CS is mapped into a nonlinear
discrete spectrum by NFT, the eigenvalue corresponding to
a PS has a large imaginary part (λI ) related to the pulse
amplitude and almost zero real part (λR) indicating that the PS
has zero frequency drift. We note that, besides the eigenvalue
of PS, other eigenvalues at the bottom of Fig. 1(c) have zero

043507-2



NUMERICAL INVESTIGATIONS OF CAVITY-SOLITON … PHYSICAL REVIEW A 104, 043507 (2021)

FIG. 1. (a) Temporal profile of the CS in the uniform cavity.
(b) The corresponding spectrum of the CS in (a). (c) The nonlinear
discrete spectrum of the CS. Green pentagram: the eigenvalue of
PS; dark-blue hollow pentagrams: the eigenvalues of CW. (d) The
eigenvalues at the bottom of (c) and our constructed direct-current
component. Light-blue hollow pentagrams: the eigenvalues of dc.

real parts and weak imaginary parts, indicating weak ampli-
tude and zero drifting velocity of the corresponding temporal
components. We construct a direct-current component with a
power of 0.26 W according to Fig. 1(a), and the corresponding
discrete spectrum is illustrated as the light-blue pentagrams
in Fig. 1(d), which almost coincide with those of the CS
[dark-blue pentagrams in Fig. 1(d)]. Our numerical results
demonstrate that these eigenvalues correspond to the CW
base. The weak Kelly sidebands still locate at the nonlinear
continuous spectrum because of the low-power limit. Similar
to the soliton distillation process in the mode-locked fiber
laser, we filter out the eigenvalues of the resonant CW back-
ground and reserve the eigenvalue of the PS. Then the true
temporal waveform of PS can be obtained by the inverse NFT
shown as the orange curve in Fig. 2(a) [25,32]:

q(t ) = −2 jλIsech[2λI (τ − τ0)]e− j[2λRτ+φ(z)], (8)

where φ(z) is the spectrum phase, and τ0 is the time center
associated with (λI ) and spectrum amplitude. As is depicted
in Fig. 2(b), the corresponding spectrum without any CW or

FIG. 2. (a) Temporal profiles of the CS and the distilled pure
soliton. (b) Corresponding spectra of the temporal waveforms in (a).

FIG. 3. (a), (d) Temporal profiles of CSs (blue curves) and
distilled pure solitons (orange curves) when DSF = 5 and 10 m,
respectively. (b), (e) Corresponding spectra of the temporal wave-
forms in (a) and (d). (c), (f) Nonlinear discrete spectra of CS in
(a) and (d). Green pentagram: the eigenvalue of PS; dark-blue hollow
pentagrams: the eigenvalues of CW; blue circles: the eigenvalues
of the first-order sideband; orange squares: the eigenvalues of the
second-order sideband; purple triangles: the eigenvalues of the third-
order sideband.

sideband components has a sech2 shape, which indicates the
soliton distillation also works for the CS in the passive Kerr
resonator.

Then we concentrate on the characteristics of the CS in
the dispersion-managed cavity. Fixing the detuning δ0 and the
total cavity length L to be 2.5 rad and 95 m, respectively,
we display the simulated temporal waveforms and spectra
at two different lengths of DSF (β2,SMF = 2×10−27 s2/m),
as shown in Fig. 3. With 5-m-long DSF, the amplitude of
the resonant CW background shown in Fig. 3(a) is signifi-
cantly enhanced compared to that in the uniform cavity [cf.
Fig. 1(a)], which is predominantly affected by the periodic
variation of the cavity dispersion. The amplitude of the corre-
sponding sidebands is also increased as is shown in Fig. 3(b).
The peak of the CS is a little bit decreased due to the power
conversion to the sidebands, which acts as a nonlinear loss
mechanism. When the CS is mapped to the nonlinear dis-
crete spectrum, the principal characteristics (intensity and
frequency) are reserved including PS, CW background, and
first- and second-order sidebands. The PS illustrated as the
orange curves in Figs. 3(a) and 3(b) is successfully distilled

043507-3



PAN, HUANG, WANG, WU, ZHANG, AND ZHAO PHYSICAL REVIEW A 104, 043507 (2021)

FIG. 4. (a), (b) The real and imaginary parts of the eigenvalues
corresponding to the Kelly-like sidebands vary with the length of
DSF.

by filtering out the eigenvalues of the CW background and
the sidebands. With increasing the length of DSF to 10 m, the
intensity of the sidebands [Fig. 3(e)] is further enhanced with
indistinguishable variations of frequency position. These fea-
tures are also displayed clearly in the discrete spectra shown in
Figs. 3(c) and 3(f). The net cavity GVD 〈β2〉 in the two cases
(DSF = 5 m and DSF = 10 m) is −19.98×10−27 s2/m and
−18.76×10−27 s2/m, respectively. According to the phase-
matching condition [20] 〈β2〉/2(ω − ω0)2L = 2πn + δ0, the
frequency variation of the sidebands is very small, which is
consistent with the results shown in the discrete spectra. More
detailed variations of the sideband eigenvalues are shown
in Fig. 4; the sidebands not showing up are retained in the
continuous spectrum due to their lower intensity. The real
parts of different order sidebands all locate at the horizontal
lines indicating constant frequency position. The imaginary
parts increase with the length of DSF indicating intensity en-
hancement. Thus, considering the perspective of the nonlinear
spectrum, the intensities of the Kelly-like sidebands can be
magnified by the dispersion management without significant
position variations. Detuning is another physical parameter
that can affect the characteristics of CS [3]. Here, we inves-
tigate the simulated CSs at the detunings of 2.3 and 3.6 rad,
respectively. Comparing the results shown in Figs. 5(a) and
5(d), detuning can significantly increase the peak power of
the soliton. At the frequency domain, the resonant radiation
sidebands drift toward the pump frequency and grow in inten-
sity with increasing detuning. The related phenomena can be
observed in the nonlinear discrete spectra by the variation of
eigenvalues distribution [Figs. 5(c) and 5(f)]. More detailed
variations of the sideband eigenvalues are depicted in Fig. 6.
The real parts of different order sidebands decrease with the
detuning indicating their approaching the spectrum center.
The imaginary parts increase with the detuning indicating
intensity amplification. For the dispersion-managed cavity, the
main time-frequency features of CSs are illustrated in a single
nonlinear discrete spectrum. Therefore, NFT can be an effec-
tive analyzing method for the CSs with complex sidebands.

The Kelly-like sidebands here are perfectly symmetric con-
cerning the pump line. We extend the distillation method to
the case of asymmetric sidebands such as Cherenkov radiation
(the dispersive wave). We assume a third-order dispersion
(TOD = 10−38 s3/m) in the longitudinally homogeneous cav-
ity. Figure 7(d) shows the temporal evolution of the CS in
the cavity. Intercepting one round trip, we can see that the

FIG. 5. (a), (d) Temporal profiles of CSs (blue curves) and dis-
tilled pure solitons (orange curves) when δ0 = 2.3 and 3.6 rad,
respectively. (b), (e) Corresponding spectra of the temporal wave-
forms in (a) and (d). (c), (f) Nonlinear discrete spectra of CS in
(a) and (d).

amplitude of the resonant CW background on the right side
of CS is much larger than that on the left [Fig. 7(a)]. An
asymmetric sideband locates at a longer wavelength and there
is a spectrum recoil resistant to the strong dispersive wave
[Fig. 7(b)]. In the nonlinear spectrum shown in Fig. 7(c), the
dispersive wave is mapped to the eigenvalue with real part of
15. The eigenvalue of the CS has a distinguishable real part
indicating a frequency drift corresponding to the spectrum
recoil. Thus the reconstructed PS shown in Fig. 7(e) has the
same temporal drifting velocity as the undistilled CS.

FIG. 6. (a), (b) The real and imaginary parts of the eigenvalues
corresponding to the Kelly-like sidebands vary with the detuning.
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FIG. 7. (a) Temporal profiles of the CS with TOD (blue curves)
and the distilled PS (orange curves). (b) Corresponding spectra of the
temporal waveforms in (a). (c) The nonlinear discrete spectrum of the
CS in (a). Green pentagram: the eigenvalue of PS; dark-blue hollow
pentagrams: the eigenvalues of CW; red diamond: the eigenvalue of
the dispersive wave. (d), (e) The temporal evolutions of the CS and
the distilled PS, respectively.

IV. CONCLUSIONS AND DISCUSSIONS

In summary, we report on the soliton distillation in the
dispersion-managed passive Kerr resonator based on the NFT
algorithm. According to the distinct eigenvalue distributions
of CS, CW background, and resonant radiation sidebands,
a PS can be successfully reconstructed by inverse NFT. We
also investigate the position and intensity of these sidebands
changing with the length of DSF and detuning. In addition to
the symmetric sidebands, this CS distillation process is also
demonstrated to be suitable for the asymmetric condition such
as dispersive wave induced by TOD. Our calculations indicate

that a nonlinear spectrum can reserve the notable features both
in the time and frequency domains, which is conducive to the
overall analysis.

To date, the bright dissipative solitons investigated in the
passive Kerr resonator are hyperbolic secant temporal pulses.
The soliton sustained by the dispersion-managed cavity with
the near-zero net cavity dispersion is demonstrated to have a
Gaussian profile [20]. A dispersive wave due to third-order
dispersion is also observed in its spectrum. In addition, CSs
in the uniform near-zero dispersive cavity are also theoreti-
cally and experimentally demonstrated [33]. The asymmetric
dispersive waves induced by the high-order dispersion show
up in the spectrum. Further NFT-based study in these con-
ditions can be helpful in understanding the characteristics of
the near-zero solitons and achieving the spectral shaping. In
the experimental aspect, the dual-comb-based asynchronous
optical sampling can be a promising method in obtaining
the full-field information. To ensure the sampling precision
and coherence, a controllable polarization-multiplexed scalar
soliton can be generated in a single cavity as the dual-comb
source [34]. The present work can pave the way for the soliton
investigation by NFT in a dissipative nonlinear system.
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