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Topology of polarization-ellipse strips in the light scattered by a dielectric nanosphere
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Numerical modeling of scattering of a plane elliptically polarized monochromatic wave on a silicon spherical
nanoparticle is carried out. In the resulting light field near the particle, the topology of strips, formed by the axes
of the polarization ellipses and the normal vectors to their planes, is studied. The strips may have one half-twist
only if they enclose a circular polarization singularity line, while almost all other strips, even enclosing the linear
polarization singularity lines, are trivial. The correlation between the twisting indices of different strips is found,
and their relation to the topological features of points of the singular lines is analyzed.
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I. INTRODUCTION

Freund predicted [1] the possibility of manipulating the
polarization of light, leading to the folding of its charac-
teristic vectors into complex structures, e.g., cones, spirals,
and Möbius strips. These Möbius strips were experimentally
observed in tightly focused radiation, the transverse profile of
which was specially modified by a liquid crystal device [2].
Later on, the method of generation of exotic Möbius strips of
polarization characteristic vectors with varying twisting rate
[3] via tight focusing was demonstrated and the possibility of
generation of complex topological structures in the light field
by manipulating its polarization singularities in nonparaxial
light beams was shown [4]. Recent theoretical studies [5]
show that changing eccentricity, azimuthal orientation, or cen-
tering of the trajectory used for the strip tracing can change
their chirality and the number of twists.

Nonparaxial electromagnetic fields containing Möbius
strips may be formed not only by tight focusing of the ra-
diation but also by simple crossing of paraxial beams [6].
The rapidly developing branch of near-field nanophotonics
is also of a significant interest for nonparaxial optics [7–9].
Singular lines in the proximity of nanoscale objects, irradi-
ated by a plane monochromatic wave, initially containing no
singularities, have been predicted both analytically [10] and
numerically [11,12]. It was shown in [13] that Möbius strips
formed by the axes of the polarization ellipse encircle the
lines of polarization singularities emerging in the near field of
nanoscale objects. Although the growth of interest in this topic
is undoubted, the process of understanding the causes of the
emergence and described behavior of the strips still remains
in its earliest stages.

This paper describes the strips in a nonparaxial light field
swept by the vectors characterizing its polarization ellipse.
The example of this field is taken from previous work [12]
in which the scattering of a plane elliptically polarized wave
on a spherical silicon particle was modeled numerically.
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However, the goal in the present paper is to study the features
of distribution of the total nonparaxial field, not just some
of its projections on peculiar planes. The present paper also
studies the interconnection between the parameters, charac-
terizing the topology of polarization strips and the structure of
polarization singularity lines of the electric field.

II. THEORETICAL BACKGROUND

In this paper we use classic methods to describe the po-
larization state of the nonparaxial light field [14]. In such
fields, the polarization ellipses not only have arbitrary shapes
and sizes, but also are arbitrarily oriented in space. The el-
lipse parameters are unambiguously defined by two scalar
and two vector values: the intensity |E|2, the degree of el-
lipticity M = |E∗ × E|/|E|2, the normal vector to the plane
of the ellipse n = Im{E∗ × E}, and the bidirectional vector

(director) of its major axis
←→
A = ± Re{E∗√(E · E)/|E · E|}.

In these formulas E is the vector complex amplitude of the
oscillating monochromatic electric field Ẽ, which is related
to the amplitude as Ẽ(r, t ) = Re{E(r) exp(−iωt )}. The usage

of the bidirectional vector
←→
A appears more useful for the

description of the ellipse axis orientation, because the axis of
an ellipse is bidirectional by nature.

The vectors n and
←→
A are not defined for all polarization

states of the electromagnetic field. In the case when the po-

larization ellipse is a circle (M = 1), the director
←→
A is not

uniquely defined and in the other limit case of linear polar-
ization (M = 0), the normal n to the ellipse plane loses its
meaning. In the general case, the points in space where such
behavior is taking place form isolated lines known as CT and
LT lines or lines of circular and linear polarization singularity,

respectively [14]. In their vicinity n,
←→
A , and the director of

the minor axis of the ellipse
←→
B = ± Im{E∗√(E · E)/|E · E|}

have complex distributions of their spatial directions.
The distribution of the polarization ellipses near the singu-

lar points of circular polarization is comprehensively studied
in the case of paraxial electromagnetic fields [15–18], when
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the normal vectors n of the polarization ellipse planes are
considered parallel to the direction of the wave propagation.

In the proximity of the singular points the directors
←→
A and←→

B thus change their orientation in a complex way, forming
distinctive planar distributions (singularity patterns), known
in the literature as lemons, stars, and monstars. The key
characteristic of these distributions is the topological index,
a number of full rotations of the major axis of the polarization
ellipse in the positive direction when the ellipse is tracked
along a small closed contour, encircling the singularity in the
same direction [16].

The distribution of vectors n,
←→
A , and

←→
B near the singular

lines in nonparaxial fields become significantly more com-
plex and so its description requires another approach. Some
characteristics of this kind of distribution may be obtained
by studying the projections of the polarization ellipses of the
field on certain selected planes. In this case, for the points of
CT and LT lines, the isotropy parameters ϒC and ϒL, respec-
tively, are introduced. These parameters generalize the idea
of the topological index [19] and are related to the complex
amplitude of the field and its spatial derivatives in the singular
point as

ϒC = |E∗ · ∇(E · E)|2 − |E · ∇(E · E)|2
|E∗ · ∇(E · E)|2 + |E · ∇(E · E)|2 , (1)

ϒL = eilme j pqTplTqmDi j∑
r,s=x,y,z

[(δrl − Drl )(δsm − Dsm)Tlm]2
. (2)

In these expressions we use the vector differential opera-
tor ∇ = {∂x, ∂y, ∂z}, the tensor Di j = EiE∗

j /|E|2, the tensor
Ti j = Im{√(E · E)∂ jE∗

i } (the sign is chosen arbitrarily), and
δi j and ei jk , the Kronecker and Levi-Cività tensors, respec-
tively. The summation is performed over repeated indices
i, j, l, m, p, q ∈ {x, y, z}, where x, y, and z are the coordi-
nates of an arbitrarily chosen Cartesian frame. The isotropy
parameters have the same sign as the topological indices of
the patterns, formed by the ellipse projections on a specially
chosen plane. For the circular polarization singularities this
plane coincides with the plane of Ẽ vector rotation and for the
linear polarization singularities it is orthogonal to the direction
of this vector oscillation.

The isotropy parameters introduced in [19] do not fully
characterized the polarization singularities because only one
(though in some sense preferred) plane for projection is taken
into consideration. The distribution pictures of the polariza-
tion ellipse projections onto a plane significantly depend on
the choice of its orientation to the extent that almost any point
of the field may be viewed as some kind of “singularity”
[20]. To obtain objective and unambiguous information of
the three-dimensional distribution of the electromagnetic field
polarization, one must analyze the change of the vectors n,←→
A , and

←→
B along a small closed contour, encircling the

singularity under consideration. During such motion, each
of these vectors sweeps out a surface, known as a strip of
the corresponding vector [21,22]. The complex behavior of
the vector will define the topology of a strip, which may
be orientable or nonorientable, twisted or nontwisted. The
key parameters of the strip topology are the linking number

L of its edges and its twist number T . The linking num-
ber of two closed contours in space may be defined as the
sum of the linking numbers of their projections onto an ar-
bitrary plane, where the linking number of each intersection
point is considered to be 1 if the first contour passes under
the second one and crosses it from left to right, −1 if the first
contour passes under the second one and crosses it from right
to left, and 0 if the first contour passes over the second one.
For the strips swept by a unit vector v, tracked along a closed
contour without self-intersections, and orthogonal to the tan-
gent of that contour at each of its points, the twist number T is
defined by

T = 1

2π

∫ l

0

([
dv(g(s))

ds
× v(g(s))

]
· dg

ds

)
ds. (3)

Here g(s) is a function, parametrically defining the contour,
where the arclength of the contour is generally taken as the
parameter s. In this case 0 � s � l and g(0) = g(l ), where l
is the full length of the contour. For a wide class of contours,
including, in particular, all planar ones, the twist number T
of any strip constructed on that contour is equal to the link-
ing number of its edges L [23]. The main advantage of the
integral (3) is that it can be evaluated in an arbitrarily chosen
coordinate system, which is more versatile compared to the
previously used methods of finding the T and L characteris-
tics of the polarization ellipse strips [21,22].

The formula (3) is helpful in understanding the physical
meaning of the twist number. The term in large parentheses
represents a scalar product of the angular velocity of the vector
v rotation while it is passing along the contour g(s) and a
vector dg/ds, tangent to that contour. Thus, the integral (3) is
equal to the full number of revolutions of the vector v during
the motion of its initial point along the contour g(s) in the
positive direction in the plane, orthogonal to dg/ds, that is,
around the contour. In some sense, for the contours mentioned
above, the parameter T = L generalizes the definition of the
topological index of singularity of the electric field. For the

bidirectional vectors like
←→
A and

←→
B , the number of such

revolutions may be a half-integer, without any discontinuities
in the observable values. It is worth mentioning that the vec-

tors n,
←→
A , and

←→
B considered in the present paper are not

everywhere normalized nor are they generally orthogonal to
the contours, chosen for construction of the corresponding
strips. Nevertheless, for the analysis of their topology we can
use the expression (3), in which the vector v is the projection
of the considered vector onto the plane, orthogonal to the
contour tangent, and additionally normalize this projection to
unity. Except for some special cases, the field of the vector
v may be uniquely constructed by these rules over all the
selected contours and the linking number L of the strip edges
for these projections coincides with the linking number of
the strip edges of the original vectors. Five examples of the
strips with different linking numbers L of their edges (or
twisting numbers T ) are shown in Fig. 1. Three upper strips
are orientable and they may be formed by all three vectors

n,
←→
A , and

←→
B . Strips on the lower line are nonorientable

(Möbius) strips and they may be formed only by the
←→
A and
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FIG. 1. Examples of the strips swept by a bidirectional vector←→
A of the major axis of the polarization ellipse with different linking

numbers of their edges. Polarization ellipses are colored red if the
electric field vector appears to the observer rotating clockwise and
blue in the opposite case. The edges of the strip are shown in different
colors if there are two of them (i.e., the strip is orientable).

←→
B axes directors, which, unlike usual vectors, are equivalent

to themselves when rotated by 180◦.

III. FORMULATION OF THE PROBLEM

The interaction between an elliptically polarized plane
wave (degree of ellipticity 0 � M0 � 1 and wavelength λ =
710 nm) and a dielectric sphere with radius R0 = 90 nm is
studied, as in our earlier paper [12], with the help of the
COMSOL MULTIPHYSICS package by the finite-element method.
First, we set the values of the ellipticity degree M0, the wave-
length of the incident radiation, the radius of the sphere, and
the properties of its material. Periodic boundary conditions are
used at the boundaries of the computational space, which is
split into 50 000 finite elements and is surrounded by a model
medium able to absorb all the incident radiation (perfectly
matched layers). This allows us to avoid possible “reflections”
of the wave from the boundaries of the computational space.
It was shown in [12] that for 0 < M0 < 1 there are two closed
CT lines in the near field of the light, scattered by the sphere,
and the lines approach each other very closely for small val-
ues of M0. For an almost linearly polarized incident wave
(M0 � 0) there also are two LT lines near the nanoparticle,

but they gradually shrink until they eventually disappear with
the increase of M0.

When constructing the polarization ellipse strips, in this
work we use only circular contours with a sufficiently small
radius R such that the value R would not influence the topol-
ogy of the strips. Each contour was given by the radius vector
r0 of its center point, a normal vector N to the plane of the
contour, and the radius R as follows:

g(s) = r0 + R
[
e cos

( s

R

)
+ e × N sin

( s

R

)]
. (4)

Here e is an arbitrarily chosen unit vector, orthogonal to N,
s ∈ [0, 2πR). We also choose a small value of R in our com-
putations to neglect second and higher spatial derivatives of
the field. To make it possible R has to be less than R0 	 λ by
an order or more, but of course greater than the step of the
computational grid. To construct the strips along the contours,
commensurable with the step of the grid, we used biqubic
interpolation of the field values. Since the integral (3) may
take only integer or half-integer values, errors in its numeric
computations of several percent order are not significant. That
allows us to construct strips even for the very small values of
R despite the growth of the numerical errors in this case.

IV. DISCUSSION OF THE RESULTS

Our study shows that nonparaxial light field, scattered by
a dielectric sphere, contains strips with a variety of different

topological characteristics. The strips of vectors n,
←→
A , and←→

B , constructed along small planar contours, which do not
encircle polarization singularity lines, are at the most part
trivial (linking number L = 0). There is an exception to this
rule, when the vector, traced along the contour, lies in the
plane of the contour in its vicinity. Figures 2(a) and 2(c) show
the singular lines near the surface of a sphere, irradiated by a
slightly elliptically polarized wave (M0 = 0.1). The red thick
stroke is used for the CT lines and the blue thin stroke for the
LT lines.

A typical example of a strip swept by the vector n is shown
in Fig. 2(a). Its edges are shown in pink and green. Figure 2(b)
shows a close-up of the same strip. To make positioning of
the strip clear with respect to the sphere, it is constructed on
a contour with a radius of R = 30 nm. The derivative dn/ds
in the integrand of Eq. (3) approaches zero with the decrease

FIG. 2. Strip swept by the vector n, entirely lying in the regular region of the field, near (a) a nanoparticle and (b) its close-up view in the
case of the regular topology (L = 0) and (c) and (d) with a single twisting (L = 1). The degree of ellipticity of the incident wave M0 = 0.1.

043505-3



KUZNETSOV, GRIGORIEV, AND MAKAROV PHYSICAL REVIEW A 104, 043505 (2021)

FIG. 3. Linking numbers of the strips of the vectors (a)
←→
A , (b)

←→
B , and (c) n, enclosing a CT line in the scattered field for the ellipticity

degree M0 = 0.25 of the incident wave.

of R; thus for a circle of a sufficiently small radius the integral
inevitably turns to zero.

In some special cases, the strip, built on a small closed
contour, which does not encircle polarization singularity lines,
can be nontrivial [Figs. 2(c) and 2(d)]. Near such a point

in space, the vectors n,
←→
A , and

←→
B are nearly constant,

so if the normal to the bypass contour is orthogonal to the
mean direction of these vectors, there exist at least two points
on the contour where the mentioned vector is nearly paral-
lel to the contour tangent. In this case, the topology of the
corresponding strip is be determined by the behavior of the
small components of the vector, which define its deviation
from the mean direction. Even in the proximity of a regular
point, the distribution of these small components is generally
singular [20] and the linking number of the considered strip
is nonzero. In the present research we discovered the strips
with the linking number L = ±1 in the near field of the
nanoparticle, which did not encircle polarization singularity
lines. As an example, Fig. 2(c) shows a nontrivial strip, en-
tirely lying in the regular region of the field. It is swept by the
vector n, traced along a circle which lies in the plane that is
parallel to the n vector, evaluated in the center of the circle.
Figure 2(d) shows a close-up of this strip. If the vector being
traced is strictly collinear to the contour tangent on some point
of this contour, the construction of the strip faces principal
difficulties, because the linking number may not be defined.
However, that kind of situation is nongeneric and disappears
with a small distortion of the contour or the fluctuation in the
electric field.

To estimate the frequency of the occurrence of these non-
trivial strips in the regular regions of the light field, we

constructed and analyzed 2916 strips swept by the vectors n,←→
A , and

←→
B during their motion along circles with a radius of

R = 10 nm in a small region of 27 equally distributed regular
points both inside and outside the nanoparticle, distanced no
less than a couple of values of R from the nearest singular line
of polarization. Three groups of strips swept by the vectors n,←→
A , and

←→
B during their motion along 36 differently oriented

circle contours were built. The direction of the normal to
these contours planes was changed with a step of 5◦. As a
result, only 184 strips with the contours nearly coplanar to
the considered vector had linking numbers distinct from zero.
Positive and negative values were found in approximately
equal proportion.

Analysis of the results of the numerical computation has

confirmed that the strips of the directors
←→
A and

←→
B , con-

structed along the small contours, enclosing a CT line, are
nontrivial. The reason for this is the impossibility of an un-

ambiguous choice of directions of
←→
A and

←→
B at the points

of circular polarization singularity. We considered the config-
urations of the field near the nanoparticle for a wide range of
values of the incident wave ellipticity degree M0. For each
considered value of M0 we selected 100 equidistant points
on each of the two CT lines near the dielectric sphere and
constructed the strips on the contours, encircling the selected
points and locally orthogonal to the lines. The topology of the
strips swept by the vector n has also been analyzed; however,
the majority of these strips were, as expected, trivial. The only
exception made the contours lie nearly in the same plane as the
n vector of the field in their center. As mentioned above, the
same picture is observed near the points in space containing
no polarization singularities of the electric field.

FIG. 4. Linking numbers of the strips of the vectors (a)
←→
A , (b)

←→
B , and (c) n, enclosing a CT line in the scattered field for the ellipticity

degree M0 = 0.75 of the incident wave.
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FIG. 5. Distribution of the linking numbers of strips of the vectors (a)
←→
A , (b)

←→
B , and (c) n, encircling different parts of LT lines, in the

scattered field of the wave for the ellipticity degree M0 = 0.1.

At the same time, strips swept by the directors
←→
A and

←→
B

are found to have nonzero linking numbers. Figures 3 and 4
show two examples of the CT lines in the near field of the
nanoparticle, the points of which are colored according to the
linking number of the strips which are centered at these points.
Figures 3(a), 4(a), 3(b), 4(b), 3(c), and 4(c) show the distribu-

tion of the number L for the strips of
←→
A ,

←→
B , and the normal

vector n, respectively. In the majority of these lines the first
two kinds of strips have half-integer linking number L = ± 1

2 .
An exception made the strips, built around the points at which
the two CT lines are closest, and the contour, used for the strip
construction, encircle both of the singular lines at the same
time. In this case the linking number L = 1. The strips with a
half-integer linking number are nonorientable and are Möbius
strips; we observed strips with both handedness L = 1

2 and

L = − 1
2 . The signs of the linking numbers of the

←→
A and←→

B strips were found to be opposite at the most points of the
CT lines; however, the signs also coincided inside the sphere,
where the lines approach each other.

It was shown in [12] that the isotropy parameter ϒC of the
points of an CT line has different signs inside and outside
the nanoparticle. The parameter ϒC is calculated within the
locally paraxial approximation, when all polarization ellipses
around the point are assumed to lie in the same plane, co-
inciding with the plane of electric field rotation at the CT

point itself. This approximation allows us to understand, to
some extent, the topological properties of the patterns of axes
of the polarization ellipses in close proximity to the CT line
and in particular to distinguish its points with the topological
types being used in paraxial optics. In the inner region of the
sphere and in a small adjoining outer region the singularity
has topological type lemon (positive isotropy parameter ϒC),
while in the outer region the topological type star prevails
(negative isotropy parameter ϒC). We have found no unam-
biguous interconnection between the sign of the ϒC parameter
and the topological type of the strip swept by the vectors←→
A ,

←→
B , and n. This results agree with earlier work [24] and

certainly shows that to define the topological type of a strip
one must take into consideration even the small nonplanarity
of the distribution of the axes of the polarization ellipses near
the CT point.

In the same manner, we have studied strips swept by the

vectors
←→
A ,

←→
B , and n which encircle the linear polarization

singularity lines (LT lines). The distribution of the linking
numbers of these strips built around the LT line at various
points is shown in Fig. 5. To construct the strips we used
small circular contours, locally orthogonal to the LT line.
We found that nearly all of the considered strips are trivial
(L = 0), with only exception being the ones constructed near
the points where the isotropy parameter ϒL changes its sign.
These strips were found to have linking number L = ±1, that
is, they are twisted once clockwise or counterclockwise and,
unlike the Möbius strips, are orientable. A more detailed study
has shown that the special properties of these strips are caused
not by the specificity of the distribution of polarization ellipses
around the regarded points of the line, but by the orientation
of the bypass contour. The reason is that the contour used is
locally orthogonal to the LT line and near the points, where
ϒL changes sign, the contour is nearly coplanar to the vector
sweeping the strip. Such nontrivial strips are analogous to the
ones found in the regular region of the field in the case of the
specially chosen contours.

Despite the triviality, the strips of the vectors
←→
A ,

←→
B ,

and n have specificity of their own. We demonstrate it with
the example of the n vector strips, constructed near different
points of the space and shown in Fig. 6. The black arrows
indicate the distributions of the projections of the considered
vector onto the contour plane. The strip in Fig. 6(a) is built
in the region of the field containing no polarization singular-
ities and the other two strips encircle LT points with positive
[Fig. 6(b)] and negative [Fig. 6(c)] values of the isotropy
parameter. Despite all three strips being topologically trivial
(which may be obtained by a continuous deformation of a
simple ring) and their edges not being linked, the distribu-
tions of the components of the n vector in the contour plane

FIG. 6. Strips swept by the normal vector n of the polarization
ellipse and components of this vector, in the plane of the point,
(a) containing no polarization singularity, near the LT points with
(b) positive and (c) negative isotropy parameter.
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are significantly different. Near the point in space where the
electric field contains no polarization singularities, all vectors
are nearly collinear [Fig. 6(a)]. Near the points of polarization
singularities these distributions have a vortex [Fig. 6(b)] or
saddle point [Fig. 6(c)] structure, depending on the sign of the
isotropy parameter of the singular point encircled by the strip.

V. CONCLUSION

We have studied the strips swept by the vectors character-
izing polarization ellipses along small closed planar contours
in a nonparaxial electric field of a light wave scattered by a
silicon sphere of subwavelength size. The twisting number of
the strips was calculated by means of a contour integral, the
evaluation of which did not require the usage of a specifically
chosen coordinate system. Unlike Ref. [12] and analogous
works [11,19], we considered the electric strength vector as is
and not its projections onto some specifically chosen planes.
We found the strips with linking numbers 0, ± 1

2 , and ±1,
the topology of which depends not only on the presence or
absence of singular points in the regarded region of space,
but also on the orientation of the contours used for their
construction with respect to the characteristic directions of
the polarization ellipse of the scattered field. The topological
difference of the strips which is irreparable by smooth defor-
mation of them is found only for the strips of the axes of the
polarization ellipse, constructed around the CT lines. All other
strips (built in the regular region of the field, around the LT

lines, and also the strips of the normal vector to the plane of
the ellipse) were orientable and, in the vast majority of cases,
trivial.

The strips of different vectors characterizing the polariza-
tion ellipse, traced along the same contour, can have different
values of the linking number. The linking numbers of the
strips enclosing a CT line and swept by the major and minor
axes of the polarization ellipses are in the most part opposite,
which is an interesting case for separate theoretical investi-
gation. However, we did not find an unambiguous relation
between the linking numbers of the nontrivial strips and the
isotropy parameters of the points of the CT line, near which

they were built. This all indicates that the linking numbers of
the strips of polarization ellipses of the electric field appear to
be distinct topological characteristics of the vector structure of
the scattered electric field. The parameters characterizing the
strip are not reducible to characteristics of the distributions of
the projections of the polarization ellipse onto any particular
plane.

Optical Möbius strips have been successfully measured
experimentally in tightly focused nonparaxial field [2]. How-
ever, to observe analogous structures in the near field of
nanoscale objects requires more complex experimental tech-
niques. Experiments in which the polarization state of the near
field of the nanoobjects is fully scanned are in the early stages
of development. A few ideas on scanning the full polarization
state near the nanoobjects were given in [25], all of which
make use of quantum emitters of various types placed near
the nanoobject. The far field of these emitters can be used
to reconstruct the three-dimensional polarization state of the
near field. Another potential method of full near-field mea-
surements can be the extension of the ideas given in [8] by
comparing the in-plane two-dimensional field distributions for
several various orientations of the sample with respect to the
phase-sensitive near-field microscope. Although almost any
kind of near-field measurement somehow affects the theoret-
ically predicted field distribution, the topological structures
like polarization singularity lines and twisted polarization
ellipse strips are known for their stability with respect to a cer-
tain degree of perturbation and are still likely to be observed
in real-life experiments.
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