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Nonparametric reconstruction of the statistical properties of penetrable, isotropic
randomly rough surfaces from in-plane, co-polarized light scattering data:

Application to computer-generated and experimental scattering data
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An approach is introduced for the nonparametric reconstruction of the statistical properties of penetrable,
isotropic randomly rough surfaces from in-plane, co-polarized light scattering data. Starting from expressions
within the Kirchhoff approximation for the light scattered diffusely by a two-dimensional randomly rough sur-
face, an analytic expression for the normalized surface-height correlation function is obtained as an integral over
the in-plane and co-polarized scattering data with the introduction of only a couple of additional approximations.
The inversion approach consists of two main steps. In the first step, the surface roughness is estimated. Next, this
value is used to obtain the functional form of the surface-height correlation function without initially assuming
any particular form for this function (nonparametric inversion). The input data used to validate this inversion
approach consist of in-plane and co-polarized scattering data obtained for different forms of the correlation
function by either computer simulations or experiments for two-dimensional randomly rough dielectric or
metallic surfaces. Good agreement is obtained between the correlation function and surface roughness obtained
during the reconstruction and the corresponding quantities assumed when generating the input scattering data;
this is the case for both dielectric and metallic surfaces, for both p- and s-polarized light, and for different polar
angles of incidence. The proposed inversion approach provides an accurate, efficient, robust, and contactless
method based on in-plane and co-polarized scattering data for the nonparametric characterization of the statistical
properties of isotropic two-dimensional randomly rough dielectric and metallic surfaces.
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I. INTRODUCTION

The ability to characterize quantitatively the roughness of
a solid surface is important for both basic science reasons
and applications. Among the basic science reasons are the
in situ monitoring of the growth of crystals to elucidate the
mechanisms responsible for them and the fact that adhesion
properties of a rough surface can be significantly different
from a planar surface. Applications of such characterization
techniques include determining the quality of optical elements
such as mirrors and lenses and even the quality of the paint
coating an automobile body. Other applications are, in the oil
and gas industry, the corrosion testing for integrity manage-
ment and the optimized life extension of production facilities,
and the analysis of the formation of scale at a surface. Such
characterizations currently are very difficult to carry out, in
particular over large surface areas.

The most direct way of obtaining the statistical properties
of two-dimensional randomly rough surfaces is first to mea-
sure their surface topographies and to infer their statistical
properties from such data. Various scanning probe microscopy
techniques are often used for obtaining such maps for which
atomic force microscopy and contact profilometry [1,2] rep-
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resent classic examples. However, such contact methods have
several disadvantages. First, to directly measure the surface
topography over larger areas of the mean plane of the surface
is often time consuming and therefore not very practical. Sec-
ond, such measurements can display significant probe artifacts
since what is measured is the surface morphology convoluted
by the shape of the tip of the probe. Finally, there are seri-
ous challenges for how to integrate such measurements into
a production line setup for which the surface one wants to
characterize is moving.

For all the above reasons and others, there have been sig-
nificant efforts invested into obtaining the statistical properties
of surfaces by indirect means that do not require prior knowl-
edge of the surface topography. One such approach is based
on recording the intensity of the acoustic or electromagnetic
waves scattered from the rough surface and to use inverse
scattering theory to obtain information about the surface that
produced them. For instance, when a monochromatic incident
wave is scattered from a rough surface, a speckle pattern is
produced that encodes information about the surface topogra-
phy [3]. The inversion of light scattering data to reconstruct
the surface profile itself is a very difficult problem in general
that has been solved only in a few special cases; some exam-
ples are given in Refs. [4,5]. However, it is more efficient to
directly reconstruct the statistical properties of the randomly
rough surface from such scattering data, for instance, the
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surface root mean square (rms) roughness and the surface-
height autocorrelation function [6–8]. The availability of a
relatively simple, accurate, and flexible method for obtaining
these statistical properties, and even the dielectric constant
of the scattering medium if it is not known in advance, will
represent a significant contribution to the characterization of
surface roughness by contactless methods. The advantage of
such inverse scattering methods are that they typically are
fast and relatively cheap to implement and can cover large
surface areas, which is particularly important when dealing
with randomly rough surfaces.

This problem was initially studied for two-dimensional
randomly rough surfaces by Chandley [9]. He modeled the
scattered light by scalar diffraction theory in combination
with a random-phase screen model. Under some additional
assumptions he was able to invert the scattering data with
respect to the statistical properties of the surface by the use of
a two-dimensional Fourier transform. One of the drawbacks of
this is that one needs to measure the full angular distribution
of the scattered waves, something that is both time consum-
ing and requires more sophisticated experimental equipment.
After the initial paper of Chandley, Marx and Vorburger [10]
performed a similar study for the scattering from a perfectly
conducting surface. These authors based the calculation of the
scattered intensity on the scalar Kirchhoff approximation. By
assuming a particular form for the normalized surface-height
correlation function they were able to use the expressions for
the intensity in combination with a least-squares procedure to
invert experimental scattering data. Zhao et al. [11] combined
the work of Chandley and of Marx and Vorburger in the sense
that they used a Fourier-based technique for the inversion (like
Chandley), but the scattering model that they used was ob-
tained within the scalar Kirchhoff approximation, similarly to
Marx and Vorburger. The advantage of the approach of Zhao
et al. was that the full angular distribution of the scattered light
was not needed.

The assumption that the form of the correlation function
is known in advance is restrictive. This is in particular ex-
pected to be the case for many industrial surfaces were often
multiscale correlation functions are seen. A more flexible
mathematical approach was recently presented by Zamani
et al. [12]. Their nonparametric expression directly relates the
surface-height correlation function to the diffusely scattered
intensity along a linear path at fixed polar angle, but only for
the case of nonpenetrable randomly rough surfaces, illumi-
nated by monochromatic scalar waves (also see Refs. [13,14]).
The approach of Zamani et al. was applied to the reconstruc-
tion of scattering data collected for the scattering from a rough
silicon surface for fixed polar angle of incidence. Results for
the height-height correlation function obtained by inversion
were compared to what was obtained by analyzing the surface
morphology directly and favorable agreement was found.

In passing we mention that a set of inverse wave scattering
approaches recently were presented for the determination of
the Hurst exponent and the topothesy of self-affine surfaces
[15,16]; such surfaces are examples of scale-free surfaces (if
cutoffs can be neglected) and they display fractal properties at
sufficiently small length scales.

The inversion schemes presented in Refs. [9–12] all have
one thing in common: They all assume scalar wave theory.

In a series of studies, Maradudin and co-workers [17–21]
recently presented a class of inversion approaches for pene-
trable surfaces that are based on electromagnetic theory. In
particular, second-order phase perturbation theory [22,23],
which is a vector theory, was used to derive expressions
for the polarization-dependent intensity scattered from two-
dimensional, penetrable randomly rough surfaces. When such
expressions for the polarization-dependent scattered intensity
were combined with an assumption of the form of the cor-
relation function, in-plane and co-polarized scattering data
were inverted with respect to the statistical properties of the
underlying rough surfaces in a least-squares procedure. This
approach was applied successfully to the reconstruction of
both computer-generated and experimental scattering data ob-
tained for rough dielectric [19] and metallic [21] surfaces. It
should be mentioned that for dielectric surfaces, the inversion
approach for in-plane p-to-p scattering has some known issues
for scattering angles in the vicinity of the Brewster angle
[20]. Finally, we stress that these inversion approaches are
parametric since the form of the correlation function needs
to be assumed in advance.

The purpose of this paper is to extend the nonparametric in-
version approach for scalar waves introduced by Zamani et al.
[12] to include both penetrable media and electromagnetic
waves. To this end, we use the stationary-phase approxima-
tion to the Kirchhoff integrals at a two-dimensional randomly
rough penetrable surface, dielectric or metallic, and use them
to calculate the intensity of the light scattered diffusely by the
rough surface when it is illuminated by a linearly polarized
electromagnetic wave. By the introduction of an additional
approximation, we are able to analytically invert co-polarized
input scattering data in the plane of incidence with respect
to the normalized height-height correlation function and the
surface roughness. In our approach, we first estimate the
surface-rms-roughness value by means of either an iterative
method or an analytic expression and then use it to obtain
the functional form of the surface-height correlation function
without initially assuming any particular form of this function.
We demonstrate the accuracy of our method by applying it to
scattering data calculated from the original height correlation
function or obtained either by computer simulations or in
experimental measurements of the diffuse component of the
scattered light as a function of the angle of incidence for
different surfaces.

The remaining part of this paper is organized as follows.
In Sec. II we present the scattering system and derive the
expression for the surface-height correlation function, on
the basis of the Kirchhoff approximation. Section III presents
the numerical and experimental results by the use of this
method for different correlation functions, materials, and po-
larizations. The conclusions reached on the basis of these
results are summarized in Sec. IV. The paper ends with an
Appendix detailing the derivation of the expressions, along
with the computational details.

II. THEORY

A. Scattering system

The physical system that we study consists of vacuum in
the region x3 > ζ (x‖) and a medium whose dielectric constant

043502-2



NONPARAMETRIC RECONSTRUCTION OF THE … PHYSICAL REVIEW A 104, 043502 (2021)

x1

x2

x3

q
k

q‖k‖
φs

φ0

θs
θ0

FIG. 1. Schematic depiction of the scattering geometry consid-
ered in this work.

is ε, in the region x3 < ζ (x‖) (Fig. 1). Here x‖ = (x1, x2, 0)
is a position vector in the plane x3 = 0. The surface profile
function x3 = ζ (x‖) is assumed to be a single-valued function
of x‖ that is differentiable with respect to x1 and x2. It is
also assumed to constitute a stationary, zero-mean, isotropic,
Gaussian random process defined by

〈ζ 2(x‖)〉 = δ2, (1a)

〈ζ (x‖)ζ (x′
‖)〉 = δ2W (|x‖ − x′

‖|), (1b)

where the angular brackets denote an average over the en-
semble of realizations of ζ (x‖). The function W (|x‖|) is the
normalized surface-height autocorrelation function, normal-
ized so that W (0) = 1, and δ denotes the rms height of the
surface.

B. Mean differential reflection coefficient

The differential reflection coefficient ∂Rαβ (q‖|k‖)/∂�s is
defined such that [∂Rαβ (q‖|k‖)/∂�s]d�s is the fraction of the
total time-averaged flux in an incident field of polarization β,
the projection of whose wave vector on the mean scattering
plane is k‖, which is scattered into a field of α polarization, the
projection of whose wave vector on the mean scattering plane
is q‖, within an element of solid angle d�s about the scattering
direction defined by the polar and azimuthal scattering angles
(θs, φs) (see Fig. 1). The polarization indices α and β take
values in the set {p, s}. As we here deal with scattering from a
randomly rough surface, it is the average of this function over
the ensemble of realizations of the surface profile function that
has to be calculated. The contribution to this average from the
light scattered incoherently (diffusely) is [24]

〈
∂Rαβ (q‖|k‖)

∂�s

〉
incoh

= 1

S

(
ω

2πc

)2 cos2 θs

cos θ0

[〈|Rαβ (q‖|k‖)|2〉

− |〈Rαβ (q‖|k‖)〉|2], (2)

where S is the area of the x1x2 plane covered by the ran-
domly rough surface and {Rαβ (q‖|k‖)} is a set of scattering
amplitudes (relative to a plane-wave basis). The parallel (or
in-plane) wave vectors k‖ and q‖ that appear in Eq. (2) can, in

the propagating regime, be expressed in terms of the angles of
incidence (θ0, φ0) and scattering (θs, φs) (see Fig. 1) as

k‖ = ω

c
sin θ0(cos φ0, sin φ0, 0), (3a)

q‖ = ω

c
sin θs(cos φs, sin φs, 0), (3b)

and the norms of these vectors are k‖ = |k‖| and q‖ = |q‖|,
respectively. To calculate the mean differential reflection coef-
ficients (DRCs), one needs to know the scattering amplitudes
Rαβ (q‖|k‖) that define them, and to calculate these ampli-
tudes is in general a far from trivial task. For instance, for
a randomly rough surface a rigorous way of obtaining them
requires the numerical solution of a coupled set of inhomoge-
neous integral equations [25,26]; such calculations consume
a significant amount of resources to perform at large-scale
computer facilities.

Instead of relying on purely numerical and time-consuming
calculations in order to obtain the intensity scattered from
a rough surface, numerous approximate methods have been
developed for the same purpose over the past few decades
[6,8,27–30]. Chief among them is the so-called Kirchhoff
approximation [29,31–33]. The basic assumption underlying
this approach is that the rough surface has gentle and small
slopes, i.e., the characteristic horizontal length scale of the
surface (its correlation length) is large compare with both
its rms roughness and the wavelength of the incident light
[33,34]. Therefore, the scattering of light from any point of
the surface can be calculated as if the light is reflected from
an infinite plane that is tangent to the surface at this point.

For a (nonpenetrable) perfectly conducting substrate, the
Kirchhoff integrals defining the reflection amplitudes can be
calculated analytically and the statistical average required to
obtain the mean DRCs can also be performed analytically
under the assumption that the surface roughness constitutes
a Gaussian random process. This situation is in sharp contrast
to what happens when the substrate is penetrable. In this case,
the local reflection amplitudes depend on the local angles
of incidence and the Kirchhoff integrals cannot be obtained
analytically; they have instead to be evaluated numerically for
each surface realization on which basis the ensemble average
is calculated [33]. This process of calculating the ensemble
average is somewhat time consuming even if no large equation
system has to be solved. However, analytic approximations to
the Kirchhoff integrals can be obtained if we apply to them the
stationary-phase method. The adaption of this approximation
physically means that the scattering occurs only along direc-
tions for which there are specular points at the surface. In this
way, the expression for the scattering amplitudes Rαβ (q‖|k‖)
takes the form (see Ref. [32], Chap. 12)

Rαβ (q‖|k‖) = 1

2α0(q‖)[α0(q‖) + α0(k‖)]

Sαβ (q‖|k‖)


2(q‖|k‖)
r(q‖|k‖),

(4a)

with

r(q‖|k‖) =
∫

d2x‖ exp[−i(q‖ − k‖) · x‖]

× exp{−i[α0(q‖) + α0(k‖)]ζ (x‖)}. (4b)
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In writing the expressions (4) we have defined the local
tangential wave vector of the scattered light as


(q‖|k‖) = 1√
2

[(
ω

c

)2

− α0(q‖)α0(k‖) + q‖ · k‖

]1/2

, (5)

the expressions for the matrix elements Sαβ (q‖|k‖) are defined
in the Appendix, and the third component of the scat-
tered wave vector q, whose parallel component is q‖, reads
[q = q‖ + α0(q‖)x̂3]

α0(q‖) =
[(

ω

c

)2

− q2
‖

]1/2

, Reα0(q‖) > 0, Imα0(q‖) > 0,

(6)

with the expression for α0(k‖) defined in an analogous man-
ner. In the propagating regime for which k‖ < ω/c and q‖ <

ω/c, it follows from Eq. (3) that α0(k‖) = (ω/c) cos θ0 and
α0(q‖) = (ω/c) cos θs. It should be noticed from Eq. (4) that
the dependence of Rαβ (q‖|k‖) on the surface profile func-
tion ζ (x‖) only enters through r(q‖|k‖) via the argument of
the second exponential factor of its integrand. The results
in Eq. (4) constitute the scattering amplitudes obtained by
applying the stationary-phase approximation to the integrals
of the Kirchhoff approximation; some (but not all) authors
use the \textrmtangent plane approximation to refer to this
combined approximation. In the following, we will simply
refer loosely to this combined approximation as the Kirchhoff
approximation.

The expressions for the mean DRCs within the Kirchhoff
approximation are obtained from Eq. (2) by the substitution
of the expressions for the scattering amplitudes from Eq. (4).
The ensemble averages that appear in the expressions obtained
in this way can be calculated analytically since it has been
assumed that the surface profile function ζ (x‖) constitutes an
isotropic Gaussian random process. Under these assumptions,
it can be demonstrated that the expression for the incoherent
component of the mean DRCs can be expressed as (see the
Appendix for details)〈

∂Rαβ (q‖|k‖)

∂�s

〉
incoh

= �αβ (q‖|k‖)L(q‖|k‖)incoh, (7a)

with

�αβ (q‖|k‖) = ω/c

4α0(k‖)�2(q‖|k‖)

|Sαβ (q‖|k‖)|2

4(q‖|k‖)

(7b)

and

L(q‖|k‖)incoh = 1

2π
exp[−δ2�2(q‖|k‖)]

×
∫ ∞

0
d u‖u‖J0(|q‖ − k‖|u‖)

×{exp[δ2�2(q‖|k‖)W (u‖)] − 1}. (7c)

In writing these expressions, we have introduced the wave-
vector transfer for the scattering process

Q = q − k = Q‖ + �(q‖|k‖)x̂3 (8)

whose third component can be written in the form

�(q‖|k‖) = α0(|q‖|) + α0(|k‖|), (9)

and J0(·) denotes the Bessel function of the first kind and order
zero (see Ref. [35], Chap. 10). When evaluating the expres-
sions (7) it should be recalled that the parallel wave vectors of
the incident and scattered light, k‖ and q‖ respectively, as well
as �(q‖|k‖), are defined in terms of the angles of incidence
and scattering through the use of the expressions (3). Further-
more, care should be taken when evaluating the expressions
(7) for q‖ ≈ −k‖ since the 
 function vanishes in the
backscattering direction, i.e., when 
(−k‖|k‖) = 0. However,
the quantity Sαβ (−k‖|k‖) also vanishes, and it can be shown
that the ratio |Sαβ (−k‖|k‖)|2/
4(−k‖|k‖) remains finite [23].

The expressions (7) are derived by applying the method of
stationary phase to the expressions for the scattering ampli-
tudes that are obtained under the assumption of the Kirchhoff
approximation [31,32]. Therefore, the validity of the expres-
sions (7) that approximate the mean DRC relies on the validity
of the Kirchhoff approximation; this approximation is valid
when 2krc cos3 θ 	 1 [6,36], where k is the wave number of
the incident light, rc is the integrated radius of curvature, and
θ represents the local angle of incidence. Under the assump-
tion of Gaussianly correlated surface roughness of correlation
length a [see Eq. (17)], it can be shown that the validity
criterion becomes (π/

√
3)(a2/λδ) cos3 θ 	 1 [37].

C. Derivation of the surface-height correlation function

The expression for the incoherent component of the mean
DRCs in Eq. (7) forms the starting point of the nonparamet-
ric inversion scheme for the surface-height autocorrelation
function that we develop in this work. Let us start by not-
ing that the factor L(q‖|k‖)incoh contains all the dependence
of the problem on the surface roughness, while �αβ (q‖|k‖),
on the other hand, is a polarization-dependent geometrical
factor that is independent of the roughness parameters. We
will now demonstrate how this observation can be combined
with angular resolved scattering data to uncover the statistical
properties of the randomly rough surface assumed in obtain-
ing the scattering data.

In the following, it will be assumed that a metallic or
dielectric randomly rough surface is illuminated by a p- or s-
polarized plane wave. Since the surface roughness is isotropic,
without loss of generality we can choose a coordinate system
so that φ0 = 0◦; this means that the plane of incidence is the
x1x3 plane, k‖ is a constant parallel wave vector with k̂‖ = x̂1,
where a circumflex over a vector means that it is a unit vector,
and k‖ = |k‖| = (ω/c) sin θ0.

Angular resolved scattering data 〈∂Rαβ (q‖|k‖)/∂�s〉 are
collected for a given k‖ and a set of values of the parallel
scattered wave vector q‖, and polarization indices α and β

of the scattered and incident light, respectively. From such
scattering data, the incoherent component can be extracted.
Here we will assume that such data are collected within the
plane of incident so that q̂‖ = ±x̂1 (φs = 0◦, 180◦) and that
the polar angle of scattering θs varies in the interval from 0◦ to
90◦. We feel that this angular dependence is the most intuitive
from an experimental point of view. It should be pointed out,
however, that the inversion scheme that we introduce does not
depend critically on this assumption. Alternatively, one may
have chosen to collect scattering data for an azimuthal angle
of scattering in the range −180◦ < φs < 180◦ and a fixed
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polar angle of scattering θs = θ0; for instance, this was the
configuration assumed in the approach presented in Ref. [12].
Furthermore, we will primarily be interested in scattering data
for which the polarizations of the incident and the scattered
light are the same (α = β ∈ {p, s}), that is, we deal with
co-polarized scattering data. This choice is mainly motivated
by the fact that within the plane of incidence, cross-polarized
scattering (α �= β) is a multiple-scattering effect and therefore
the intensity of cross-polarized scattered light for the surfaces
we are interested in will be significantly lower than the inten-
sity of co-polarized scattered light, unless the sample is so that
multiple scattering is the dominating scattering mechanism.
Under these assumptions, the scattering data on which we will
base our inversion scheme consist of the angular dependence
of the incoherent component of the co-polarized mean DRC
in the plane of incidence. In what follows, this quantity will
be denoted by [〈∂Rαα (q‖|k‖)/∂�s〉incoh]|q2=0.

The derivation of the equations that our inversion scheme
will be based upon starts by developing an approximation for
L(q‖|k‖)incoh. To this end, we expand the function �(q‖|k‖) =
�(k‖ + Q‖|k‖) around the specular direction q‖ = k‖, or van-
ish the parallel wave vector transfer Q‖ = q‖ − k‖, with the
result that

�(q‖|k‖) ≡ �(k‖ + Q‖|k‖) = �(k‖|k‖) + O(Q‖). (10)

By retaining only the leading-order term of this expansion in
the integral defining L(q‖|k‖)incoh and substituting the result-

ing expression into Eq. (7a) followed by a rearrangement of
terms in the resulting equation, we get that∫ ∞

0
d u‖u‖J0(|q‖ − k‖|u‖){exp[δ2�2(k‖|k‖)W (u‖)] − 1}

≈ 2π
exp[δ2�2(q‖|k‖)]

�αβ (q‖|k‖)

〈
∂Rαβ (q‖|k‖)

∂�s

〉
incoh

. (11)

The approximation (10) [�(q‖|k‖) ≈ �(k‖|k‖)], and there-
fore the validity of the expression in Eq. (11), is good when
(2k‖ · Q‖ + Q2

‖ )/α2
0 (k‖) � 1, that is, for sufficiently small

angular regions around the specular direction, and this ap-
proximation is best for small polar angles of incidence. It
should be remarked that the majority of the diffusely scattered
light typically is concentrated around the specular direction
for which the expression (11) is valid.

The integral on the left-hand side of Eq. (11) is the
Hankel (or Fourier-Bessel) transform of order zero (see
Ref. [38], Chap. 7) of the function {exp[δ2�2(k‖|k‖)W (u‖)] −
1}. Notice that this is only the case after the approximation
�(q‖|k‖) ≈ �(k‖|k‖) has been applied. Motivated by the def-
inition of the inverse Hankel transform of order zero [38], we
multiply the expression (11) by |q‖ − k‖|J0(|q‖ − k‖|x‖), set
q2 = 0 to guarantee that we are in the plane of incidence, and
integrate the resulting expression over all propagating values
−ω/c � q1 � ω/c. In this way, after interchanging the order
of the u‖ and q1 integrals on the left-hand side of the resulting
equation and using �(k‖|k‖) = 2α0(k‖), we obtain

∫ ∞

0
d u‖u‖

{
exp

[
4δ2α2

0 (k‖)W (u‖)
] − 1

} ∫ ω/c

−ω/c
d q1[|q‖ − k‖|J0(|q‖ − k‖|x‖)J0(|q‖ − k‖|u‖)]|q2=0 ≈ D̂α (x‖|k‖, δ). (12)

In writing this equation, we have defined the in-plane co-polarized scattering data–dependent function

D̂α (x‖|k‖, δ) = 2π

∫ ω/c

−ω/c
d q1

(
|q‖ − k‖|J0(|q‖ − k‖|x‖)

exp[δ2�2(q‖|k‖)]

�αα (q‖|k‖)

〈
∂Rαα (q‖|k‖)

∂�s

〉
incoh

)∣∣∣∣
q2=0

. (13)

The limits of the q1 integration in Eq. (12) are ±ω/c, and for
optical frequencies as we are concerned with here, ω/c is of
the order 106 m−1. Therefore, as an additional approximation,
we will extend the limits of the q1 integration in Eq. (12) to
±∞ so that

∫ ω/c

−ω/c
d q1[|q‖ − k‖|J0(|q‖ − k‖|x‖)J0(|q‖ − k‖|u‖)]|q2=0

≈
∫ ∞

−∞
d q1[|q‖ − k‖|J0(|q‖ − k‖|x‖)J0(|q‖ − k‖|u‖)]|q2=0

= 2
∫ ∞

0
d Q‖Q‖J0(Q‖x‖)J0(Q‖u‖)

= 2

u‖
δ(u‖ − x‖). (14)

Here in the second transition we have changed the variable
to Q‖ = q1 − k1 and used the fact that the integrand is an
even function of this variable, while the last transition follows
from the orthogonality of the Bessel functions [39]. When
the approximation and the result from Eq. (14) are introduced

into Eq. (11), the u‖ integral of the resulting equation can be
readily performed. After some straightforward algebra, one
obtains the following nonparametric estimate for the surface-
height correlation function:

W (x‖) ≈ 1

4δ2α2
0 (k‖)

ln

(
1 + 1

2
D̂α (x‖|k‖, δ)

)
. (15a)

The expression (20) depends on the surface roughness δ,
which we do not know a priori. However, an estimate for it is
obtained from the normalization condition of the correlation
function W (0) = 1. In this way, we find that an estimate
δ = δ̂� for the surface roughness, obtained on the basis of the
in-plane scattering data, is the solution (or fixed point) of the
transcendental equation

δ̂� =
√

ln
[
1 + 1

2 D̂α (0|k‖, δ̂�)
]

2α0(k‖)
. (15b)

The nonparametric reconstruction approach that we pro-
pose in this work is based on the expressions (13) and (15)
and it consists of two main steps. In the first step we estimate
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the surface rms roughness δ̂� from the input data on the basis
of Eq. (15b). Below we detail how this equation can be solved
numerically. Next, the estimated rms-roughness value δ = δ̂�

is introduced on the right-hand side of Eq. (15a) and used to
obtain the functional form of the surface-height correlation
function W (x‖) without initially assuming any particular form
for this function.

The solution of the transcendental equation (15b) is conve-
niently obtained by iterations. This is done by replacing δ̂� on
the right-hand and left-hand sides of this equation by δ̂n and
δ̂n+1, respectively, where δ̂n is the nth approximation to the
fixed-point value δ̂� and n � 0 is an integer. For a sufficiently
large value of n, it is hoped that convergence can be reached.
To obtain the first iterate δ̂0 to be used in the iterative solution
of this equation, we introduce an additional approximation
into Eq. (15). As we will detail in the next paragraph, this
will lead to an alternative and simplified set of reconstruction
formulas [see Eq. (16) below] that is similar to that of Eq. (15),
but which use is expected to result in less or equally accurate
reconstruction of the surface-height correlation function and
the surface roughness. The advantage of using this simplified
formulation is that the surface roughness that it produces, δ�,
is available in a closed form [see Eq. (16c) below] and can
therefore readily be calculated. We will often use the term
noniterative reconstruction to refer to the reconstruction that
is performed on the basis of the simplified approach. For this
reason, the iterative solution of Eq. (15b) can be started by
setting δ̂0 = δ�.

Now we will present the alternative set of simplified re-
construction equations that, for instance, is used to obtain the
expression for δ�. The simplified set of reconstruction equa-
tions is obtained by applying the approximation �(q‖|k‖) ≈
�(k‖|k‖) to the integrand on the right-hand side of Eq. (13),
with the consequence that all surface-roughness-dependent
factors of the integrand can be moved outside the integral
in this equation. In this way, we obtain the alternative way
of estimating the surface-height correlation function with the
result that

W (x‖) ≈ 1

4δ2
�α

2
0 (k‖)

ln

(
1 + 1

2
Dα (x‖|k‖) exp

[
4δ2

�α
2
0 (k‖)

])
,

(16a)

where a surface-roughness-independent function is defined by

Dα (x‖|k‖) = 2π

∫ ω/c

−ω/c
d q1

(
|q‖ − k‖|J0(|q‖ − k‖|x‖)

× �−1
αα (q‖|k‖)

〈
∂Rαα (q‖|k‖)

∂�s

〉
incoh

)∣∣∣∣
q2=0

.

(16b)

It should be noted that this function and D̂α (x‖|k‖, δ)
as defined in Eq. (13) are related by D̂α (x‖|k‖, δ) ≈
Dα (x‖|k‖) exp[4δ2α2

0 (k‖)]. Still, the estimate for the rms
roughness of the surface is obtained when the normalization
condition Ŵ (0) = 1 is applied to the expression (16a). In this
way, we obtain an expression that can be solved explicitly for

the surface roughness to produce

δ� =
√

− ln
[
1 − 1

2 Dα (0|k‖)
]

2α0(k‖)
. (16c)

The expressions (16) constitute the simplified set of recon-
struction formulas for the surface-height correlation function
and the rms roughness (noniterative reconstruction).

III. RESULTS AND DISCUSSION

We will now illustrate the inversion approach developed
in the preceding section by applying it to in-plane and co-
polarized scattering data (the input data), obtained either by
computer simulations or in experimental measurements. This
will be done for scattering data obtained for both rough dielec-
tric and metallic surfaces that are characterized by correlation
functions W (x‖) of different functional forms. The purpose of
doing so is to judge the performance and the reliability of the
inversion approach that we propose.

A. Validation of the reconstruction approach

However, before presenting such inversion results, we will
address the question of how accurate the proposed recon-
struction approach is and therefore how well the statistical
properties of the randomly rough surfaces can be obtained on
the basis of the scattering data that they produce. To assist in
answering this important question, we will generate scattering
data on the basis of the Kirchhoff approximation [Eq. (7)]
and take them as input data to the reconstruction approach.
Following this procedure has to produce the assumed input
roughness parameters δ and W (x‖) if no additional approxi-
mations are assumed in performing the reconstruction, since
it takes the expressions (7) as the starting point. As should be
apparent from the derivation leading to the expressions (15)
and (16), additional approximations were introduced in order
to arrive at these expressions. Therefore, reconstruction based
on scattering data generated within the Kirchhoff approxima-
tion is expected to reproduce the input surface roughness and
correlation function well only when the additional approx-
imations underlying the reconstruction procedure are well
satisfied.

The first set of reconstruction results based on Kirchhoff
scattering input data is presented in Fig. 2. Here the scattering
geometry consists of a rough vacuum-silver system where the
surface roughness is characterized by a correlation function of
the Gaussian form

W (x‖) = exp

[
−

(
x‖
a

)2]
, (17)

where the positive constant a denotes the correlation length.
The wavelength (in vacuum) of the incident light is λ =
632.8 nm, for which the dielectric function of silver is
ε = −18.28 + i0.48 [40]. The rms height of the surface is δ =
λ/7 = 90.4 nm and the polar angle of incidence is θ0 = 0◦.
The blue open symbols in Fig. 2(a) represent the incoherent
component of the p-to-p mean DRC 〈∂Rpp/∂�s〉incoh in the
plane of incidence, calculated within the Kirchhoff approxi-
mation on the basis of the expressions (7). These data are the
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FIG. 2. Reconstruction of the normalized-surface-height autocorrelation function W (x‖) and surface roughness δ based on in-plane and
p-to-p scattering data corresponding to three different rough vacuum-silver systems. In all cases, the polar angle of incidence is θ0 = 0◦, the
wavelength of the incident light is λ = 632.8 nm, and the surface rms roughness is δ = λ/7 = 90.4 nm. The dielectric function of silver at
wavelength λ is ε = −18.28 + i0.48 [40]. The surface correlation function W (x‖) is assumed to have the Gaussian form (17) and characterized
by a correlation length of (a) and (b) a = 6λ, (c) a = 2λ, and (d) a = 0.5λ. The functional forms of the resulting correlation functions are
presented as open symbols in (b)–(d). The scattering data 〈∂Rpp/∂�s〉incoh in the plane of incidence that our reconstruction approach uses as
input were calculated on the basis of the Kirchhoff approximation from Eq. (7); the open symbols in (a) represent such data for a = 6λ and
the thin vertical dashed line indicates the polar angle of incidence. When noniterative reconstruction of the input scattering data is performed
on the basis of Eq. (16), the reconstructed correlation functions are obtained and presented as solid lines in (b)–(d). The corresponding rms
roughness obtained during the reconstructions are (b) δ� = 89.3 nm, (c) δ� = 80.2 nm, and (d) δ� = 44.9 nm. The solid line in (a) is the mean
DRC for p-to-p scattering obtained from Eq. (7) by assuming the reconstructed correlation function and δ = δ�.

input data set on which the subsequent reconstruction will be
performed. The correlation length assumed in obtaining the
input scattering data is a = 6λ and the corresponding input
Gaussian correlation function is shown as blue open symbols
in Fig. 2(b). When reconstruction of these input scattering
data is performed on the basis of the expressions (16), the
(reconstructed) correlation function presented as an orange
solid line in Fig. 2(b) is obtained. It is found to agree rather
well with the input correlation function [blue open symbols
in Fig. 2(b)]. The rms roughness of the surface obtained
during the reconstruction is δ� = 89.3 nm, which also agrees
rather well with the input value δ = 90.4 nm. By assuming
the reconstructed statistical properties of the rough surface,
that is, using δ = δ� and the reconstructed correlation function
W (x‖) [solid line in Fig. 2(b)], the incoherent component of
the mean DRC can be calculated from Eq. (7). In this way
we obtain the mean DRC curve displayed as an orange solid
line in Fig. 2(a) and labeled “Reconstructed.” Note that in
order to perform this calculation, the reconstructed correlation
function W (x‖), known on a finite set of points along x‖,
was used to construct a Lagrange interpolation scheme that

allowed for the calculation of the reconstructed correlation
function for any value of x‖ (no greater than the maximum
value assumed in the reconstruction).

Similarly, Fig. 2(c) presents the input and reconstructed
surface-height correlation function when the input correla-
tion length is a = 2λ for the Gaussian correlated surface and
the scattering data on which the reconstruction is based are
generated from Eq. (7). The reaming parameters are iden-
tical to those assumed in obtaining the results presented in
Figs. 2(a) and 2(b). The rms roughness obtained during the
reconstruction is δ� = 80.2 nm. Compared to the results pre-
sented in Fig. 2(b) for the longer correlation length (a = 6λ),
we find that the reconstruction results become poorer when
the correlation length is decreased; the correlation function is
acceptable and monotonically decreasing with the argument
x‖, while the rms roughness obtained during the reconstruc-
tion is clearly underestimated relative to the input value.
This trend is increased when the input correlation length is
decreased even further. Figure 2(d) shows results for the re-
construction based on scattering data obtained from Eq. (7)
for a surface characterized by a = λ/2. It is found that the
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FIG. 3. Reconstruction of the normalized-surface-height autocorrelation function W (x‖) and surface roughness δ based on in-plane and
s-to-s scattering data obtained for a rough vacuum-glass system (ε = 2.25) for the polar angle of incidence θ0 = 0◦. The surface is characterized
by the roughness δ = λ/10 ≈ 63.3 nm and the exponential correlation function (18) defined by a = 6λ. The input scattering data were
generated on the basis of the Kirchhoff approximation by the use of Eq. (7). All the remaining parameters and the explanations of the various
curves and symbols in each of the two panels are identical to those of Figs. 2(a) and 2(b).

reconstructed correlation function deviates significantly from
the input correlation function; the former function is no longer
a monotonically decreasing function of its argument and it
displays regions of anticorrelation. Furthermore, the error in
the reconstructed rms roughness δ� = 44.9 nm starts to be-
come significant. Based on the results presented in Fig. 2, it is
found that accurate reconstruction results are obtained when
the correlation length of the rough surface is sufficiently long;
at least this is the case for the Gaussian correlated surfaces
illuminated at normal incidence that we considered.

We now turn to the reconstruction of scattering data
obtained for rough surfaces for which the surface-height cor-
relation function is of the exponential form

W (x‖) = exp
(
−x‖

a

)
. (18)

Here it will be assumed that the substrate is glass (ε =
2.25) and that s-polarized light of wavelength λ = 632.8 nm
is incident normally (θ0 = 0◦) onto the mean surface. The
roughness parameters of the rough surface are assumed to be
δ = λ/10 ≈ 63.3 nm and a = 6λ. The input scattering data
generated on the basis of Eq. (7) are presented as open sym-
bols in Fig. 3(a) and it is observed, as expected, that the mean
DRC curve is more centered around the specular direction.
Furthermore, one observes that the overall incoherently re-
flected light is significantly less intense than what was found
for the Gaussianly correlated surface of the same correlation
length [Fig. 2(a)]. This is mainly caused by the different
optical properties of dielectric and metallic substrates. When
the reconstruction is based on these input data and Eq. (16),
one obtains the results presented as orange solid lines in
Fig. 3; the meaning of the various curves in this figure are
the same as in Figs. 2(a) and 2(b). The results presented in
Fig. 3 do agree rather well with the corresponding quantities
assumed in generating the input scattering data. One notes in
particular that the rms roughness obtained by reconstruction,
δ� = 58.0 nm, is less accurate than the corresponding quantity
for the Gaussian surface.

In our final example with the use of input scattering
data generated within the Kirchhoff approximation [Eq. (7)],

we assume a correlation function of the Gaussian-cosine
form [41]

W (x‖) = exp

[
−

(
x‖
a

)2]
cos

(
x‖
b

)
. (19)

Here the positive constants a and b are both lengths scales
characterizing the correlations of the surface roughness; since
there are two such lengths, this form of W (x‖) represents an
example of a two-scale correlation function. Except for the
difference in the form of the correlation function and the
assumption of another polar angle of incidence θ0 = 25◦,
the scattering system and all remaining parameters are the
same as what was assumed in producing the results presented
in Fig. 3. For the parameters characterizing the correlation
function we assume a = 4λ and b = a/2. With these values,
the functional form of W (x‖) is presented as open symbols
in Fig. 4(b) and one observes that a region of anticorrela-
tion exists [defined by W (x‖) < 0]. The results presented as
open symbols in Fig. 4(a) show that the physical consequence
of this anticorrelation is that the incoherent component of
the in-plane and co-polarized mean DRCs display a pro-
nounced dip around the specular direction. Figure 4 presents
as solid lines the results that are obtained when noniterative
reconstruction is performed on the basis of this (Kirchhoff
generated) input scattering data set. The rms roughness ob-
tained by reconstruction is δ� = 61.8 nm and it compares
fairly well with the input value δ ≈ λ/10 = 63.3 nm. Further-
more, the results presented in Fig. 4(b) demonstrate explicitly
the good agreement between the functional forms of the input
and reconstructed correlation functions. In particular, it is
stressed that these results were obtained without making any
prior assumptions about the functional form of the correlation
functions; this demonstrates the power of the approach that
we propose. That no assumption has to be made about the
functional form of W (x‖) prior to reconstruction is in sharp
contrast to what was done in recent studies based on phase
perturbation theory [19,20].

Several conclusions can be drawn on the basis of the
results presented in Figs. 2–4. First, one finds that the
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FIG. 4. Reconstruction of the normalized-surface-height autocorrelation function W (x‖) and surface roughness δ for in-plane and s-to-s
input scattering data obtained for a rough vacuum-glass system (ε = 2.25) for the polar angle of incidence θ0 = 25◦. The surface is
characterized by the roughness δ = λ/10 ≈ 63.3 nm and the Gaussian-cosine form (19) defined by the parameters a = 4λ and b = a/2. The
input scattering data were generated on the basis of the Kirchhoff approximation by the use of Eq. (7). All the remaining parameters and the
explanations of the various curves and symbols in each of the two panels are identical to those of Figs. 2(a) and 2(b).

reconstruction works well for sufficiently long correlation
lengths, which is also where the Kirchhoff approximation is
accurate [36,42]. Hence, it is tempting to draw the conclusion
that the reconstruction is reliable if the Kirchhoff approxima-
tion is accurate,1 but additional work is needed before such
a general conclusion can be drawn. Second, the reconstruc-
tion approach that we propose works well for (i) penetrable
randomly rough surfaces, both metallic and dielectric; (ii)
normal and non-normal incident light; and (iii) both p- and
s-polarized incident light. Finally, no prior assumptions about
the functional form of the correlation function are required,
and the approach that we propose is therefore nonparametric.

B. Computer-generated scattering data

After having established that the proposed reconstruc-
tion approach can produce reliable and self-consistent results
when applied to (approximate) scattering data obtained for
certain classes of rough surfaces, we now turn to the recon-
struction of computer-generated scattering data that include
both single- and multiple-scattering effects. Such input scat-
tering data are obtained on the basis of several different
rigorous computer-simulation approaches [8,25,26,43] when
the roughness parameters were predefined. In this way, we
obtain in-plane scattering data for p- and s-polarized incident
light that is scattered from either metallic (silver) or dielectric
(glass) randomly rough surfaces.

1. Metallic systems

The first set of computer-simulation-generated scattering
data was obtained for a two-dimensional randomly rough sil-
ver surface illuminated from the vacuum by p- or s-polarized
light of wavelength λ = 0.6328 μm, characterized by an

1Recall that it is, strictly speaking, the stationary-phase approx-
imation to the Kirchhoff integrals that is meant here by the term
Kirchhoff approximation, called the tangent plane approximation by
some authors.

rms roughness δ = λ/10 ≈ 63.3 nm and a Gaussian correla-
tion function (17) of correlation length a = 2λ = 1.26 μm.
The input scattering data are presented as open symbols in
Figs. 5(a), 5(c), and 5(e) and correspond to p-to-p scattering
for a polar angle of incidence θ0 = 0◦ and to p-to-p and
s-to-s scattering, both for a polar angle of incidence θ0 =
25◦, respectively. These results were obtained by a rigorous
computer-simulation approach based on the surface integral
(or boundary element) equations in the Müller form [26],
which can be derived from the Stratton-Chu equations (see
Ref. [44], p. 674). For each surface realization, this approach
consists of numerically solving a coupled set of four inhomo-
geneous integral equations for the (four) unknown tangential
components of the total electric and magnetic fields on the
surface [26]. The solution of this system of equations predicts
the total electromagnetic fields on the surface from which the
electric and magnetic fields everywhere in the scattering ge-
ometry, that is, both above and below the rough surface, can be
calculated by the Franz formulas (see Ref. [44], pp. 674–675)
and used to obtain the reflection amplitudes from which the
DRCs can be calculated [25,26]. The simulation results for the
in-plane angular dependence of the mean DRC presented in
Fig. 5 were obtained by averaging the results of 2500 surface
realizations. In passing, we note that these simulation results
are rigorous and do include, for instance, the potential exci-
tation and deexcitation of surface waves like surface plasmon
polaritons, which can influence strongly the reflection from a
rough metal surface [8].

Based on the computer-generated in-plane p-to-p scatter-
ing data for normal incidence presented in Fig. 5(a), the
noniterative reconstruction approach was performed on the
basis of Eq. (16) to produce the rms roughness δ� = 62.2 nm
and the reconstructed correlation function presented as a solid
line in Fig. 5(b). When the results obtained during the re-
construction are compared to the (input) surface roughness
δ ≈ 63.3 nm and the correlation function assumed in gener-
ating the input scattering data [open symbols in Fig. 5(b)],
rather good agreement is found between these two sets of data.
Hence, we conclude that the reconstruction is producing reli-
able results; at least this is the case for the scattering system
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FIG. 5. Reconstruction of the rms roughness δ� and the correlation function W (x‖) for a rough vacuum-silver surface from several sets of
in-plane and co-polarized scattering data. The wavelength of the incident light was λ = 632.8 nm, for which value the dielectric constant of
silver was ε = −18.28 + i0.48 [40]. The rough surface was Gaussianly correlated and characterized by a = 2λ and δ = λ/7 = 90.4 nm. For
these parameters, the incoherent component of the mean DRCs was calculated on the basis of 2500 surface realizations by a rigorous (surface
integral) computer-simulation approach (see the text for details). Such results are presented as open circles in (a), (c), and (e) (the input data
sets); they correspond to (a) the polar angle of incidence θ0 = 0◦ and p polarization, (c) θ0 = 26◦ and p polarization, and (e) θ0 = 25◦ and
s polarization, and the vertical thin dashed lines indicate the polar angle of incidence. When the noniterative reconstruction approach (16) is
applied to the computer-generated scattering data, one obtains the surface roughness δ� and reconstructed correlation function W (x‖) presented
as solid lines in (b), (d), and (f); to facilitate comparison, the form of the correlation function assumed in producing the input data is presented
as open circles in the same panels. Moreover, the values for the rms roughness obtained during the reconstructions are δ� = 62.2, 61.9, and
60.8 nm from top to bottom, respectively. The solid lines in (a), (c), and (e) were obtained from Eq. (7) when the reconstructed rough surface
properties were assumed. Similarly, the dashed lines in the same panels were obtained in the same manner when the input properties of the
rough surface were assumed.

and roughness parameters that we assumed. Moreover, when
the reconstructed correlation function and surface-roughness
value δ� are used to calculate the mean DRC from Eq. (7),
one obtains the solid line in Fig. 5(a), which agrees quite
well (as expected) with the computer-generated input data

presented as open symbols in the same figure. In performing
this calculation, the reconstructed correlation function needs
to be known for any spatial argument x‖, while during the
reconstruction it is only calculated at a finite set of points.
To this end, an interpolation procedure is applied to the set of
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points defining the reconstructed correlation function, while
this function is assumed to vanish for arguments larger than
those provided during the reconstruction. In this way, the solid
line in Fig. 5(a) was obtained. It is stressed that this latter re-
sult is obtained by assuming the Kirchhoff approximation and
the reconstructed surface-roughness parameters and not, for
instance, the additional approximations assumed in arriving at
the expression used in performing the inversion [Eqs. (15) and
(16)]. If the mean DRC curve obtained in this way agrees well
with the input scattering data, the inversion was performed in a
self-consistent manner and the results can probably be trusted;
otherwise, the reconstruction is not self-consistent and the ac-
curacy of the obtained reconstruction results is questionable.

For reasons of comparison, we also present in Fig. 5(a)
the mean DRC (7) as a dashed line for the surface rough-
ness and surface-height correlation function W (x‖) assumed
in producing the input scattering data; here the predictions
from Eq. (7) using input or reconstructed surface statistics
are so similar that the resulting two data sets are hard to
distinguish. If instead the reconstruction is performed on the
basis of normally incident s-to-s scattering data obtained for
the same scattering system, the results that we obtain during
the reconstruction (results not shown) will only show minor
differences relative to the corresponding p-to-p reconstruction
results. The main difference between these two sets of recon-
struction results is that the reconstructed surface roughness
(for s-polarized light) now is δ� = 60.5 nm, which is slightly
less than what is obtained when basing the reconstruction on
p-polarized scattering data. The percentage relative errors of
the reconstructed rms-roughness values relative to the input
value are 1.8% and 4.4% for p- and s-polarized normally
incident light, respectively.

For the same scattering system but a polar angle of inci-
dence θ0 = 25◦, Figs. 5(c) and 5(d) and Figs. 5(e) and 5(f)
present the input data (as open symbols) for p-to-p and s-to-s
in-plane scattering, as well as the results that can be ob-
tained when reconstructions are based on them, respectively;
all the remaining parameters are identical to those assumed
in obtaining the results in Figs. 5(a) and 5(b). The results
in Figs. 5(c)–5(f) demonstrate that also for non-normally
incident p- and s-polarized light, rather good agreement be-
tween the input and reconstructed roughness parameters can
be achieved. In particular, this applies to the surface-height
correlation functions which are accurately reconstructed for
both linear polarizations of the incident light. The values
obtained for the surface roughness during the reconstruction
are δ� = 61.9 and 60.8 nm for p- and s-polarized light, re-
spectively. These values correspond to a percentage relative
error of 2.2% and 4.0%, respectively.

It should be remarked that for the input scattering data
presented in Fig. 5, only marginal changes are found in the
results of the reconstruction by basing it on the iterative ap-
proach (15), as compared to using the noniterative approach
(16) to produce the results presented in this figure. It should
also be mentioned that for the numerous reconstruction tests
that we have performed based on scattering data produced
by computer simulations, we have found that the accuracy in
the reconstruction of the correlation functions typically is the
same as or better than the accuracy in the reconstruction of the
surface roughness.

We have also performed reconstruction of scattering data
for metallic scattering systems that are similar to the one
assumed in obtaining the results of Fig. 5 but characterized
by longer correlation lengths (with the remaining parameters
being unchanged). Doing so generally leads to reconstruc-
tion results that agree even better with the surface statistics
assumed to produce the input scattering data. For instance,
the reconstruction of scattering data that are similar to those
in Fig. 5 but obtained by computer simulations under the
assumption that a = 3λ resulted in reconstructed surface
roughness of δ� = 62.7 and 62.6 nm when θ0 = 0◦ and 25◦,
respectively. Both of these values are quite close to the sur-
face roughness δ ≈ 63.3 nm assumed in generating the input
scattering data.

2. Dielectric systems

We now turn to the reconstruction of surface statistics
based on scattering data collected during the reflection of
light from rough dielectric surfaces. To this end, we assume
that linearly polarized light of wavelength λ = 0.632 μm is
incident from the vacuum onto a glass substrate (ε = 2.25)
bounded by a randomly rough surface that is characterized by
surface roughness δ = λ/10 ≈ 63.3 nm and a Gaussian corre-
lation function of correlation length a = 1.5λ = 0.9492 μm.
For this scattering system, the input scattering data are pre-
sented as open symbols in Figs. 6(a), 6(c), and 6(e) and they
correspond to θ0 = 0◦ and p polarization [Fig. 6(a)], θ0 = 26◦
and p polarization [Fig. 6(c)], and θ0 = 26◦ and s polarization
[Fig. 6(e)]. These results were obtained by a purely numerical
nonperturbative solution of the reduced Rayleigh equation,
which is a single inhomogeneous integral equation satisfied
for the scattering amplitudes [8,43]. The simulation results
for the in-plane angular dependence of the co-polarized mean
DRCs, presented in Figs. 6(a), 6(c), and 6(e) as open sym-
bols, were obtained by averaging the results of 2500 surface
realizations.

For each of these input scattering data sets, the iterative
reconstruction approach based on Eq. (15) was performed.
In this way, we obtained the reconstructed correlation func-
tions presented as solid lines in Figs. 6(b), 6(d), and 6(f)
and they all show good quantitative agreement with the input
correlation functions assumed in producing the input scat-
tering data. The surface-roughness values produced by the
iterative reconstruction procedure are δ̂� = 63.2 nm (θ0 = 0◦
and p polarization), δ̂� = 72.3 nm (θ0 = 26◦ and p polariza-
tion), and finally δ̂� = 62.0 nm (θ0 = 26◦ and s polarization),
which correspond to relative errors of 0.2%, 14.2%, and
2.1%, respectively. Even with the correlation functions be-
ing reconstructed accurately for all of the input data sets
that we assumed, the accuracy of the reconstructed surface-
roughness values varies much more between the data sets that
we considered. In the case of the dielectric surface, the most
pronounced discrepancy between input and reconstructed-
surface-roughness values was found for p polarization and
θ = 26◦, while in the case of the metal surface (Fig. 5), the
same was found for the s polarization and θ = 25◦, but the
relative error was significantly less in the latter case. We are
unsure of the reason for this difference between the metallic
and dielectric cases, but we speculate that it might be related
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FIG. 6. Reconstruction of the rms roughness δ̂� and the correlation function W (x‖) from the in-plane angular dependence of mean DRC
curves produced by a nonperturbative numerical solution of the reduced Rayleigh equations. The rough vacuum-glass surface was illuminated
by linearly polarized light of wavelength λ = 0.6328 μm (ε = 2.25), and the polar angles of incidence were (a) and (b) θ = 0◦ and (c)–(f)
θ = 26◦. The rough surface is characterized by a Gaussian correlation function W (x‖) and the parameters δ = λ/10 ≈ 63.3 nm and a = 1.5λ =
0.9492 μm. The reconstruction was performed by the iterative approach from Eq. (15) and it produced the surface-roughness values δ̂� = 63.2,
72.3, and 62.0 nm (from top to bottom). The remaining description of this figure is identical to that of Fig. 5.

to the validity of the Kirchhoff approximation on which our
reconstruction approach is based, which is more appropriate
for the metallic than the dielectric scattering system.

The reconstruction for the silver scattering system (Fig. 5)
was performed on the basis of the noniterative approach, while
the reconstruction that we did for the glass scattering system
(Fig. 6) used the iterative approach. Furthermore, for the silver
scattering system discussed previously, we argued that only
marginal differences were obtained by the use of noniterative
or iterative reconstruction. We will now demonstrate that un-
der certain conditions, this may not be the case for the glass
scattering system assumed in obtaining the results presented

in Fig. 6. Figure 7 compares results for the glass scattering
system for s and p polarization with a polar angle of inci-
dence of θ0 = 26◦, when the reconstruction is performed on
the basis of either the iterative or noniterative reconstruction
approaches, that is, on the basis of the expressions (15) or (16).
From the results presented in this figure, several interesting
observations should be made. First, when the incident light
is s polarized, the correlation functions obtained by recon-
struction with the noniterative and iterative approaches are
essentially the same; at least on the scale of Fig. 7(b) it is hard
to distinguish between these two sets of results. Moreover,
the reconstructed-surface-roughness values obtained this way
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Noniterative

Noniterative

Noniterative

(Noniterative)

(Noniterative)

FIG. 7. Same as Figs. 6(c)–6(f) but now presenting both the iterative and noniterative reconstruction results when applied to the same input
scattering data. Note that the order of the panels for p- and s-polarized light has been interchanged relative to the order used in Figs. 6(c)–6(f).
The inset in (d) presents for p-polarized light the reconstructed surface roughness δ̂n at iteration level n and how it converges from the initial
value δ� = 82.9 nm (noniterative result) towards δ̂� = 72.3 nm (iterative result) after about 25 iterations.

are rather similar and the numerical values are δ� = 62.6 nm
(noniterative) and δ̂� = 62.0 nm (iterative). Interestingly, it
is the value obtained by the noniterative approach that is
the most accurate of the two reconstructed roughness values.
With so similar results obtained by the two reconstruction
approaches it comes as little surprise that also the in-plane
mean DRC curves that are calculated from them on the basis
of Eq. (7) are rather similar [Fig. 7(a)].

We now turn to what happens when the incident light is
p polarized. Figures 7(c) and 7(d) present the results ob-
tained by the two reconstruction approaches, and the apparent
differences between the results are readily observed. The re-
constructed correlation function obtained by the noniterative
approach displays some spurious oscillations [Fig. 7(d), green
solid line] that are not present in the input correlation function
that decays monotonically towards zero for sufficiently large
arguments. On the other hand, when the correlation function is
obtained on the basis of the iterative reconstruction approach,
it represents a good approximation to the input correlation
function; only in the tail of the correlation function can one
observe some rather weak oscillations which are almost dif-
ficult to notice. The surface-roughness values obtained by
reconstruction for p-polarized light are δ� = 82.9 nm and
δ̂� = 72.3 nm, and of the two, it is the value obtained by the

iterative approach that is closest to the input value (even if it is
not particularly accurate). The inset in Fig. 7(d) presents the
convergence of the iterative approach for the rms roughness
of the surface, δ̂n, as a function of the iteration level n. When
the results for the reconstructed surface statistics are used to
calculate the mean DRC, the two solid lines in Fig. 7(c) are
obtained. One observes that the mean DRC curve obtained
by iterate reconstruction (orange line) agrees better with the
input mean DRC curve (opens symbols) than the noniterative
reconstruction result (green line). The in-plane angular depen-
dence of the mean DRC produced in the latter case is broader
than both the input data and the iterative mean DRC data
sets and it also has a smaller amplitude around the specular
direction (vertical dashed line) than both of the other two data
sets.

It is now tempting to ask why the reconstruction for the
glass system, in particular the value of the rms roughness, is
of better quality when based on s-polarized rather than on
p-polarized input scattering data? Giving a definite answer
to this question is outside the scope of this study. However,
we speculate that the reason for the observed difference in
reconstruction quality is due to the Kirchhoff approximation
more poorly approximating the in-plane angular dependence
of the input mean DRC; this is seen readily from the results
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in Figs. 6(c) and 6(e). Further research is needed to give a
definite answer to this question.

We have also performed reconstruction of computer-
generated scattering data for dielectric and metallic scattering
systems for which the correlation lengths were longer than
those used in obtaining the results in Figs. 5–7. These results
are not presented since they are rather similar to what we have
already presented. The main difference that we found is that
the quality of the reconstruction is increasing with increasing
correlation length of the rough surface. This is consistent, and
therefore expected, since the Kirchhoff approximation is more
accurate for longer correlation lengths [29,33].

Before leaving the computer-generated scattering data
examples, we will comment on the time required to per-
formed the reconstruction. Our reconstruction approach is
nonparametric and based on the expressions (16) or (15).
To be performed, it requires the numerical evaluation of
a one-dimensional integral and a few standard mathemati-
cal functions for each value of x‖ for which one wants to
reconstruct the correlation function W (x‖). Such numerical
calculations are quite fast. For instance, each of the recon-
structions to obtain the full correlation function reported in
Figs. 2–7 took only a few seconds on a modest laptop.
This is in contrast to approaches that are based on a least-
squares procedure, for instance, the approaches presented in
Refs. [17–21], which would take significantly longer to con-
verge towards a result.

C. Experimental scattering data

We are now prepared to apply our reconstruction approach
to scattering data measured in experiments. To this end,
we will consider some of the scattering data collected by
Navarrete Alcalá et al. [23,45] for the coherent and inco-
herent contributions to the differential reflection coefficient
for linearly polarized electromagnetic waves scattered by
two-dimensional Gaussian correlated randomly rough gold
surfaces. The samples used in these experiments were fabri-
cated using photoresist-coated glass plates that were exposed
to several uncorrelated speckle patterns of Gaussian statistics
[45–47]. Next the sample was exposed to a developer, and
finally the rough surfaces obtained in this way were coated
by thin layers of gold. The gold layers were sufficiently thick
to ensure that the scattering of light from the coated surfaces
could be treated as equivalent to the scattering from semi-
infinite gold substrates. Each of the gold surfaces produced
in this manner was given a morphological characterization to
ensure that the rough surfaces approximately possessed the
desired statistical properties [45].

For each of the samples that Navarrete Alcalá et al. pro-
duced, they measured the intensity of the scattered field as
a function of the angle of incidence, and its corresponding
reflectivity was determined analytically as the normalized
strength of its coherent (specular) component. The diffuse
(or incoherent) components of the light scattered from the
surfaces were measured in the plane of incidence as a
function of the polar angle of scattering for several polar
angles of incidence. When preforming these measurements,
the specular intensity was blocked to avoid saturation of the
detector. Subsequently, the contribution to the differential re-

flection coefficients from the light scattered incoherently by
the rough surfaces was calculated from the measurements
(see Refs. [23,45] for additional details). In this way, the
experimental input scattering data that we will consider were
obtained.

The open symbols in Figs. 8(a) and 8(c) and Figs. 9(a) and
9(c) reproduce the results for the in-plane angular-dependent
measurements for the co-polarized component of the mean
DRC for sample 0061 and 7047, respectively, from Figs. 8–11
of Ref. [23]. Since our reconstruction approach is based on
scattering data for the light that has been scattered diffusely
by the rough surface, each of these measured data sets was
divided into several groups; the first group of data, denoted
by blue open circles in Figs. 8(a) and 8(c) and Figs. 9(a)
and 9(c), constitutes the incoherent components of the mean
DRC (diffusely scattered light); we will subsequently base
our reconstruction on these scattering data. The gray open
circles located around the specular direction (vertical black
dashed lines) in the same figures represent the coherent com-
ponents (specularly scattered light), and this classification was
done manually; as a visual guidance these circles have been
connected by thin lines. Finally, the gray data points around
the backscattering direction θs = −θ0, where measurements
cannot be performed, were neglected since they represents
artifacts [see Figs. 9(a) and 9(c)]. The measurements re-
ported in Figs. 8 and 9 were performed for a wavelength (in
vacuum) of λ = 10.6 μm, for which the dielectric constant
of gold is ε(ω) = −2489.77 + i2817.36 [48]. The morpho-
logical characterization of these samples revealed that both
were consistently described by Gaussian statistics. Sample
0061 was found to be characterized by the rms roughness
δ = (0.50 ± 0.01) μm and a correlation function of the Gaus-
sian form (17) with correlation length a = (19.0 ± 1.7) μm;
sample 7047 was found to have roughness parameters δ =
(1.6 ± 0.05) μm and a = (9.5 ± 1.3) μm [23,45].

1. Sample 0061

Our first set of reconstruction results performed on the
basis of experimental data will be based on scattering mea-
surements for sample 0061. The blue open symbols in
Fig. 8(a) represent the measured angular dependence of the
incoherent in-plane p-to-p scattering for a polar angle of
incidence θ0 = 15◦. For the same sample, the blue open sym-
bols in Fig. 8(c) present similar measurement results but
for s polarization and a polar angle of incidence θ0 = 30◦.
When noniterative reconstruction is performed on the basis
of these two measured data sets, the results for W (x‖) pre-
sented in Figs. 8(b) and 8(d) are obtained for the polar angles
of incidence θ0 = 15◦ and 30◦, respectively. In these figures
the orange solid lines represent the reconstructed correlation
functions W (x‖), while the blue open symbols correspond to
the Gaussian correlation function (17) evaluated for the value
of the correlation length a, obtained during the morpholog-
ical characterization of sample 0061, that is, for the value
a = 19.0 μm [45]. From the results presented in Figs. 8(b)
and 8(d), one observes strikingly good agreement between the
reconstructed and input correlation functions W (x‖) for both
angles of incidence and for both polarizations. Moreover, the
two reconstructed W (x‖) functions are internally consistent
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FIG. 8. The (noniterative) reconstruction of the surface-height autocorrelation function W (x‖) and the surface roughness δ� from light
scattering data measured for gold sample 0061 reported in Figs. 10 and 11 of Ref. [23]. Experimentally it was determined that the rough surface
was Gaussian correlated and characterized by the rms roughness δ = (0.50 ± 0.01) μm and the correlation length a = (19.0 ± 1.7) μm. The
measured in-plane angular dependence of the co-polarized DRCs for light of wavelength λ = 10.6 μm is reproduced from Ref. [23] and
shown as open symbols in (a) for p-polarized light incident at an angle θ0 = 15◦ and in (c) for θ0 = 30◦ and s-polarized light. Only the
blue data points were included in the reconstruction; the gray data points were neglected as they have contributions from specular reflections
(coherent component of the mean DRCs). The thin vertical dashed lines represent the specular positions. When our reconstruction approach
(16) is applied to these measured scattering data sets we obtain the results presented in (b) (θ0 = 15◦) and (d) (θ0 = 30◦); the values for the
reconstructed rms roughness are found to be δ� = 0.51 μm and 0.50 μm, respectively. In these panels the solid lines are the reconstructed
correlation functions, while the symbols represent the correlation function obtained by the morphological study of the sample (see Ref. [45],
Fig. 2). The dielectric constant of gold assumed in performing the reconstruction is ε(ω) = −2489.77 + i2817.36 [48]. The remaining
description of this figure is identical to that of Figs. 5(c)–5(f).

(approximately the same), as they should be for measurements
performed on the same sample. The values for the surface
roughness are found to be δ� = 0.51 μm (θ0 = 15◦) and δ� =
0.50 μm (θ0 = 30◦). Both results are in excellent agreement
with the roughness δ = (0.50 ± 0.01) μm determined from
the measured topography data. When the results for the sta-
tistical properties of the rough surface obtained during the
reconstruction are used to calculate the mean DRC curves in
the plane of incidence, the (orange) solid lines in Figs. 8(a)
and 8(c) are obtained. On the basis of the empirical roughness
parameters, the in-plane mean DRCs were calculated and the
results are presented as (orange) dashed lines in these figures.
Mainly around the specular direction one finds some minor
discrepancies between these two sets of results. We have
found that these discrepancies, even when the reconstructed

and input roughness parameters are rather similar, are caused
by the reconstructed correlation functions being slightly larger
than the input correlation function for x‖/a > 2. Finally, we
mention that using the iterative reconstruction approach, in-
stead of the noniterative approach used to obtain the results in
Fig. 8, did produce almost the same reconstruction results. For
instance, the values obtained for the surface roughness using
the iterative reconstruction approach deviated by no more than
0.3% from the corresponding values reported in Fig. 8.

The results presented in Fig. 8 clearly testify to the robust-
ness, accuracy, and power of the reconstruction approach that
we proposed. For instance, these results demonstrate that even
for experimental data which unavoidably contain statistical
fluctuations, the approach can produce robust and accurate
results for the statistical properties of the randomly rough
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FIG. 9. Reconstruction of the surface-height autocorrelation function W (x‖) and the surface roughness δ� from light scattering data
measured for gold sample 7047 reported in Figs. 8 and 9 in Ref. [23]. The morphological characterization of this sample revealed that
the correlation function was well approximated by a Gaussian form, and the rms roughness and correlation length were determined to be
δ = (1.6 ± 0.05) μm and a = (9.5 ± 1.3) μm, respectively. The remaining description of this figure is identical to that of Fig. 8, except
that here the polar angle of incidence is θ0 = 30◦ for both polarizations. Moreover, also the data points around the backscattering direction
θs = −θ0, for which measurements are not possible, were neglected in the reconstruction.

surface that was used to obtain the input scattering data. We
stress that our approach has no adjustable parameters and that,
for instance, the form obtained for the correlation function is
a result of the input scattering data and the reconstruction
approach alone and not from assuming a certain form for
W (x‖) prior to performing the reconstruction. For many nat-
urally occurring and/or synthetic surfaces this is a significant
advantage since often very little is known in advance about
the form of the surface-height correlation function of such
samples.

2. Sample 7047

We now turn to sample 7047 and to the in-plane co-
polarized scattering that was measured for it for the polar
angle of incidence θ0 = 30◦ and p-polarized [Fig. 9(a)] or
s-polarized light [Fig. 9(c)]. Obtaining reliable results from
our reconstruction approach based on scattering data obtained
for this sample is expected to be significantly more challeng-
ing than what was the case for sample 0061. The reason for
this is that the validity of the Kirchhoff approximation, on

which the reconstruction approach is based, starts to become
questionable at a polar angle of incidence θ0 = 30◦ since
a/λ < 1 [36,37,42]. We recall that the Kirchhoff approxi-
mation is valid when 2krc cos3 θ0 	 1, where k = 2π/λ and
rc is the integrated radius of curvature [37]. Even after this
reservation, we proceeded by applying our Kirchhoff-based
reconstruction approach to these scattering data. Figures 9(b)
and 9(d) present as (orange) solid lines the results of the
reconstruction that was performed in a manner that is com-
pletely analogous to how the reconstruction results in Fig. 8
were obtained. Also for this sample, the iterative and non-
iterative reconstruction approaches produced essentially the
same results. One observes from the results in these figures
that there still is reasonably good agreement between the input
and reconstructed correlation functions. Both the form of the
correlation function and the length scale a characterizing their
decays are fairly well reproduced in the reconstruction; this
result is rather encouraging and definitely better than expected
in view of the questionable validity of the Kirchhoff approx-
imation. The fact that we still obtain a relatively adequate
reconstruction result for W (x‖) is caused, we suspect, by the
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Kirchhoff approximation producing results that are not too
far from the measured input scattering data; this is shown by
the dashed lines in Figs. 9(a) and 9(c). When it comes to the
reconstructed-surface-roughness values, we obtain δ� = 1.08
and 1.04 μm for p- and s-polarized incident light, respec-
tively. These values represent significant underestimation of
the value δ = (1.6 ± 0.05) μm obtained by analyzing the
morphology of the sample. We note that applying the itera-
tive reconstruction approach did not improve the accuracy of
the reconstructed-surface-roughness values (or the correlation
function). The trend that the correlation function is more ac-
curately reproduced than the value of the surface roughness
is something that we have seen in numerous cases when
applying our reconstruction approach to computer-generated
scattering data. We speculate that the reason for this behavior
is that the shape of the in-plane mean DRC curve seems to be
less sensitive to the value of the surface roughness than the
form of the correlation function. For instance, from Fig. 9(b)
we observe that the input and reconstructed correlation func-
tion are rather similar, while the results in Fig. 9(a) show
two mean DRC curves (solid and dashed lines) that are not
that different even if the surface-roughness values assumed
when producing them are rather different. Motivated by this
finding, by assuming the correlation function obtained during
the reconstruction and shown as solid lines in Figs. 9(b) and
9(d), we obtained the surface roughness by a least-squares op-
timization procedure of the input mean DRC and of the mean
DRC calculated from Eq. (7) for a given value of δ�. In this
way we obtained surface-roughness values that did not deviate
more than 4% from the input value δ (results not shown).
Since we do not a priori know the correlation function, this
latter approach is somewhat questionable and therefore we do
not in general recommend it, even if it produced encouraging
results for the samples that we applied it to.

IV. CONCLUSION AND OUTLOOK

An approach was introduced for the nonparametric recon-
struction of the surface-height correlation function and the
rms roughness of penetrable two-dimensional randomly rough
surfaces based on the angular dependence of the co-polarized
light scattered by the surface in the plane of incidence. The

reconstruction approach is based on an expression from elec-
tromagnetic scattering theory derived within the Kirchhoff
approximation. It is stressed that unlike many other inversion
methods, the form of the correlation function is not assumed
prior to the reconstruction (nonparametric); in fact, our ap-
proach has no adjustable parameters at all. We applied our
method to in-plane co-polarized scattering data obtained for
rough dielectric and metallic surfaces illuminated by p- or
s-polarized light. Such scattering data were obtained either
by rigorous computer simulations or in experimental mea-
surements performed on well-characterized randomly rough
surfaces. For a wide range of surface morphologies, the re-
construction performed in this way revealed good agreement
between the surface-height correlation function and the rms
roughness of the rough surface assumed in obtaining the
(input) scattering data, and the correlation function and the
rms roughness obtained by reconstruction. The region of va-
lidity of the reconstruction approach was judged by applying it
to input scattering data calculated on the basis of the Kirchhoff
approximation. In this way, it was determined that it works
well when the local slopes of the surface are not too large;
this result is similar to but more restrictive than the region of
validity of the Kirchhoff approximation itself on which the
inversion scheme is based.
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APPENDIX: COMPUTATIONS DETAILS

Upon the substitution of the scattering amplitude (4a) into Eq. (2), an expression for the mean DRC in the form (7a) is
obtained where �αβ (q‖|k‖) is defined by Eq. (7b) and

L(q‖|k‖)incoh = 1

(2π )2S
[〈|r(q‖|k‖)|2〉 − |〈r(q‖|k‖)〉|2]. (A1)

Here r(q‖|k‖) is given by the expression (4b) and the expression for the mean DRC is valid within the stationary-phase
approximation to the Kirchhoff integrals. In this Appendix we will explicitly calculate the averages over the ensemble of
realizations of the surface profile function ζ (x‖) that the right-hand side of Eq. (A1) contains.

With the use of the results from Eqs. (4b) and (9), a direct calculation leads to

〈|r(q‖|k‖)|2〉 =
∫

d2x‖d2x′
‖ exp[−i(q‖ − k‖) · (x‖ − x′

‖)]〈exp{−i�(q‖|k‖)[ζ (x‖) − ζ (x′
‖)]}〉. (A2)

We have here used that the ensemble average 〈·〉 only is concerned with the surface profile function and hence can be moved
inside the integral. It can be calculated explicitly since the surface profile function is assumed to be a stationary, isotropic,
Gaussian random process. Under these assumptions, the (two-point) joint probability density function (PDF) for finding a surface
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height z = ζ (x‖) at in-plane coordinate x‖ and at the same time the height z′ = ζ (x′
‖) at x′

‖ takes the bivariate Gaussian form [49]

P2(z, z′; |x‖ − x′
‖|) = 1

2πδ2[1 − W 2(|x‖ − x′
‖|)]1/2

exp

(
− z2 + z′2 − 2zz′W (|x‖ − x′

‖|)
2δ2[1 − W 2(|x‖ − x′

‖|)]
)

, (A3)

where the (isotropic) surface roughness is characterized by the surface-height correlation function W (x‖) and the rms roughness
δ [see Eq. (1)]. The reason that this joint PDF P2(·) depends only on the in-plane vector difference x‖ − x′

‖, and not separately
on the values of the vectors x‖ and x′

‖, is a consequence of the stationarity of the surface. The isotropy of the surface dictates that
the joint PDF depends only on the length of x‖ − x′

‖ and not on its direction. On the contrary, if the surface were anisotropic,
then the surface-height correlation function will depend on this vector difference and one would have to replace W (|x‖ − x′

‖|) in
Eq. (A3) by W (x‖ − x′

‖); however, this situation will not be considered further here.
The ensemble average that appears in Eq. (A2) is defined via the joint PDF P2(·) as

〈exp{−i�(q‖|k‖)[ζ (x‖) − ζ (x′
‖)]}〉 ≡

∫ ∞

−∞
d z

∫ ∞

−∞
d z′P2(z, z′; |x‖ − x′

‖|) exp[−i�(q‖|k‖)(z − z′)]. (A4)

With the explicit Gaussian form (A3) for the joint PDF, the integrals on the right-hand side of Eq. (A2) can be calculated
explicitly since both integrals are in the forms of Gaussian integrals. In this way, a lengthy but in principle straightforward
calculation [using the integral (3.323.2) from Ref. [50]] results in

〈exp{−i�(q‖|k‖)[ζ (x‖) − ζ (x′
‖)]}〉 = exp{−δ2�2(q‖|k‖)[1 − W (|x‖ − x′

‖|)]}. (A5)

Next, this result is introduced into Eq. (A2) and one obtains, after making the change of variable u‖ = x‖ − x′
‖,

〈|r(q‖|k‖)|2〉 =
∫

d2x‖d2u‖ exp[−i(q‖ − k‖) · u‖] exp{−δ2�2(q‖|k‖)[1 − W (|u‖|)]}

= S
∫ ∞

0
d u‖u‖

∫ π

−π

dφu‖ exp(−i|q‖ − k‖|u‖ cos φu‖ ) exp{−δ2�2(q‖|k‖)[1 − W (u‖)]}

= 2πS exp[−δ2�2(q‖|k‖)]
∫ ∞

0
d u‖u‖J0(|q‖ − k‖|u‖) exp[δ2�2(q‖|k‖)W (u‖)]. (A6)

In obtaining this result, it was used that the x‖ integration produces the surface area S since the integrand is independent of this
variable, polar coordinates (u‖, φu‖ ) were introduced for the u‖ integration with φu‖ defined as the angle between the vectors u‖
and q‖ − k‖, and the Bessel function of the first kind and order zero J0(·) appears as a result of the angular integration by the use
of the identity [51]

J0(z) = 1

2π

∫ π

−π

dφ exp(−iz cos φ). (A7)

In a similar fashion, with the use of Eq. (4b) and the result

〈exp[−i�(q‖|k‖)ζ (x‖)]〉 ≡
∫ ∞

−∞
d z P1(z) exp[−i�(q‖|k‖)z] = exp

(
−δ2

2
�2(q‖|k‖)

)
, (A8)

where the surface-height distribution is predicted to have the Gaussian form

P1(z) ≡
∫ ∞

−∞
d z′P2(z, z′; |x‖ − x′

‖|) = 1√
2πδ

exp

(
− z2

2δ2

)
, (A9)

it is obtained that

〈r(q‖|k‖)〉 =
∫

d2x‖ exp[−i(q‖ − k‖) · x‖] exp

(
−δ2

2
�2(q‖|k‖)

)
. (A10)

The integral in Eq. (A8) is also a Gaussian integral and it is evaluated explicitly in the same manner as the integrals in Eq. (A4)
were calculated (see Ref. [50]). From this result, one obtains

|〈r(q‖|k‖)〉|2 = 2πS exp[−δ2�2(q‖|k‖)]
∫ ∞

0
d u‖u‖J0(|q‖ − k‖|u‖), (A11)

after performing a calculation which closely resembles how the expression for 〈|r(q‖|k‖)|2〉 was obtained.
The substitution of the results from Eqs. (A6) and (A11) into Eq. (A1) yields Eq. (7c), which is the final form for

L(q‖|k‖)incoh.
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