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By studying the two-dimensional Su-Schrieffer-Heeger-Bose-Hubbard model, we show the existence of
topological Higgs amplitude modes in the strongly interacting superfluid phase. Using the slave boson approach,
we find that, in the large filling limit, the Higgs excitations and the Goldstone excitations above the ground state
are well decoupled, and both of them exhibit nontrivial topology inherited from the underlying noninteracting
bands. At finite fillings, they become coupled at high energies; nevertheless, the topology of these modes remains
unchanged. Based on an effective action analysis, we further provide a universal physical picture for both their
topological and phase-amplitude character at both infinite and finite fillings in a unified way. The discovery of
topological Higgs amplitude modes in this paper opens the path to investigations in various systems, such as
superconductors and quantum magnets.
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I. INTRODUCTION

Topological matter has been playing a central role in mod-
ern condensed-matter physics since its discovery in integer
quantum Hall effects [1] about 40 yr ago. In those early days,
topological properties manifest themselves via quantized bulk
observables, which are directly linked to topological invari-
ants [2]. Later, it was found that nontrivial bulk topology
can introduce robust edge modes. An important insight from
Haldane and Raghu [3] is that this central topological phe-
nomenon is essentially a wave effect not necessarily tied to
fermions. As a result, there is a recent trend to study various
systems with no fermionic analog, e.g., topological photon-
ics [4,5], topological phonons [6,7], topological magnons
[8–11], topological mechanics and acoustics [12–14], even
topological atmospheric and ocean waves [15]. In particular,
cold atomic systems as quantum simulators [16,17], provide
a unique possibility to study topological Bose superfluids,
whose Bogoliubov excitations in the weak-coupling limit also
have a topological band structure [18–29]. These topological
quasiparticles as bosonic in nature are similar to topological
phonons and magnons, which possess robust edge modes dic-
tated by the bulk-boundary correspondence and are detectable
by spectroscopy measurements. So far, studies have been car-
ried out only for the topology of the Nambu-Goldstone mode
[30,31] in the weak-coupling region, which is gapless at low
energies.

One notes that the spontaneous breaking of a continuous
symmetry leads to two types of collective excitations: the
gapless Nambu-Goldstone mode and the gapped Higgs mode
[32]. In the standard model of particle physics, the famous
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Higgs boson [33], being elusive for decades, was finally
discovered recently [34,35]. As its close cousin in condensed-
matter physics, the Higgs amplitude mode [36] also attracts
much attention and has been experimentally found in su-
perconductors [37–39], charge-density waves [40], quantum
magnets [41,42], and the superfluid 3He -B phase [43,44]. In
the strongly interacting superfluid phase of the Bose-Hubbard
model (BHM) realized in cold-atomic systems [45,46], this
mode has also been discussed extensively [47–51], and its ob-
servation has been reported recently using Bragg spectroscopy
[52] and using lattice modulation [53].

Can the Higgs amplitude modes also be topologically non-
trivial? Here we give an affirmative answer to this question by
studying a simple variant of the two-dimensional (2D) BHM
in the strong-coupling limit, which can be easily implemented
experimentally in cold-atom platforms. We find that, in the
large filling limit, the Higgs mode and the Goldstone mode are
well decoupled, and both of them exhibit nontrivial topology
inherited from the background noninteracting bands. At finite
fillings, they become coupled at high energies; nevertheless,
the topology of these modes is unchanged. Based on an effec-
tive action analysis, we further provide a universal physical
picture for the topology of Higgs and Goldstone modes, which
could also be possibly applicable to other symmetry-breaking
systems, such as superconductors and quantum magnets.

II. MODEL

As a concrete and minimal example to host topological
Higgs amplitude modes, we consider the 2D Su-Schrieffer-
Heeger-Bose-Hubbard Model (SSH-BHM), described by the
Hamiltonian,

Ĥ = Ĥhop + 1

2
U
∑

i

n̂i(n̂i − 1) − μ
∑

i

n̂i, (1)
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FIG. 1. (a) Two-dimensional SSH-BHM on a square lattice. A
unit cell is enclosed by a gray dashed square with four sublattices
labeled by an index η = 1, . . . , 4. The intracell (intercell) hopping
strength is −t1 (−t2), shown in the blue (red) color. Black arrows are
two primitive lattice vectors a1,2. We set |a1| = |a2| = 1 as the length
unit. (b) The first Brillouin zone (BZ) of the model. Four inversion
symmetric points are shown explicitly. The red vectors denote the
high-symmetric path used in Figs. 3(a) and 3(d).

where Ĥhop = −∑i j ti j â
†
i â j =∑k Hhop

k â†
kâk is the kinetic

term with the staggered hopping amplitudes along both di-
rections as depicted in Fig. 1. This hopping Hamiltonian is
the 2D generalization of the SSH model [54] introduced in
Refs. [55–57], whose band topology is protected by the inver-
sion symmetry IHhop

−k I−1 = Hhop
k where in the basis specified

by Fig. 1, the inversion operator reads I = σ1 ⊗ σ1, and σ1

is the standard Pauli matrix. The corresponding topological
invariant is the vectorized Zak phase, also equal to the macro-
scopic polarization vector [58]. Due to inversion symmetry,
each component of the polarization vector is quantized to a Z2

index [59]. With the additional C4 symmetry, the polarization
center either coincides with the original square lattice (for
t1 > t2, the trivial phase) or coincides with its dual lattice
(for t1 < t2, the topological phase). Note that this topological
index can be inferred from the eigenvalues of I at inversion
symmetric momenta [59,60].

This model Hamiltonian can be realized in experiments by
loading spinless bosons in a square optical lattice with the ad-
dition of a period-2 superlattice. In the following we will focus
on the case where t1/t2 is not far from unity. In this region,
there is a quantum phase transition between Mott-insulating
(MI) and superfluid (SF) phase driven by t/U , where t =
(t1 + t2)/2 with the superfluid order parameter simply given
by ϕ = 〈ai〉 [45].

III. LARGE FILLING LIMIT

We utilize the slave boson approach [47,48,61–66] to study
the excitation spectrums in the SF phase. The basic idea
of the slave boson method is to enlarge the local Hilbert
space by introducing bosonic operators b̂†

i,ni
that create the

local Fock state as b̂†
i,ni

|vac〉 = (â†
i )ni/

√
ni!|0〉, where |0〉 is

the physical vacuum state and |vac〉 is the vacuum state of
the slave bosons. The original bosonic operators â†

i then can
be expressed in terms of the slave boson operators â†

i =∑
ni

√
ni + 1b̂†

i,ni+1b̂i,ni . To keep the canonical commutation

relations of physical bosonic operators, one has to impose a
local constraint

∑
ni

b̂†
i,ni

b̂i,ni = 1.
In the vicinity of the SF-MI transition at the qth lobe, where

q is a non-negative integer, the particle number fluctuation is
highly suppressed such that we can truncate the local Hilbert
space by keeping only three relevant states |q〉i and |q ± 1〉i.
Then we consider the large filling limit q � 1 such that the
particle and hole excitations have the same Bose enhancement
factors

√
q + 1 � √

q. Therefore, the physical bosons now
are given by â†

i � √
q(b̂†

i,q+1b̂i,q + b̂†
i,qb̂i,q−1), and the local

constraint of the slave bosons becomes
∑1

�=−1 b̂†
i,q+�b̂i,q+� =

1. The slave boson approach starts from the local mean-
field Hamiltonian ĤMF

i = −ztϕ(âi + â†
i ) + 1

2Un̂i(n̂i − 1) −
μn̂i. Using slave boson operators, the mean-field Hamiltonian
can be recast as

ĤMF
i = [b̂†

i,q+1 b̂†
i,q b̂†

i,q−1]

⎡
⎢⎢⎣

U
2

zt̃ϕ√
q 0

0 zt̃ϕ√
q

H.c. U
2

⎤
⎥⎥⎦
⎡
⎢⎣

b̂i,q+1

b̂i,q

b̂i,q−1

⎤
⎥⎦,

(2)

where μ = q − 1/2 is used, corresponding to the so-called
particle-hole (PH) symmetric line (see Appendix A for de-
tails), and a constant term is omitted. Given a ϕ, Eq. (2) can
be diagonalized by a rotation,

⎡
⎢⎣

β̂i,G

β̂i,A

β̂i,P

⎤
⎥⎦ = 1√

2

⎡
⎢⎣

sin θ
2

√
2 cos θ

2 sin θ
2

cos θ
2 −√

2 sin θ
2 cos θ

2

1 0 −1

⎤
⎥⎦
⎡
⎢⎣

b̂i,q−1

b̂i,q

b̂i,q+1

⎤
⎥⎦, (3)

where θ = arccos(U/16t̃ ) and t̃ = qt . The ground state ob-
tained, in turn, determines the parameter ϕ; one, therefore, can
self-consistently solve this mean-field Hamiltonian [67]. Note
the local constraint is preserved under this unitary rotation.
One can straightforwardly rewrite the original Hamiltonian
Eq. (1) using these rotated slave bosons. In this representa-
tion, the on-site interaction term becomes quadratic, whereas
the hopping term becomes quartic (see Appendix B for the
explicit expression). Note that the rotated slave boson β̂i,G

generates the mean-field ground-state |G〉 =∏i β̂
†
i,G|vac〉;

whereas β̂i,P and β̂i,A build up the local excitations. We,
therefore, condense β̂i,G, namely, set β̂i,G � β̂

†
i,G � 1 and treat

others as small fluctuations. Then one can expand Eq. (1) up
to quadratic order in the rotated slave bosons Ĥ � Ĥ (2) where

Ĥ (2) = 1

2

∑
k∈BZ

[�̂†
k,A �̂

†
k,P]H (2)

k

[
�̂k,A

�̂k,P

]
, (4)

where a constant term is omitted and the first-order term Ĥ (1)

vanishes by construction. Here the Nambu spinor is defined by
�̂k,α = (β̂k, 1, α, . . . , β̂k,4,α, β̂

†
−k,1,α, . . . , β̂

†
−k,4,α ), α = A, P,

and β̂k,σ,α = 1√
N

∑
l eik·rl β̂l,η,α with N being the total

unit-cell number. In the large filling limit, it turns out that
H (2)

k = HBdG
k,A ⊕ HBdG

k,P , where BdG represents Bogoliubov–de
Gennes, i.e., two local excitation modes are decoupled, which
enables us to write Ĥ (2) = 1

2

∑
k,α=A,P �̂

†
k,αHBdG

k,α �̂k,α . Here
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TABLE I. Parameters used in Eq. (5) for amplitude modes (α =
A) and phase modes (α = P).

ξα κα ζα

α = A 2zt̃ sin2 θ + 1
2U cos θ cos2 θ 1

α = P zt̃ sin2 θ + 1
2U cos2 1

2 θ cos2 1
2 θ −1

HBdG
k,α takes a particular form

HBdG
k,α =

[
ξα + λαHhop

k ζακαHhop
k

ζακαHhop
k ξα + λαHhop

k

]
, (5)

with all parameters given in Table I. By making the Bogoli-
ubov transformation (see Appendix C for details), one can
obtain the excitation spectrum above the mean-field ground-
state Ĥ �∑k,λ,α=A,P Ek,λ,αγ̂

†
k,λ,αγ̂k,λ,α , where λ is the band

index, and a constant term is omitted.
To identify these excitation modes γ̂k,λ,α to be amplitude

modes (Higgs modes) or phase modes (Goldstone modes), we
study the time evolution after a small perturbation above the
ground-state |�k,λ,α (t )〉 = e−iĤt (|G〉 + εγ̂

†
k,λ,α

|G〉) with ε 

1. In particular, fluctuation of the order parameters δϕ(t ) =
〈�k,λ,α (t )|âi|�k,λ,α (t )〉 − 〈G|âi|G〉 to the leading order in ε is
found to be

δϕ(t ) ∝ δϕR cos(Ek,λ,αt ) + i δϕI sin(Ek,λ,αt ), (6)

where δϕR,I = 〈G|γ̂k,λ,α âi ± âiγ̂
†
k,λ,α|G〉 (see Appendix D for

a detailed derivation). Without loss of generality, we can
choose the order parameter to be real. Then, if δϕ(t ) is real, the
excitation is a pure amplitude mode; whereas if δϕ(t ) is purely
imaginary, the excitation is a pure phase mode. In general,
the excitation could be a mixing of both such that the order
parameter fluctuation δϕ(t ) is a generic c number. Therefore,
we define a flatness parameter,

F = |δϕR| − |δϕI|
|δϕR| + |δϕI| ∈ [−1, 1], (7)

to quantify the amplitude and phase components of an ex-
citation. A positive (negative) flatness indicates dominant
amplitude (phase) character. A pure amplitude (phase) oscil-
lation corresponds to F = 1(−1). In the large filling limit,
by calculating the flatness explicitly, we analytically find that
γ̂k,λ,P is a pure phase mode, and γ̂k,λ,A is a pure amplitude
mode (see Appendix D for details). In both Figs. 2 and 3
where we plot the low-energy excitation spectrum, the color
scale of the plot shows the flatness calculated numerically: red
(blue) points correspond to F = 1(−1), respectively.

Excitations above the ground state are described by the
quadratic Hamiltonian Eq. (4), thus, their topological charac-
ter is obtained by analyzing the BdG matrix Eq. (5), which
also obeys the inversion symmetry Iτ HBdG

−k,αI−1
τ = HBdG

k,α ,
where Iτ = τ0 ⊗ I, and τ0 is the two-by-two identity matrix
acting on the Nambu space. We naturally generalize the polar-
ization vector to a symplectic form [18], P = ∫BZ

d2k
(2π )2 A(k)

where A(k) = i
∑

λ1�λ�λ2
Tr(�λW −1

k ∂kWk ), �λ projects to
the λth band, and the pseudounitary matrix Wk diagonalizes
HBdG

k,α . Each component of P is quantized to a Z2 number (see

FIG. 2. Excitation spectrum of the 2D SSH-BHM in a ribbon
geometry in the large filling limit for t̃ = 3U/16. (a) (t1/t2 = 1/8)
and (c) (t1/t2 = 8) are the Goldstone phase modes. (b) (t1/t2 = 1/8)
and (d) (t1/t2 = 8) are the Higgs amplitude modes. Bulk modes are
shown by solid dots, whereas topological edge modes are shown by
triangles. All modes are doubly degenerate due to inversion symme-
try. (e) and (f) are typical wave functions of topological edge modes
for phase modes and amplitude modes, respectively. And the gray
lines are their inversion symmetric partners.

Appendix E for a proof), Pμ = 1
2 [(
∑

λ1�λ�λ2
nλ,μ) mod 2],

where (−1)nλ,μ = ηλ(Xμ)ηλ(�) and η is the eigenvalue of the
generalized inversion operator Iτ . In the large filling limit,
one can explicitly polar decompose the Bogoliubov trans-
formation matrix Wk,α as the product of a unitary matrix
and a Hermitian (also pseudounitary) matrix. It then follows
straightforwardly that (see Appendix E for a proof)

W −1
kinv

IτWkinv = τ 0 ⊗ (Q−1
kinv

IQkinv

)
,

where Qk is the unitary matrix that diagonalizes Hhop
k .

Namely, the parity eigenvalues of both the Higgs bands and
the Goldstone bands at inversion symmetric momenta are
identical to the noninteracting bands. Consequently, not only
the Goldstone bands, but also the Higgs bands inherit the
topology of the background noninteracting bands: When t1 <

t2 (t1 > t2) both of them are topologically nontrivial (triv-
ial) with symplectic polarization vector P = (1/2, 1/2) [P =
(0, 0)]. We then confirm the bulk-boundary correspondence
numerically by calculating the excitation spectrum in a ribbon
geometry and, indeed, observe the edge states in the topo-
logically nontrivial regime as shown in Fig. 2. The flatness
for these two types of modes are also calculated numerically,
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FIG. 3. Excitation spectrum of the 2D SSH-BHM under PBCs (a) and (d) and in a ribbon geometry (b), (c), (e), and (f) at filling q = 1
for (a)–(c) and q = 50 for (d)–(f) for t̃ = 3U/16 with color code indicating the flatness defined in Eq. (7). Bulk (topological edge) modes are
plotted by dots (triangles) with typical wave functions shown in (i) and (j) (only one of the two degenerate modes is plotted). In (g) and (h) we
zoom in on the excitation spectrums at high energies for (c) and (f), respectively.

shown by the color scale: red (blue) points correspond to
F = 1 (−1), which is also in agreement with our analysis,
reflecting the fact that they are fully decoupled in the large
filling limit.

IV. FINITE FILLING CASE

The slave boson method also works at finite fill-
ings, but now â†

i � (
√

q + 1b̂†
i,q+1b̂i,q + √

qb̂†
i,qb̂i,q−1), and

the PH symmetric line is given by μ = (q − 1/2) −
[zt̃ + (

√
q + 1 + √

q)−2]/4 (see Appendix A for the deriva-
tion), which is bent downwards due to asymmetric Bose
enhancement. The resulting excitation spectrum for open
(OBCs) and periodic (PBCs) boundary conditions are given
in Fig. 3, which shows that the flatness is between −1 and
+1, in general, due to off-diagonal coupling terms between
the Goldstone mode and the Higgs mode. When we increase
the filling, this coupling becomes weaker such that the flatness
tends to ±1. Despite the absence of pure phase-amplitude
character, we can still identify a topological character since
H (2)

k in Eq. (4) obeys an inversion symmetry at any fillings,
and the bulk topological index is well defined. By examining
the parity eigenvalues at the inversion symmetric momenta, la-
beled in Figs. 3(a) and 3(d), we find that these excitation bands
either phase or amplitude fluctuation dominated all inherit the

topology of the background noninteracting bands, and they
have the same topologically trivial-nontrivial transition point
as the background bands. It follows that two groups of midgap
edge states under OBCs are observed in Figs. 3(c) and 3(f).
Their flatnesses, respectively, approaches ±1 when increasing
the filling. Thus, the coupling between the Higgs bands and
the Goldstone bands will not break the topology of the excita-
tion spectrum and the bulk-boundary correspondence.

V. EFFECTIVE ACTION ANALYSIS

Lastly we present a simple and unified picture for the
results obtained so far. At an integer filling q, near the SF-MI
phase transition, one can use a strong-coupling random-phase
approximation [68] to arrive at an effective action for the 2D
SSH-BHM,

Seff =
∫

dτ

{∑
i

[
a∗

i

( ∞∑
�=0

(−1)�+1c�∂
�
τ

)
ai + Ũ

2
|ai|4

]

−
∑

i j

ti ja
∗
i a j

}
, (8)

where all c�’s are real, and Ũ is a renormalized interaction
strength (see Appendix F for a detailed derivation). Note
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this effective action is obtained by two successive Hubbard-
Stratonovich transformations, and the auxiliary field a in
Eq. (8) generates same correlators as the original bosonic

field. In the SF phase, by introducing small fluctuations
ai(τ ) = [ϕ + δρi(τ )]ei δθi (t ), we expand Eq. (8) to quadratic
order,

S(2) =
∫

dτ
∑

i j

[δρi δθi]

⎡
⎢⎢⎢⎢⎣

ti j −
∞∑

n=0

c2n∂
2n
τ − μ̃ + 3Ũϕ2 i δi jϕ

∞∑
n=0

c2n+1∂
2n+1
τ

−i δi jϕ

∞∑
n=0

c2n+1∂
2n+1
τ ti j +

(
−

∞∑
n=0

c2n∂
2n
τ − μ̃ + Ũϕ2

)
ϕ2

⎤
⎥⎥⎥⎥⎦
[
δρ j

δθ j

]
. (9)

By requiring c1 = 0 (i.e., on the PH symmetric line) and in the
low-energy limit ω → 0 (i.e., dropping all the higher-order
time derivative terms), phase modes, and amplitude modes
become decoupled, which explains the persistence of pure
phase modes at low energies in Fig. 3 for all fillings. Noting
that along the PH symmetric line, it is easy to show that
c� ∼ O(q−�+1) for � � 2, thus, in the large filling limit only
c2 survives, even away from the low-energy limit. Moreover,
these modes inherit band topology directly from the 2D SSH
model as the hopping terms are not altered. This explains
the existence of topological Higgs-amplitude and Goldstone-
phase bands for q → ∞ in Fig. 2.

As a by-product, we point out that if the hopping term
breaks time-reversal symmetry (TRS), i.e., ti j is not purely
real, one can easily show that there are off-diagonal terms
entering Eq. (9), which is proportional to the imaginary part of
ti j . Thus, the amplitude modes and phase modes have nonva-
nishing coupling even in the infinite filling limit. This fact can
also be derived from the slave boson picture [see discussions
around Eq. (C8)]. Physically speaking, the so-called particle-
hole symmetry indicates that the action Eq. (8) is invariant
under the exchange ψ ↔ ψ∗, up to a total time derivative
term. If ti j = t∗

ji �= t ji, the hopping term cannot return to it-
self upon this exchange: a∗

i ti ja j → aiti ja∗
j = a∗

i t jia j �= a∗
i ti ja j

where repeated indices are summed over. Nevertheless, we
predict that the mixed excitation spectrums still inherit the
band topology and will exhibit two groups of midgap edge
states under OBCs.

VI. DISCUSSION AND OUTLOOK

To summarize, the low-energy excitations of the two-
dimensional SSH-BHM in both the infinite filling limit and
the finite fillings at the particle-hole symmetry line are
studied. Using the slave boson approach, we showed that,
in the former case, the low-energy excitations consist of
fully separated Goldstone modes and Higgs modes both of
which inherent the topology from the underlying noninteract-
ing bands. In the latter case, these modes become coupled,
which is quantitatively characterized by the flatness defined
in Eq. (7); nonetheless, their topological properties are not
altered. We also numerically verified the bulk-boundary cor-
respondence for both cases and showed that at a moderate
filling the topological edge modes with dominated amplitude
(phase) character emerge. Lastly, via an effective action anal-
ysis, we provide a universal physical picture for the topology
of the Goldstone modes and Higgs modes not only unifies

two results obtained in this paper, but also possibly applies
to other symmetry-breaking systems, such as superconductors
and quantum magnets.

Since the edge modes of Higgs type and Goldstone type
illustrated in this ppaper are of topological origin, we expect
that they are robust against disorder [69] that: (1) respect
the inversion symmetry, (2) and is sufficiently weak so that
topological excitation band gap does not close and the system
does not enter into other possible phases, such as the Bose
glass phase (where the topology of excitations may change
dramatically). Ultimately, the fate and robustness of topolog-
ical Higgs modes subject to disorder need future study. We
note that similar works on other bosonic topological systems
with disorder have been discussed recently [70,71].

Thanks to the fast development of experimental tech-
niques, the Bragg spectroscopy [52] and the lattice-
modulation spectroscopy [53] can detect the Higgs mode; and
the box trap with a sharp boundary has been achieved in cold-
atom systems [72]. We expect that the predicted topological
Higgs amplitude edge modes can be observed as a sharp peak
within the band gap in the spectroscopy. In this paper, our
discussions are limited to the quadratic order so that there
is no coupling between these modes. By including higher-
order terms, interactions between the excitation modes can be
considered. Then it is interesting to investigate the impacts of
mode coupling on the stability of the highly localized Higgs
and Goldstone edge excitations. It is also interesting to explore
similar topological Higgs amplitude modes in other systems.
Particularly, in quantum magnets, it is possible that the topo-
logical Higgs amplitude modes yield a nontrivial contribution
to the thermal Hall effect, similar to those resulting from the
topological magnons [73].
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APPENDIX A: MEAN-FIELD THEORY
AND PHASE DIAGRAM

In this Appendix, we discuss the mean-field phase diagram
of the d-dimensional SSH-BHM, which returns to the well-
known phase diagram of the standard BHM upon setting t =
(t1 + t2)/2 (for t1/t2 not far from unity).
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SFMI

FIG. 4. Phase diagram of the dD SSH-BHM with blue lines sep-
arating the MI phase and the SF phase. It is the same as the standard
BH model with the hopping parameter t = (t1 + t2)/2. Here the coor-
dination number z = 2d = 4 for the 2D SSH-BHM. The black dotted
horizontal lines start from each middle of the lobe. The black dashed
horizontal lines start from each tip of the lobe. The black solid lines
are integer filling lines in the SF phase obtained from Eq. (B7). We
always set the chemical potential μ on these black solid lines where
the excitations have the most visible phase-amplitude character. In
particular, the red dot corresponds to the case in Figs. 3(a)– 3(c) the
main text.

In the strong-coupling mean-field theory, one decouples
the hopping term −ti j â

†
i â j as −ti j (â

†
i φ j + â jφ

∗
i − φ∗

i φ j ).
Then the original Hamiltonian Eq. (1) given in the main text
becomes

Ĥ ≈
∑

i

ĤMF
i =

∑
i

[
−
∑

j

(
â†

i ti jφ j − 1

2
ti jφ

∗
i φ j + H.c.

)

+ 1

2
Un̂i(n̂i − 1) − μn̂i

]
, (A1)

where φi = i〈�0|âi|�0〉i and |�0〉i is the ground state of
ĤMF

i obtained self-consistently. Note this approach is equiv-
alent to introducing the Gutzwiller ansatz |�Gutzwiller〉 =⊗

i(
∑

n ci,n|n〉i ), where |n〉i = (â†
i )n

√
n!|0〉 (|0〉 is the vacuum

of operator â), and minimizing the variational ground-state
energy 〈�Gutzwiller|Ĥ |�Gutzwiller〉. Also note Eq. (A1) can be
used for the system under OBCs in which case the order
parameter φi is generally site dependent.

For the d-dimensional SSH-BHM, the hopping matrix ti j

is chosen staggered as t1 and t2 along all d directions. Under
PBCs and assuming a site-independent real order parame-
ter φi = φ ∈ R, the mean-field Hamiltonian Eq. (A1) then
reduces to

ĤMF
i ≈

∑
i

[
−(ztφâ j + H.c.) + ztφ2+1

2
Un̂i(n̂i − 1)−μn̂i

]
,

(A2)

where z = 2d is the coordination number and t = t1+t2
2 .

Equation (A2) is precisely the strong-coupling mean-field
Hamiltonian for the d-dimensional BH model [74], whose
phase diagram is reviewed below.

Assuming the quantum phase transition being of second or-
der, i.e., φ 
 1 near the transition boundary, one can treat V̂ =
−ztφâ j + H.c. as the perturbation to Ĥ0 = ztφ2 + 1

2Un̂i(n̂i −
1) − μn̂i in Eq. (A2). The unperturbed ground-state energy
is then given by ε

(0)
0 = 1

2Uq(q − 1) − μq for q = �μ/U� + 1
if μ > 0 and q = 0, otherwise, with the unperturbed ground
state being |�(0)

0 〉 = |q〉. The first-order correction vanishes
by inspection. And the second-order correction is given by the

standard formula [75] ε
(2)
0 =∑l �=0

|〈ε(0)
0 |V̂ |ε (0)

l 〉|2
ε

(0)
0 −ε

(0)
l

, which leads to

ε
(2)
0 = (ztφ)2[ q

(q−1)−μ
+ q+1

μ−qU ]. Thus, the ground-state energy

reads ε0 = a0 + a2φ
2 + O(φ4). According to Landau theory,

phase transition occurs at a2 = (zt )2[ q
(q−1)−μ

+ q+1
μ−qU ] + zt =

0, whose solution gives the well-known lobe in the μ-zt phase
diagram at filling q (we set U = 1 as the energy unit) [45],

μ±(q) = q − 1

2
− 1

2
zt ± 1

2

√
(zt )2 + 1 − 2zt (2q + 1).

(A3)
The tip of the lobe corresponds to μ+(q) = μ−(q), which
leads to

(ztc, μc) = [1 + 2q − 2
√

q(1 + q),
√

q(1 + q) − 1]. (A4)

In the SF phase, we can numerically obtain the line of the inte-
ger filling factor near the qth lobe by setting i〈�0|n̂i|�0〉i = q.
It generally bends downward due to PH asymmetry at a finite
filling. When truncated to only three local states, it has an an-
alytical expression given in Eq. (B7). A typical phase diagram
is shown in Fig. 4.

APPENDIX B: DERIVATION OF THE BOGOLIUBOV–DE
GENNES HAMILTONIAN

In this Appendix, we derive the bosonic BdG Hamiltonian
used in the main text. PBCs and a site-independent order
parameter are assumed throughout; differences occurred in
OBCs are mentioned in the end.

Focusing on the strongly coupled SF phase in the vicinity
of the qth Mott lobe, only three local states,

|q − 1〉i, |q〉i, |q + 1〉i, (B1)

at each site i dominate the low-energy behavior of the system.
Following Altman and Auerbach [47], we truncate the bosonic
Fock space to these three states and introduce a Gutzwiller-
type mean-field ground-state ansatz |G〉 = ⊗i|�0〉i, where
[48]

|�0〉i = cos(θ/2)|q〉 + sin(θ/2)[cos(χ/2)|q + 1〉i

+ sin(χ/2)|q − 1〉i]. (B2)

Then the order parameter becomes

φ = i〈�0|âi|�0〉i = 1

2

(√
q + 1 cos

χ

2
+ √

q sin
χ

2

)
sin θ,

(B3)
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and the variational ground-state energy per site is

εvar (θ, χ ) = 〈G|Ĥ |G〉
N

=
[

1

2
− δμ cos χ

]
sin2 θ

2
− zt̃

2

[
1 +

√
1 + q−1 sin χ + 1

2q
(1 + cos χ )

]
sin2 θ + const., (B4)

where N is the number of lattice sites, two parameters t̃ = qt and δμ = μ − (q − 1/2) are the renormalized hopping strength
and the chemical potential measured from the middle of the lobe, respectively. Minimizing Eq. (B4) with respect to χ at a fixed
θ , namely, setting ∂χεvar (θ, χ ) = 0, one obtains

χ (θ ) = arctan

[
2zt̃ (1 + cos θ )

√
q(q + 1)

zt̃ + 4
q δμ + zt̃ cos θ

]
. (B5)

Further setting ∂θεvar (θ, χ ) = 0 and using Eq. (B5), one can find the mean-field solution θ̄ , whose explicit expression is lengthy
and omitted. Note by expanding ∂θεvar[θ, χ (θ )] around θ = 0 as ∂θεvar[θ, χ (θ )] = const. + ã2θ + O(θ2), where

ã2 = −1

4

{
2δμ

√
4q(q + 1)(zt )2

(2δμ + zt )2
+ 1 + zt

(√
4q(q + 1)(zt )2

(2δμ + zt )2
+ 1 + 2q + 1

)
− 1

}
, (B6)

and setting ã2 = 0, one again finds the phase boundary which is in agreement with Eq. (A3).
Within this approximation, one can also obtain the integer filling line in the SF phase analytically. Namely, from

i〈�0|n̂i|�0〉i = q + cos χ̄ sin2(θ̄/2), the integer filling condition means χ = π/2. Thus, Eq. (B5) leads to θ̄ = arccos −zt̃−4δμ

zt̃ .
One then solve [∂θεvar (θ, π/2)]|θ=θ̄ to get

δμphs = −1

4
[zt̃ + (

√
q + 1 + √

q)−2], (B7)

which is bent down due to asymmetric Bose enhancement at finite fillings. It is this line we refer to as the PH symmetric line.
We define three commuting bosonic operators that create three Fock states at a given site i, b†

i,�|vac〉 = |q + �〉i, � = 0,±1.

They must satisfy the local constraint
∑1

�=−1 b†
i,�bi,� = 1. Then the original bosonic creation operator can be expressed as

â†
i =∑�,�′ i〈q + �|â†

i |q + �′〉ib̂
†
i,�b̂i,�′ = √

q + 1b̂†
i,1b̂i,0 + √

qb̂†
i,0b̂i,−1, and the strong-coupling mean-field Hamiltonian Eq. (A2)

becomes (up to a constant)

ĤMF
i = [b̂†

i,−1 b̂†
i,0 b̂†

i,1]H

⎡
⎢⎢⎣

b̂i,−1

b̂i,0

b̂i,1

⎤
⎥⎥⎦, (B8)

where

H =

⎡
⎢⎣

1
2 + δμ + ztφ2 −√

qztφ 0

−√
qztφ ztφ2 −√

q + 1ztφ

0 −√
q + 1ztφ 1

2 − δμ + ztφ2

⎤
⎥⎦. (B9)

Equation (B8) is diagonalized by the following rotation:⎡
⎢⎣

β̂i,0

β̂i,1

β̂i,2

⎤
⎥⎦ = T (α)

⎡
⎢⎢⎣

b̂i,−1

b̂i,0

b̂i,1

⎤
⎥⎥⎦, (B10)

where

T (α) =

⎛
⎜⎝

sin
(

θ̄
2

)
sin
(

χ̄

2

)
cos
(

θ̄
2

)
sin
(

θ̄
2

)
cos
(

χ̄

2

)
cos(α) cos

(
θ̄
2

)
sin
(

χ̄

2

)+ sin(α) cos
(

χ̄

2

) − cos(α) sin
(

θ̄
2

)
cos(α) cos

(
θ̄
2

)
cos
(

χ̄

2

)− sin(α) sin
(

χ̄

2

)
cos(α) cos

(
χ̄

2

)− sin(α) cos
(

θ̄
2

)
sin
(

χ̄

2

)
sin(α) sin

(
θ̄
2

) − sin(α) cos
(

θ̄
2

)
cos
(

χ̄

2

)− cos(α) sin
(

χ̄

2

)
⎞
⎟⎠, (B11)

with χ̄ = χ (θ̄ ). The rotation angle α is determined by requiring that T HT † = diag(ε0, ε1, ε2). It can be shown straightforwardly
that (T HT †)12 = (T HT †)13 = 0 always holds; one only needs to set (T HT †)23 = 0, which leads to

ᾱ = 2 cos
(

θ̄
2

){sin(χ̄ )[zt cos(θ̄ ) + 4δμ − zt] − 2
√

q
√

q + 1zt[cos(θ̄ ) − 1] cos(χ̄ )}
cos(θ̄ )[1 − 2δμ cos(χ̄ )] + zt sin2(θ̄ )[2

√
q
√

q + 1 sin(χ̄ ) + 2q + 1] + cos(χ̄ )[zt sin2(θ̄ ) − 6δμ] − 1
. (B12)
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Note the rotated operators also satisfy the local constraint as before, and the local eigenstates are now given by |�σ 〉i = β
†
i,σ |vac〉

for σ = 0–2. Here σ = 0 modes is the local ground state, and σ = 1, 2 modes are two local excitations.
In terms of the rotated operators β̂, Eq. (1) given in the main text can be recast as

Ĥ = −
∑

i j

∑
ασγ δ

AσαAγ δti jβ
†
iαβiσ β

†
jγ β jδ +

∑
i

∑
ασ

〈�α|
[

1

2
Un̂i(n̂i − 1) − μn̂i

]
|�σ 〉β†

iαβiσ , (B13)

where Aασ = i〈�α|â†
i |�σ 〉i. Note we have used the fact that Aασ is real, hence, i〈�α|â†

i |�σ 〉i = i〈�σ |âi|�α〉i. By treating β̂

operators as classical fields, the energy minimum is reached for β∗
0 = β0 = 1 when all other modes vanish. We perform a

harmonic expansion of Eq. (B13) around this saddle point by condensing operators β̂
(†)
0 ,

β̂
(†)
i,0 →

√
1 −

∑
σ>0

β̂
†
i,σ β̂i,σ ≈ 1 − 1

2

∑
σ>0

β̂
†
i,σ β̂i,σ . (B14)

The zeroth-order term gives the mean-field ground-state energy H (0) = 〈G|Ĥ |G〉. The first-order term can be rearranged as
Ĥ (1) =∑i

∑
α>0 β̂iα i〈�0|ĤMF

i |�α〉i + H.c., which vanishes identically due to orthogonality between local eigenstates |�0〉i

and |�σ 〉i for σ > 0. The second-order term reads

Ĥ (2) = Ĥh + Ĥp + Ĥo, (B15)

where

Ĥh = −
∑

i j

∑
α,σ>0

(A0αA0σ ti j + Aα0Aσ0t ji )β̂
†
iαβ̂ jσ , (B16a)

Ĥp = −1

2

∑
i j

∑
α,σ>0

(A0αAσ0ti j + Aα0A0σ t ji )β̂
†
iαβ̂

†
jσ + H.c., (B16b)

Ĥo =
∑

i

∑
α,σ>0

(εα − ε0)β̂†
iαβ̂iα, (B16c)

corresponding to hopping, pairing, and on-site terms, respectively. Note, since Aα0 is generally nonzero, the hopping and pairing
terms will couple two local excitation modes. In momentum space, Eq. (B16) becomes

Ĥh =
∑

k

∑
α,σ>0

∑
ηη′

[
A0αA0σ

(
Hhop

k

)
ηη′ + Aα0Aσ0

(
Hhop∗

−k

)
ηη′
]
β̂

†
k,αηβ̂k,ση′ , (B17a)

Ĥp = 1

2

∑
k

∑
α,σ>0

∑
ηη′

[
A0αAσ0

(
Hhop

k

)
ηη′ + Aα0A0σ

(
Hhop∗

−k

)
ηη′
]
β̂

†
k,αηβ̂

†
−k,ση′ + H.c., (B17b)

Ĥo =
∑

k

∑
α>0

∑
ηη′

(εα − ε0)β̂†
k,αηβ̂k,αη′ , (B17c)

where η, η′ are sublattice indices (assuming total ns sublattices) and we have assumed that the hopping matrix ti j is Hermitian,
i.e., t ji = t∗

i j . Here Hhop
k is the Bloch Hamiltonian of the hopping term, specifically, for the two-dimensional SSH model with

four sublattices ns = 4 as shown in Fig. 1 of the main text, it is

Hhop
k = −

⎛
⎜⎜⎜⎜⎝

0 t1 + t2e−iky t1 + t2e−ikx 0

t1 + t2eiky 0 0 t1 + t2e−ikx

t1 + t2eikx 0 0 t1 + t2e−iky

0 t1 + t2eikx t1 + t2eiky 0

⎞
⎟⎟⎟⎟⎠. (B18)

By arranging βk,αη into a vector βk, and defining two 2ns × 2ns matrices Ak and Bk with components,

(Ak )αη,ση′ = A0αA0σ

(
Hhop

k

)
ηη′ + Aα0Aσ0

(
Hhop∗

−k

)
ηη′ + (εα − ε0)δηη′ , (B19a)

(Bk )αη,ση′ = A0αAσ0
(
Hhop

k

)
ηη′ + Aα0A0σ

(
Hhop∗

−k

)
ηη′ , (B19b)

Eq. (B15) can be written compactly in a BdG form as

Ĥ (2) = 1

2

∑
k

[β†
k β−k]HBdG

k

[
βk

β†
−k

]
, (B20)
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where

HBdG
k =

[
Ak Bk

B∗
−k AT

−k

]
. (B21)

For models with TRS,

Hhop
k = Hhop∗

−k , (B22)

Eq. (B19) simplifies to

A = F ⊗ Hhop
k + E ⊗ Ins , (B23a)

B = G ⊗ Hhop
k , (B23b)

where

Fασ = A0αA0σ + Aα0Aσ0, (B24a)

Gασ = A0αAσ0 + Aα0A0σ , (B24b)

Eασ = δασ (εα − ε0) (B24c)

are two-by-two, real symmetric matrices in local excitation
space, and Ins is the identity matrix in sublattice space.

Under OBCs, the order parameter becomes site dependent,
and the mean-field theory has to be worked out numerically
in a self-consistent manner from Eq. (A1). Then the physical
boson annihilation operator in the rotated local basis Ai and
local eigenenergies εiα, α = 1–3 become site dependent. Tak-
ing into account these differences, the quadratic Hamiltonian
Eq. (B15) can still be solved by a Bogoliubov transformation.
In our numerics, for simplicity, we reuse the order parameter
obtained from PBCs. This leads to a tiny gap near zero energy
for the excitations, which is manually removed by a shift
of chemical potential as in Ref. [22]. We have numerically
checked that this gap tends to zero as we enlarge the system

size. Moreover, topological properties of the highly excited
states are not affected anyway.

APPENDIX C: DIAGONALIZATION OF
THE BdG HAMILTONIAN

In this Appendix, we first review the process of diagonal-
ization of a generic bosonic BdG Hamiltonian, which also
serves to introduce notations and set the stage for the dis-
cussion in the following appendices. Then we show that in
the large filling limit, this Bogoliubov transformation can be
constructed analytically. In particular, we explicitly show that
the coupling between phase modes and amplitude modes only
vanish when the noninteracting Hamiltonian has TRS, even in
the large filling limit. We only discuss the momentum space
version, the real space version can be formulated similarly.

1. The general case

A generic bosonic BdG Hamiltonian as given in Eq. (B21)
is diagonalized by a Bogoliubov transformation,

W †
k HBdG

k Wk = Dk = τ0 ⊗

⎡
⎢⎣

E1,k

E2,k

. . .

⎤
⎥⎦, (C1)

where from here on τ0 and τ1–3 denote a two-by-two identity
matrix and Pauli matrices acting on the Nambu space, and

Wk =
[
Uk V ∗

−k
Vk U ∗

−k

]
(C2)

is a pseudounitary matrix satisfying,

W †
k �3Wk = �3 and Wk�3W

†
k = �3. (C3)

We define the Bogoliubov quasiparticle annihilation operator via �βk = Wk �γk, where �βk = (βk,β
†
−k )T . More explicitly,

βk = Ukγk + V ∗
−kγ

†
−k and β†

k = V−kγ−k + U ∗
k γ†

k. (C4)

Then Eq. (B20) after this Bogoliubov transformation becomes

Ĥ (2) = 1

2

∑
k

�β†
kHBdG

k
�βk = 1

2

∑
k

�γ†
kW †

k HBdG
k Wk �γk =

∑
k,λ

(
Eλ + 1

2

)
γ

†
kλγkλ, (C5)

where λ is the band index. Generally, this Bogoliubov transformation has to be performed numerically.

2. Analytical solution at the large filling limit

First, we note that in the large filling limit q � 1 the original Hamiltonian Eq. (1) in the main text when truncated to three
local states Eq. (B1) can be mapped to a bond-staggered XY model with uniaxial single-ion anisotropy and magnetic coupling
[47], Ĥ ∼∑i, j t̃i j (Ŝx

i Ŝx
j + Ŝy

i Ŝy
j ) +∑i[

1
2U (Ŝz

i )2 − δμŜz
i ], where 〈i, j〉 denotes nearest neighbors and t̃i j = pti j . In the following,

we will focus on the PH symmetric line, i.e., δμ = 0. When taking q � 1, Eq. (B5) becomes χ = π/2, and Eq. (B4) becomes
εvar = 1

2 (sin2 θ
2 − zt̃ sin2 θ ). Its minimization leads to θ̄ = arccos U

4qzt if U < 4qzt , and θ̄ = 0 otherwise. Then the rotation angle
ᾱ given in Eq. (B12) reduces to ᾱ = 0. Thus, the unitary matrix T is

T (θ̄ ) = 1√
2

⎡
⎢⎣

sin θ̄
2

√
2 cos θ̄

2 sin θ̄
2

cos θ̄
2 −√

2 sin θ̄
2 cos θ̄

2

1 0 −1

⎤
⎥⎦. (C6)

043328-9



JUNSEN WANG, YOUJIN DENG, AND WEI ZHENG PHYSICAL REVIEW A 104, 043328 (2021)

And the physical boson annihilation operator in this rotated basis is

Ai ≈ T

⎡
⎢⎣

0
√

q 0

0 0
√

q

0 0 0

⎤
⎥⎦T † =

√
q

2

⎡
⎢⎢⎣

sin θ̄ cos θ̄ − cos θ̄
2

cos θ̄ − sin θ̄ sin θ̄
2

cos θ̄
2 − sin θ̄

2 0

⎤
⎥⎥⎦. (C7)

Then Ĥh and Ĥp defined in Eq. (B17) becomes

Ĥh = q

2

∑
k

β†
k

[ (
Hhop

k + Hhop∗
−k

)
cos2 θ

(− Hhop
k + Hhop∗

−k

)
cos θ

2 cos θ(− Hhop
k + Hhop∗

−k

)
cos θ

2
1
2

(
Hhop

k + Hhop∗
−k

)
cos2 θ

2

]
βk, (C8a)

Ĥp = q

4

∑
k

β†
k

[(
Hhop

k + Hhop∗
−k

)
cos2 θ

(
Hhop

k − Hhop∗
−k

)
cos θ

2 cos θ(
Hhop

k − Hhop∗
−k

)
cos θ

2 − 1
2

(
Hhop

k + Hhop∗
−k

)
cos2 θ

2

]
β†

−k + H.c. (C8b)

Importantly, if and only if the system has TRS, i.e., when Eq. (B22) holds, two local excitation modes become decoupled. In
other words, three matrices defined in Eq. (B24) all become diagonal,

F = q

[
cos2 θ̄ 0

0 cos2 θ
2

]
, (C9a)

G = q

[
cos2 θ 0

0 − cos2 θ
2

]
, (C9b)

E =
[

2zt̃ sin2 θ̄ + 1
2U cos θ̄ 0

0 zt̃ sin2 θ̄ + 1
2U cos2 θ̄

2

]
. (C9c)

Thus, the second-order term, Eq. (B15), can be written as

Ĥ (2) = 1

2

∑
k

[β†
k,A β−k,A β†

k,P β−k,P]

[
HBdG

k,A

HBdG
k,P

]⎡⎢⎢⎢⎣
βk,A

β†
−k,A

βk,P

β†
−k,P

⎤
⎥⎥⎥⎦, (C10)

where

HBdG
k,α =

[
ξα + καHhop

k ζακαHhop
k

ζακαHhop
k ξα + καHhop

k

]
= ξατ0 ⊗ Ins + κατ0 ⊗ Hhop

k + ζακατ1 ⊗ Hhop
k , (C11)

with all parameters given in Table I of the main text. Note we have renamed the local excitation modes α = 1 → A and α =
2 → P, which represents the amplitude modes and phase modes, respectively. This nomenclature will be justified in the next
Appendix.

A remarkable property of Eq. (C11) is that one can construct its Bogoliubov transformation analytically [76]. One first
performs a unitary rotation using Q̃k = τ0 ⊗ Qk, where Qk diagonalizes the Bloch Hamiltonian Hhop

k , Q†
kHhop

k Qk = Dk with
Dk = diag(d1, . . . , dns ). It then leads to

Q̃†
kHBdG

k,α Q̃k = ξατ0 ⊗ Ins + ηατ0 ⊗ Dk + ζαηατ1 ⊗ Dk. (C12)

One then performs another pseudounitary transformation using

Pk,α = τ0 ⊗
⎡
⎣cosh β1,k,α

. . .

cosh βns,k,α

⎤
⎦+ τ1 ⊗

⎡
⎣sinh β1,k,α

. . .

sinh βns,k,α

⎤
⎦, (C13)

where cosh βi,k,α =
√

ξα+di,k

2Ei,k,α
+ 1

2 , sinh βi,k,α = − sgn(di,k )
√

ξα+di,k

2Ei,k,α
− 1

2 and

Ei,k,α (dik ) =
√

ξ 2
α + 2ξαdi,k. (C14)
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It then fully diagonalizes Eq. (C12),

P†
k,α

Q̃†
kHBdG

k,α Q̃kPk,α = τ0 ⊗

⎡
⎢⎢⎣

E1,k,α

E2,k,α

. . .

Ens,k,α

⎤
⎥⎥⎦. (C15)

Thus, the pseudounitary matrix generally defined in Eq. (C2) now becomes

Wk,α = Q̃kPk,α, (C16)

or, more explicitly,

Uk,α = QkCk,α, (C17a)

Vk,α = QkSk,α, (C17b)

where

Ck =
⎡
⎣cosh β1,k,α

. . .

cosh βns,k,α

⎤
⎦, (C18a)

Sk =
⎡
⎣sinh β1,k,α

. . .

sinh βns,k,α

⎤
⎦. (C18b)

APPENDIX D: PHASE-AMPLITUDE CHARACTER

Here we discuss how to determine the phase-amplitude character of these excitation modes. Particularly, we show explicitly
that the large filling limit of SSH-BHM has two types of excitations with pure phase and pure amplitude character, respectively.
We only consider the momentum space version, the real-space version can be formulated similarly.

Consider the oscillation of the order parameter induced by a small perturbation above the ground state. For a perturbation
characterized by an excitation labeled by momentum k and band index λ, the perturbed state evolves in time as |�k,λ(t )〉 =
e−iĤt (|G〉 + εγ

†
kλ|G〉) with ε 
 1. Thus, the oscillation of the order parameter around the ground-state expectation value

δφi(t ) = 〈�k,λ(t )|âi|�k,λ(t )〉 − 〈G|âi|G〉 to linear order in ε, reads

δφi(t ) ∝ 〈G|âie
−iĤ (2)t γ̂

†
kλ|G〉 + 〈G|γ̂kλeiĤ (2)t âi|G〉 (D1)

= 〈G|âiγ̂
†
kλ|G〉e−iωkλt + 〈G|γ̂kλâi|G〉eiωkλt (D2)

=
∑

α

[Aα0(〈G|β̂†
iαγ̂

†
kλ|G〉e−iωkλt + 〈G|γ̂kλβ̂

†
iα|G〉eiωkλt ) + A0α (〈G|β̂iαγ̂

†
kλ|G〉e−iωkλt + 〈G|γ̂kλβ̂iα|G〉eiωkλt )] (D3)

=
∑
p,α

{Aα0[〈G|β̂†
pαηγ̂

†
kλ|G〉e−i(ωkλt+p·ri ) + 〈G|γ̂kλβ̂

†
pαη|G〉ei(ωkλt−p·ri )] + A0α[〈G|β̂pαηγ̂

†
kλ|G〉e−i(ωkλt−p·ri )

+〈G|γ̂kλβ̂pαη|G〉ei(ωkλt+p·ri )]}. (D4)

Using Eq. (C4) and the fact that γkλ|G〉 = 0, one has

δφi(t ) ∝ Xke−i(ωkλt−k·ri ) + Ykei(ωkλt−k·ri ), (D5)

where

Xk =
∑

α

[Aα0(Vk )αη,λ + A0α (Uk )αη,λ], (D6a)

Yk =
∑

α

[Aα0(U ∗
k )αη,λ + A0α (V ∗

k )αη,λ]. (D6b)

Here the row of matrices U and V is labeled by two indices, the local excitation α and sublattice η. Thus, the imaginary (real)
part of the order parameter oscillation is

Re δφ ∝ Xk + Yk, (D7a)

Im δφ ∝ Xk − Yk. (D7b)
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A pure amplitude (phase) oscillation of the order parameter
corresponds to Im δφ = 0 (Re δφ = 0), we define a flatness
parameter,

F = |Re δφ| − |Im δφ|
|Re δφ| + |Im δφ| ∈ [−1, 1], (D8)

to quantify the amplitude and phase components of an ex-
citation: A positive (negative) flatness indicates dominant
amplitude (phase) character. A pure amplitude (phase) oscil-
lation corresponds to F = 1 (−1).

In the large filling limit, the flatness defined in Eq. (D8) can
be obtained analytically. Using Eqs. (C7) and (C17), Eq. (D6)
becomes for the α = A mode,

Xk,A = (Qηλ sinh βλ,k,A + Qηλ cosh βλ,k,A) cos θ̄ , (D9a)

Yk,A = (Qηλ cosh βλ,k,A + Qηλ sinh βλ,k,A) cos θ̄ , (D9b)

hence, their difference vanishes. And for the α = P mode,

Xk,P = (sinh βλ,k,PQηλ − cosh βλ,k,PQηλ) cos
θ̄

2
, (D10a)

Yk,P = (cosh βλ,k,PQηλ − sinh βλ,k,PQηλ) cos
θ̄

2
, (D10b)

hence, their sum vanishes. Here we have fixed the gauge
by requiring Qηλ to be real. It then follows from Eq. (D7) that
for the A mode δφ is purely real, whereas for the P mode
δφ is purely imaginary, and the flatness is +1 and −1 for
the A mode and the P mode, respectively, which justifies the
nomenclature.

APPENDIX E: TOPOLOGICAL CHARACTER

In this Appendix, we discuss how to define the band topol-
ogy for the bosonic BdG system of the 2D SSH-BHM. In
particular, we prove that the topological index, namely, the
symplectic polarization vector, is quantized to a Z2 number
due to the inversion symmetry. And relate it to the parity
eigenvalues at the inversion symmetric momenta. Then we
show explicitly that in the infinite filling limit, the amplitude
and phase bands have the same topological index as the un-
derlying noninteracting Hamiltonian.

For a bosonic BdG system with the inversion symmetry
defined by

Iτ HBdG
k I−1

τ = HBdG
−k , (E1)

the symplectic polarization defined in one dimension by
Engelhardt and Brandes [18] can be straightforwardly gener-
alized to the vectorized version,

P = 1

(2π )2

∫
BZ

d2k A(k), (E2)

where the symplectic U(1) Berry connection is Aμ(k) =
i
∑

λ1�λ�λ2
Tr(�λW −1

k ∂μWk ). We define a sewing matrix Bk =
W †

−k�3IτWk with �3 = τ3 ⊗ I being the Pauli spin-z matrix
acting on the Nambu space to relate eigenstates at momenta
k and its inversion symmetric partner at −k. Note this sewing
matrix is pseudounitary, block diagonal, and satisfies B†

−k =
Bk. Due to the inversion symmetry, we can relate the sym-
plectic Berry connection at k to −k by using this sewing

matrix,

Aμ(−k) = −Aμ(k) + i∂μ ln det B<
k , (E3)

where B<
k denotes the projection of Bk to the block consisting

of bands between λ1 � λ � λ2. Then for μ = 1 (and similarly
for μ = 2), we have

P1 = 1

(2π )2

∫ π

−π

dk2

∫ π

0
dk1[A1(k1, k2) + A1(−k1, k2)]

= 1

(2π )2

∫ π

−π

dk2

∫ π

0
dk1[A1(k1, k2) − A1(k1,−k2)

+ i∂k1 ln det B<
k ]

= 1

2π

∫ π

−π

dk2

[
i

2π

∫ π

0
dk1∂k1 ln(det B<

k )

]
. (E4)

Note the integral over k1 gives the winding number of det B<
k ,

a pure phase at a fixed k2. Since the system under consider-
ation has TRS, namely, the Chern number always vanishes,
which means that one can always find a continuous gauge.
Thus, the winding number cannot change discontinuously
along the k2 direction, and we can simply evaluate this con-
stant by taking k2 = 0, which leads to

P1 = i

2π

∫ π

0
dk1∂k1 ln det B<

k1,0 = i

2π
ln

det B<
X1

det B<
�

. (E5)

Since at the inversion symmetric momenta, we have �3Bkinv =
�3W

†
kinv

�3IτWkinv = W −1
kinv

IτWkinv , which leads to det B<
kinv

=
±∏λ1�λ�λ2

ηkinv (plus or minus sign for particle or hole
space), where η is the eigenvalue of the inversion operator
Iτ . In conclusion, each component of P is quantized to a Z2

number,

Pμ = 1

2

( ∑
λ1�λ�λ2

nλ,μ mod 2

)
, (E6)

where (−1)nλ,μ = ηλ(Xμ)ηλ(�).
At the infinite filling limit since two modes are decoupled,

we can study Eq. (C11) for α = A, P, individually. This BdG
Hamiltonian is easily seen to satisfy the inversion symmetry
Eq. (E1) with

Iτ = τ0 ⊗ I. (E7)

Since Ei,k,α (dik ) defined in Eq. (C14) is a monotonically in-
creasing function, the band gap closes at the same t1/t2 and at
the same k points in the BZ for the noninteracting bands dik
and the BdG bands Ei,k,α . Moreover, the parity eigenvalues
for these two systems are also the same,

W −1
k IτWk = �3W

†
k �3(τ0 ⊗ I )Wk

= �3P†
k Q̃†

k�3(τ0 ⊗ I )Q̃kPk

= �3P†
k

[
τ3 ⊗ (Q−1

k IQk
)]

Pk

= τ0 ⊗ (Q−1
k IQk

)
, (E8)

where to arrive at the last line, we have used the explicit form
of matrix Pk given in Eq. (C13). We, thus, conclude that the
topological phase boundary does not alter.

In the finite filling case, our bosonic BdG Hamilto-
nian still obeys the inversion symmetry Ĩ = I4 ⊗ I. We
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numerically find that the topological transition point again
occurs at t1 = t2, which is understandable from the symmetric
roles played by two hopping parameters.

APPENDIX F: A GINZBURG-LANDAU ANALYSIS VIA
STRONG-COUPLING RANDOM-PHASE APPROXIMATION

Here we derive the effective action used in the main
text, following a strong-coupling random-phase approxima-
tion developed by Sengupta and Dupuis [68] and discuss the
condition leads to the (approximate) particle-hole symmetry.

In the imaginary-time path-integral formalism, the Eu-
clidean action is

S =
∫ β

0
dτ

[∑
i

a∗
i ∂τ ai −

∑
i j

ti ja
∗
i a j

−μ
∑

i

a∗
i ai + 1

2
U
∑

i

|ai|4
]
. (F1)

Using a Hubbard-Stratonovich (HS) transformation, we in-
troduce an auxiliary field ϕ to decouple the hopping term
and integrate out the original field a, the partition function
formally becomes

Z = Z0

∫
D[ϕ∗, ϕ] exp

{
−
∫ β

0
dτ
∑

i

ϕ∗
i (τ )(t−1)i jϕ j (τ )

+ Wloc[ϕ∗, ϕ]

}
. (F2)

The generating functional for connected l-particle local
Green’s function is defined by

Gc,(l )
loc (τ1, . . . , τl ; τ

′
1, . . . , τ

′
l )

= (−1)l〈ai(τ1) · · · ai(τl )a
∗
i (τ ′

l ) · · · a∗
i (τ ′

1)〉loc

= (−1)l δ(2l )Wloc[ϕ∗, ϕ]

δϕ∗
i (τ1) · · · δϕ∗

i (τl )δϕi(τ ′
l ) · · · δϕi(τ ′

1)
. (F3)

Here the local Hamiltonian is

Ĥloc =
∑

i

[
1

2
Un̂i(n̂i − 1) − μn̂i

]
, (F4)

and 〈· · · 〉loc means that the average is taken with respect to
Ĥloc. Upon reverting the above equation, we obtain

Wloc[ϕ∗, ϕ] =
∞∑

l=1

(−1)l

(l!)2

∫
dτ1 · · · dτlG

c,(l )
loc (τ1, . . . , τl ; τ

′
1,

. . . , τ ′
l )ϕ∗(τ1) · · · ϕ∗(τl )ϕ(τ ′

l ) · · · ϕ(τ ′
1). (F5)

The effective action given in Eq. (F2) is used by Refs. [45,77]
to study the quantum phase transition between the SF phase
and the MI phase. However, as pointed out by Sengupta and
Dupuis [68] in the SF phase, the Green’s function obtained
is not physical, thus, the excitation spectrum is out of reach.
More importantly, it is hard to investigate the topology asso-
ciated with the inverse of the hopping matrix, being generally
a complicated infinite-range hopping matrix.

We can kill two birds with one stone by performing a
second HS transformation. This process decouples the hop-
ping term in Eq. (F2) where the pure local ϕ field can be
integrated out again. Since the correlation function built from
the auxiliary field introduced in this second HS transformation
and the original bosonic fields a are the same (the proof is easy
and can be found in Ref. [68]), we use the same notation for
them. The resulting effective action is

Seff =
∫

dτ dτ ′∑
i j

{
a∗

i (τ )
[−�

(1)
loc (τ ; τ ′)δi j + ti jδ(τ − τ ′)

]
a j (τ

′)
}

+
∫

dτ1dτ2dτ ′
1dτ ′

2

∑
i

[
1

4
�

(2)
loc (τ1, τ2; τ ′

2, τ
′
1)a∗

i (τ1)a∗(τ2)ai(τ
′
2)ai(τ

′
1)

]
+ · · · , (F6)

where · · · denotes higher-order local vertex functions, which are neglected. Here, the one-particle local vertex function is given
by �

(1)
loc = [G(1)

loc]−1 (from here on we will omit the superscript in G(1) for the single-particle Green’s function). And the two-
particle local vertex function �

(2)
loc can be obtained from the one- and two-particle connected local Green’s function using the

standard formula [78],

Gc,(2)
loc (τ1, τ2; τ ′

1, τ
′
2) = −

∫ β

0
dτ3dτ4dτ ′

3dτ ′
4Gloc(τ1; τ3)Gloc(τ2; τ4)�(2)

loc (τ3, τ4; τ ′
3, τ

′
4)Gloc(τ ′

3; τ ′
1)Gloc(τ ′

4; τ ′
2). (F7)

Before proceeding further, we review the local problem defined by Eq. (F4). For a given site, it is already diagonal in particle
number basis. The ground state has q bosons with q = �μ/U� + 1 if μ > 0, and q = 0 otherwise, and the corresponding energy
eq = −μq + (U/2)q(q − 1). The single-particle Green’s function is (for τ > 0)

Gloc(τ ; 0) = −〈Tτ a(τ )a†(0)〉 = − 1

Zloc

∞∑
n=0

(n + 1)e−(β−τ )en−τen+1, (F8)
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where Zloc =∑∞
n=0 e−βen . In Matsubara frequency space at zero temperature, it becomes

Gloc(iω)|T =0 = lim
β→∞

∫ β

0
dτ Gloc(τ ; 0)eiωτ = −q

iω + eq−1 − eq
+ q + 1

iω + eq − eq+1
. (F9)

The two-particle Green’s function can be obtained similarly, whose explicit expression in the static limit at zero temperature
Ḡc,(2)

loc can be found in Ref. [68]. If we approximate �
(2)
loc by its static value �̄

(2)
loc = −Ḡc,(2)

loc /Ḡ4
loc and introducing Ũ = 1

2 �̄
(2)
loc , the

effective action then reads

Seff =
∫

dτ dτ ′∑
i j

a∗
i (τ )

[−G−1
loc (τ ; τ ′)δi j + ti jδ(τ − τ ′)

]
a j (τ

′) + 1

2
Ũ
∫

dτ
∑

i

|ai(τ )|4. (F10)

In Matsubara frequency space, using Eq. (F9), one can expand G−1
loc (iω) around ω = 0,

−G−1
loc (iω) = (−qU + μ + iω)(U − qU + μ + iω)

U + μ + iω
=

∞∑
�=0

c�(iω)�, (F11)

where c� = (�!)−1∂ lG−1
loc (iω)/∂ (iω)l |ω=0, and the most important coefficient is

c1 = −1 + q(1 + q)U 2

(U + μ)2
, (F12)

whose vanishing on the μ-t phase diagram is the so-called PH symmetric line μphs = [
√

q(1 + q) − 1]U . Note it starts at the
tip of the qth lobe and is a horizontal line independent of zt , which overlooks the hopping effects in comparison with Eq. (B7).
Precisely at the PH symmetric line, Eq. (F11) becomes

−G−1
loc (iω)|μ=μphs = [−1 + iω − q + √

q(1 + q)][iω − q + √
q(1 + q)]

iω + √
q(1 + q)

, (F13)

which leads to

c�|μ=μphs =
[ −1√

q(1 + q)

]�−1

= O(q−�+1), for � > 1. (F14)

Thus, at the large filling limit and on the PH symmetric line, only c2 survives even away from the low-energy limit.

APPENDIX G: A BRIEF DISCUSSION ON THE VALIDITY OF THE SLAVE BOSON METHOD

Generally speaking as a strong-coupling expansion, our approach is expected to work well in the Mott-insulating phase and in
the superfluid phase close to the SF-MI phase transition boundary; and to become worse in the weakly interacting limit (where
the standard Bogoliubov theory should be more appropriate).

More specifically, we note that the local Hilbert space is enlarged when the slave bosons are introduced at each site; however,
this redundancy is then removed by imposing the local constraint. There are two main approximations involved: (1) Only
three local states at each sites are considered. (2) The local constraint is actually broken when condensing βG and making
the replacement Eq. (B14) with higher-order terms omitted.

Regarding the first issue, we note that, in the vicinity of the Mott phase, number fluctuations are small, which allows one
to truncate the Hilbert space into the subspace of the lowest local number states. This local number fluctuations have also
been experimentally measured [46] and found, indeed, to be suppressed due to strong interactions near the vicinity of the Mott
phase. Moreover, this approximation can be systematically improved by the inclusion of further local states. The error occurred
by this truncation can be computed by comparing the two cases. We have numerically checked that such an error is, indeed,
small for parameter regions of our interests. In fact, by including these extra local states, we find that the resulting spurious
excitations are almost equal two-,three-,...particle excitations of the mean-field Hamiltonian Eq. (A1), reflecting the fact that
they are high-energy excitations, outside of our low-energy theory in the strong-coupling limit.

Regarding the second issue, the same approximation also occurs in the widely used method of the Holstein-Primakoff boson
[79] and the standard Bogoliubov theory [80]. One way to verify the validity of this approximation is to check that a posteriori
the quantum depletion

∑
α �=G〈β†

i,αβi,α〉 is, indeed, quite small comparing to unit. A similar calculation has been performed in
Ref. [48] (for the standard Bose-Hubbard model in 2D): this quantity is around 0.2 and is largest at the phase-transition point.
Therefore, the expansion Eq. (B14) is justified, and it should be a good approximation for the parameter region of our interests.
Interaction among the Higgs and the Goldstone modes can be studied in the future by including these higher-order terms in the
expansion Eq. (B14).
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