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Many-body dark solitons in one-dimensional hard-core Bose gases
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The existence and stability of solitonic states in one-dimensional repulsive Bose-Einstein condensates is
investigated within a fully many-body framework by considering the limit of infinite repulsion (Tonks-Girardeau
gas). A class of stationary, shape-invariant states propagating at constant velocity are explicitly found and
compared to the known solution of the Gross-Pitaevskii equation. The typical features attributed to nonlinearity
are thus recovered in a purely linear theory, provided the full many-particle physics is correctly accounted for.
However, the formation dynamics predicted by the Gross-Pitaevskii approximation considerably differs from the
exact many-body evolution.
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I. INTRODUCTION

Solitons are nonuniform, stationary solutions of a trans-
lationally invariant, nonlinear equation which can propagate
with constant velocity (less than a critical value) without
changing shape. Exact solitonic solutions are known in several
frameworks, ranging from fluid dynamics to optics, includ-
ing the one-dimensional Gross-Pitaevskii equation (GPE)
with cubic nonlinearity, describing the dynamics of a Bose-
Einstein condensate (BEC) [1]. Dark solitons are localized
rarefaction in an asymptotically uniform fluid and they have
been proven to exist and to be stable in the one-dimensional
GPE with repulsive interactions [2]. By a Galileo transforma-
tion, a moving soliton in a fluid asymptotically at rest can
be also seen as a soliton at rest in a flowing condensate.
If the fluid is asymptotically at rest, the density profile of
the dark soliton vanishes at the minimum, while if the fluid
flows with a finite velocity the soliton becomes “gray;” i.e.,
its minimum density is nonzero. The maximum asymptotic
fluid velocity supporting a solitonic solution coincides with
the sound velocity in the asymptotic region.

In the laboratory, soliton-like structures have been created
in BECs for more than 20 years [3,4] through techniques of
phase imprinting, density engineering, and a combination of
the two [5]. Experimental solitons are clearly related to the
exact solution of the GPE and their physical origin traces
back to the balance between dispersion and self-interaction,
which stabilizes a nonuniform profile. However, although the
qualitative features of a soliton are clearly reproduced in ex-
periments, it is difficult to ascertain the precise solitonic nature
of the observed density dip: Indeed, the underlying three
dimensionality of the cigar-shaped traps, the finite lifetime
of the condensate, the presence of longitudinal confine-

ment breaking translational invariance, and finite-temperature
effects are only a few unavoidable perturbations which must
be taken into account when comparing analytical and ex-
perimental results [5]. Solitonic states are often identified
with a particular branch of excitation (dubbed “Lieb type II”)
of the exact Lieb-Liniger solution [6,7] of a δ-interacting,
one-dimensional Bose gas [8–12]. However, growing evi-
dence [13–16] suggests that, starting from a superposition of
these excited states, the exact dynamics drives particles into
the density dip which eventually fades away. Solitons, thus,
would emerge only as mean-field stationary solutions which
do not carry over to the full many-body Schrödinger equation.
On the other hand, it has been also argued that a single quan-
tum measurement of a quasiuniform many-body state may
still display a well-defined density dip. After an average over
many different measures, however, the dip is bound to vanish
due to fluctuations of the soliton position [17–19]. In any
case, a well-defined, broken-symmetry, stationary solution of
the full many-body problem has not been clearly identified
yet. In this article, we ask whether it is possible to determine
and dynamically generate “many-body solitons,” i.e., exact
stationary solutions of an interacting BEC in one dimension.

Here we investigate the strong coupling limit of the Lieb-
Liniger solution, the so-called Tonks-Girardeau (TG) gas,
whose eigenstates and dynamics exactly maps onto those
of a free Fermi gas [20–22]. Confining our attention to the
TG model is not a serious limitation: It is known that the
strong-coupling regime of a one-dimensional, δ-interacting
Bose gas is not pathological, as opposed to the ideal gas
limit. Its equilibrium properties, together with the spectrum of
elementary excitations, are in fact smooth functions of the in-
teraction strength all the way to the hard-core limit [6,7]. Most
importantly, the long-time dynamics of a one-dimensional,
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interacting Bose gas has been shown to be asymptotically
described precisely by the TG model for any value of the
(repulsive) coupling constant [23,24]. An obvious conse-
quence of the strict one dimensionality of our model is the
absence of true off-diagonal long-range order, i.e., the absence
of a condensate and of macroscopic phase coherence [2].
Belonging to the class of Luttinger liquids, the TG gas still
displays quasi-long-range order, characterized by a density
matrix decaying as r−1/2 and by a divergent momentum dis-
tribution [25]. Therefore, we believe that such a toy model
may indeed serve as a useful guidance for the theoretical
investigations of quasi-one-dimensional Bose-Einstein con-
densates, allowing, at the same time, for a full treatment of
the many-body effects.

In this article, we show that a careful analysis of the soli-
tonic GPE solution allows identification of the exact stationary
states of the TG model representing a dark soliton propagating
with constant velocity. A jump in the phase of the wave func-
tion goes along with the density modulation, in close analogy
with the known GPE soliton. We also numerically investigate
the possibility to dynamically generate TG solitons.

II. MANY-BODY SOLUTION

The GPE with cubic nonlinearity is known to describe a
Bose gas in the weak coupling regime and thus is not expected
to faithfully reproduce the exact many-body dynamics of the
strongly interacting limit. However, by replacing the cubic
term with a quintic nonlinearity and fixing the coupling g to
the specific value g = h̄2π2

2m , the exact low-energy excitation
spectrum of the TG gas is recovered. Hence, this modified
version of the GPE is usually adopted to represent a strongly
interacting Bose gas in one dimension [26,27] and its va-
lidity has thoroughly been tested [28]. In the following, we
will make use of this equation, although the results obtained
by means of the ordinary cubic GPE show no qualitative
differences.

We start from the analytic, stationary solution of the quintic
GPE representing a dark soliton in the comoving frame (i.e.,
the reference frame at rest with the soliton, while the fluid
velocity is fixed at infinity), which reads [26,29]:

�(x) =
√

n(x) ei ϕ(x), (1)

n(x)

n∞
= 1 − 3 δ2

2 + √
4 − 3 δ2 cosh(2π δ n∞x)

, (2)

ϕ(x) = −π
√

1 − δ2 n∞ x

− sgn x

2
arccos

[
1 + α cosh(2π δ n∞x)

α + cosh(2π δ n∞x)

]
, (3)

where α = 2−3 δ2√
4−3 δ2 and the sign x function is required by the

symmetry ϕ(−x) = −ϕ(x). The parameter δ is related to the
uniform mass flux j by:

δ2 = 1 − v2
∞

c2∞
= 1 −

[
j

π h̄ n2∞

]2

, (4)

where v∞ and c∞ are the fluid and sound velocities at |x| →
∞ respectively. The solution is then parametrized by the

asymptotic density n∞ and the mass flux j. The asymptotic
density n∞ defines the length units for both the density profile
n(x) and the coordinate x, showing that, at fixed n∞, Eqs. (2)
and (3) provide a family of solutions which only depends on
the dimensionless parameter 0 � δ � 1 (4) or, equivalently,
on the density drop

n̄0 = n(0)

n∞
=

√
4 − 3δ2 − 1. (5)

With the adopted choice of signs the fluid is left mov-
ing (i.e., j < 0). The chemical potential is given by μ =
h̄2π2(2−δ2 )n2

∞
2m , which equals the chemical potential of the

uniform solution at the same asymptotic density n∞ and con-
served current j. Therefore, the soliton represents an excited
state with finite excitation energy, as in the weakly interacting
case [2].

Similarly, in the comoving frame, a many-body soliton
should be an exact, stationary solution of the many-particle
Schrödinger equation, breaking the translational symmetry of
the Hamiltonian. In the case of a TG gas, it corresponds to
a symmetry-breaking eigenstate of the free Fermi gas. A hint
towards the identification of such a many-body state comes
from the observation that a half-soliton [30] of the (cubic or
quintic) GPE is precisely a steady-state solution of a Bose gas
in an external step potential of height V0 [29]. The particular
half-soliton wave function has the unique feature of displaying
a flat density profile beyond the step and requires a well-
defined relation between the step height V0 and the asymptotic
density n∞:(

2π n∞
Q

)2

= 18 (1 − δ2)

(4 − 3 δ2)2 − √
4 − 3 δ2 (8 − 9 δ2)

(6)

with h̄Q = √
2mV0. Analogously, the full soliton can be ob-

tained by considering, instead of the step potential, a square
well of depth −V0 and width a and choosing the stationary so-
lution with a flat density profile inside the well. This condition
requires the same relation (6). Then, by letting the well width
a → 0 at fixed V0, the free solitonic solution (1) is recovered.

This procedure can be easily generalized to the free Fermi
gas. Remarkably, it is possible to find a set of exact single-
particle eigenstates of the square well potential characterized
by a flat density profile inside the well, in close analogy to the
relevant solution of the GPE equation previously identified.
These states are suitable linear combinations of the scattering
eigenfunctions of positive and negative momentum and, in the
a → 0 limit, they are simply given by

ψk (x) = 1√
2π

[
1 + R2

k

] [eikx + Rk e−ikx], (7)

where k � 0, p =
√

k2 + Q2 and Rk = k+p
k−p . These combi-

nations have a well-defined single-particle energy εk = h̄2k2

2m
and thus represent stationary states. In the comoving frame
the many-body exact eigenstate can be written as a Slater
determinant of these single-particle orbitals for momenta in
the interval −2kF � k � 0:

	B(x1, ..., xN ) =
[∏

j>i

sgn(x j − xi )

]
det ψk (xi ), (8)
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FIG. 1. Dark soliton solution for a strongly interacting Bose gas
in the limit of vanishing current: j → 0. The red dotted lines repre-
sent the quintic GPE solution (1) while the black solid ones the exact
TG stationary eigenstate (8). Left panel, density profile; right panel,
phase shift in the laboratory frame.

with ψk (xi ) given by Eq. (7). In this case, the asymptotic
density is just n∞ = kF

π
while the mass flux is

j = − h̄Q2

8π
[χ − arctan χ ], (9)

with χ = 2 2kF
Q

√
( 2kF

Q )2 + 1. The full density profile of this
many-body eigenstate is not homogeneous and is analytically
given by

n(x) =
∫ 0

−2kF

dk

2π

[
1 + 2 Rk

1 + R2
k

cos(2kx)

]
, (10)

while the density drop is

n̄0 = n(0)

n∞
= 1 − Q

2
√

2kF

arctan
2
√

2kF

Q
. (11)

In summary, starting from a strongly interacting, flowing
Bose gas in presence of an external potential well of given
parameters (Q, a) we can find the stationary states with a
constant density inside the well either by solving the quin-
tic GPE or by use of the exact Bose-Fermi mapping. Each
class of solutions depends on a single dimensionless quantity,
which can be conveniently identified as the density at infinity
n∞
Q = kF

π Q . The mass current, the density drop and the full
density profile are expressed in terms of such a parameter.
Then, by taking the a → 0 limit, the square well disappears
and the dimensional parameter Q defining the well depth
loses its physical meaning. Nevertheless, the density profile
remains nonuniform in both cases and coincides with that of
the the GPE soliton (2) and of the TG stationary state (10),
respectively. Both states depend only on one dimensional and
one dimensionless parameter: The asymptotic density n∞ and
the density drop n̄0 Eqs. (5) and (11). A comparison between
the two profiles is shown in Figs. 1 and 2, where the (nor-
malized) density and the phase of the solitonic solution is
plotted for two representative choices of the density drop n̄0

[(5) and (11)]. The phase ϕ(x) is defined as the integral of the
local velocity, ϕ(x) = ∫ x

0 dx′ j
h̄ n(x′ ) , and to better appreciate

FIG. 2. Gray soliton solution for a strongly interacting Bose
gas for n̄0 = 0.7. The red dotted lines represent the quintic GPE
solution (1) while the black solid ones the exact TG stationary
eigenstate (8). Left panel, density profile; right panel, phase shift in
the laboratory frame.

the phase shift induced by the soliton, the figures display the
phase of the wave function in the laboratory frame, where
the fluid at infinity is at rest, ϕ0(x) = ϕ(x) − j

h̄ n∞
x. The

agreement between the mean-field and the exact many-body
solution is remarkable for both the density profile and the
phase shift. Furthermore, the solutions display all the dark
soliton properties: Indeed, even in the absence of any external
potential, there is a notch in the density profile and a precise
phase jump which do not change in time. Moreover, the ex-
act stationary eigenstate and the GPE soliton are stationary
solutions characterized by a well-defined constant velocity
vsol = − j

n∞
, thus representing constantly moving rarefactions

in the laboratory frame. The qualitative difference between the
shape of the GPE soliton and the exact result is the presence of
an oscillating power-law tail slowly approaching the asymp-
totic density in the TG solution, while the GPE soliton is
exponentially localized [31]. Remarkably, in the limit kF

Q → 0
(Fig. 1), our expression reduces to the proposal put forward in
Ref. [33].

III. EXPERIMENTAL REALIZATION

The next question we want to address is whether the
previously identified solitonic solutions can be generated by
means of some external perturbation applied on a homo-
geneous, flowing BEC, in order to set the system out of
equilibrium, consequentially triggering the formation of sta-
ble structures. In the laboratory, two alternative methods are
currently adopted to create solitonic structures: phase imprint-
ing and density engineering [5]. In both cases, the starting
configuration is a uniform (possibly flowing) BEC described
by the trivial solution of the GPE equation �(x) = √

n∞ e−ik0x

or, in the Fermi representation, by the Slater determinant
of plane waves ψk (x) = eikx√

2π
with −kF − k0 � k � kF − k0,

where, in both cases, k0 is related to the fluid velocity
by v = h̄k0

m .
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FIG. 3. Time evolution of the condensate density after phase
imprinting. The three curves correspond to different dimensionless
times with τ = m

h̄ n2∞
.

A. Phase imprinting

For the phase imprinting procedure, the condensate wave
function is initially perturbed by a nonuniform phase change
of the form:

�(x) = √
n∞ e−i(k0x− π

2 tanh αx) (12)

(where α is a tuning parameter) and then the cloud is let evolve
freely. The time evolution according to the quintic GPE is
shown in Fig. 3 for k0 = n∞ and α = n∞.

The presence of a propagating dispersive shock wave
(DSW) on the right is evident, while on the left two dark
soliton-like structures appear, moving at different velocities.
In Fig. 4, we enlarge the soliton region and we superimpose
the analytical form previously obtained, for two different val-
ues of the density drop. The good agreement confirms the
solitonic nature of the sharp features shown in Fig. 3.

The exact dynamics of a Tonks gas after phase imprinting
can be evaluated by integrating the Schrödinger equation for
a free Fermi gas. The initial condition at t = 0 is given by
a Slater determinant of “phase imprinted” plane waves with
−kF − k0 � k � kF − k0:

ψk (x) = 1√
2π

ei(kx+ π
2 tanh αx). (13)

A few snapshots of the TG dynamics are shown in Fig. 5
using the same set of parameters (k0, α) of the GPE case.
While similar structures are formed in the first stages of
the evolution, the dark-soliton-like dip on the left is much
smaller and further weakens in time. The exact dynamics
does not appear to lead to the formation of stable, nonho-
mogeneous structures. Moreover, the dispersive shock waves
clearly visible in the GPE dynamics (Fig. 3) are lacking in the
exact TG evolution, being replaced by smooth density peaks
which propagate at the same velocity of the DSW. Different
sets of parameters (including smaller values of α) have been
checked following a previous study [34] suggesting that the
dynamics of a TG gas after phase imprinting strongly depends

FIG. 4. Comparison between the shape of the two soliton-like
structures at time t = 24 τ (red dotted lines) and the analytical soli-
tonic solutions Eq. (2) (black solid lines) for n̄0 = 0.9156 (left curve)
and n̄0 = 0.6872 (right curve). The analytical solitons have been
shifted to match the position of the minima of the two numerical dips.
The numerical and the analytical form are perfectly superimposed
and the agreement is remarkable.

on the length scale α−1 governing the initial phase change.
In these cases, although the ensuing GPE time evolution is
smoother, the results are qualitatively similar to the cases
previously illustrated: No solitonic structure forms according
to the exact dynamics, while it is always present in mean-field
approximation.

B. Density engineering

The density engineering method is another scheme com-
monly used in the laboratory to generate solitons. In this case,

FIG. 5. Time evolution of the density of a TG gas after phase
imprinting. The curves correspond to three different dimensionless
times with τ = m

h̄ n2∞
.
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FIG. 6. Time evolution of the condensate density after the
quench for the GPE case. The three curves correspond to different
dimensionless times: With τ = m

h̄ Q2 .

a quench in the density (rather than in the phase) is applied
to a uniform condensate by means of a suitable external per-
turbation. The potential applied in order to obtain a solitary
emission can be of different forms [5] and here we choose a
square well of width a and depth V0 = h̄2Q2

2m , which is suddenly
generated at t = 0. In the following, we will take the atoms to
be at rest before the quench (but the same technique can be
applied to flowing gases), the initial density is set as n = Q

π
,

and the well width is given by Qa = 2.
Figure 6 displays a few snapshots of the (quintic) Gross-

Pitaevskii equation dynamics at three different times with the
aforementioned initial conditions. As the curves show, after
the quench the gas is perturbed in the region of the potential
well and solitons are emitted from both sides, propagating

FIG. 7. Soliton structure of Fig. 6 at t = 300 τ (red dotted curve)
superimposed with the analytic solution given in the article (black
solid curve). The two curves are almost identical and thus difficult to
distinguish on the canvas.

FIG. 8. Time evolution of the density of a Tonks-Girardeau gas
after a quench. The three curves correspond to different dimension-
less times with τ = m

h̄ Q2 .

away from the potential. Dispersive shock waves are also
evident near the soliton structures.

Figure 7 shows an enlargement of the soliton structure
present in Fig. 6 at t = 300 τ , superimposed with the analytic
form previously detailed evaluated for the same density drop.
The matching between the two curves is remarkable, demon-
strating that the dip propagating away from the potential is
indeed an actual soliton.

We now compare the results to the exact Tonks-Girardeau
(TG) dynamics under the same conditions. Now the initial
state at t = 0 is a Slater determinant of plane waves and the
time evolution is governed by the Schrödinger equation with
the same potential used in the GPE dynamics. A few snapshots
of the TG exact evolution are given in Figs. 8 and 9 and we can
see that the dynamics is qualitatively the same: A perturbation

FIG. 9. An enlargement of Fig. 8 which shows the rarefaction
created in the quench and its evolution in time. The three curves cor-
respond to the three times plotted in Fig. 8: t = 100 τ (dashed black),
t = 200 τ (dotted blue), and t = 300 τ (solid red) with τ = m

h̄ Q2 .
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appears in the region of the potential well while density dips
propagate in both directions, analogously to the GPE case.
Differently from the mean-field case, though, these structures
do not behave as solitons as they suffer considerable disper-
sion upon evolution. Furthermore, DSW are absent. Thus we
can conclude that, as for the phase imprinting case, density
engineering is a valid technique to generate solitons at mean-
field level but the same cannot be said for the many-body
solution of the TG gas.

Finally, the proposal put forward in Ref. [35] has been
studied and a time-dependent potential has been applied to
the gas in order to excite the correct eigenstates; numerical
simulations, however, show that not even in this case is a
stable soliton solution for the TG gas reached.

IV. CONCLUSIONS

In summary, taking advantage of the known Bose-Fermi
mapping in one dimension, an exact, stationary solution of
the many-body problem for a Tonks-Girardeau gas in one
dimension showing the same features attributed to a dark soli-
ton has been found. This solution has a power-law oscillating
decay and describes a density rarefaction which moves with
constant speed (slower than the sound speed) in a uniform

TG gas. Both the density and the phase profile resemble the
analytical solitonic solution of the (quintic) GPE. The GPE
evolution after both phase imprinting and quench gives rise
to soliton trains extremely well represented by the analytical
solutions we found, at variance with the exact dynamics of
a TG gas under the same initial conditions, which shows no
evidence of solitonic structures. The absence of a dynami-
cal mechanism to spontaneously generate solitons in a TG
gas could be explained by recalling the analytical results of
Ref. [36], where it was shown that the long-time dynamics of a
Tonks-Girardeau gas always leads to the stationary state built
with the exact single-particle scattering states of the external
potential. Although the soliton-like wave function we have
introduced in Eq. (8) is indeed a Slater determinant of suitable
single-particle orbitals (7), they cannot be identified as pure
scattering states.

This investigation has been specifically performed for the
TG gas, whose properties are known to represent the generic
behavior of one-dimensional, interacting Bose gas. However,
the adopted procedure can be straightforwardly generalized
to any one-dimensional fluid: The solitonic wave function is
obtained starting from the exact symmetrical eigenstates of
the interacting Bose gas in an external potential well and then
letting the well width to zero.
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