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Dynamics of spontaneous symmetry breaking in a space-time crystal

J. N. Stehouwer and H. T. C. Stoof
Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University,

P.O. Box 80.000, 3508 TA Utrecht, The Netherlands

J. Smits and P. van der Straten
Debye Institute for Nanomaterials and Center for Extreme Matter and Emergent Phenomena, Utrecht University,

P.O. Box 80.000, 3508 TA Utrecht, The Netherlands

(Received 30 July 2021; revised 8 October 2021; accepted 8 October 2021; published 27 October 2021)

We present the theory of spontaneous symmetry breaking (SSB) of discrete time translations as recently
realized in the space-time crystals of an atomic Bose-Einstein condensate. The nonequilibrium physics related
to such a driven-dissipative system is discussed in both the Langevin as well as the Fokker-Planck formulations.
We consider a semiclassical and a fully quantum approach, depending on the dissipation being either frequency
independent or linearly dependent on frequency, respectively. For both cases, the Langevin equation and
Fokker-Planck equation are derived, and the resulting equilibrium distribution is studied. We also study the time
evolution of the space-time crystal and focus in particular on its formation and the associated dynamics of the
spontaneous breaking of a Z2 symmetry out of the symmetry-unbroken phase, i.e., the equilibrium Bose-Einstein
condensate before the periodic drive is turned on. Finally, we compare our results with experiments and conclude
that our theory provides a solid foundation for the observations.
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I. INTRODUCTION

Statistical physics [1,2] has been extremely successful at
describing both the equilibrium properties as well as the
nonequilibrium dynamics of many-body systems. In the latter
case this is not only true for small disturbances of a system in
equilibrium, that can be treated by linear-response theory and
therefore still probe equilibrium fluctuations of the system,
but also for far-out-of-equilibrium dynamics such as quenches
across a phase transition and the ensuing relaxation towards
a new equilibrium. At present there is also much interest in
studying systems which are constantly out of thermodynamic
equilibrium as many examples of this can be found in our
mostly classical everyday life, such as in fluids [3], cells [4],
and suspensions [5].

In addition, the investigation of the nonequilibrium dy-
namics of quantum many-body systems has obtained a large
boost in the last decade from the ready availability of ultra-
cold atomic gases in research laboratories (see, for instance,
Refs. [6–10]). Ultracold atomic gases are especially suited for
nonequilibrium dynamics as essentially all their characteris-
tics can be manipulated and tuned almost at will. For instance,
the magnetic or optical trap in which the atoms are stored can
be precisely engineered, allowing even for a control over the
dimensionality of the atomic gas that typically affects the dy-
namics in a dramatic way [11]. In this manner also a periodic
drive can be easily applied such that the system cannot behave
as it would do in the standard equilibrium situation as the
continuous time-translation symmetry is broken into a discrete
symmetry only. Nevertheless, a nonequilibrium steady state
can occur, in which all the energy gain that is provided by the
drive is exactly dissipated away from the system [12].

An especially interesting example of such driven-
dissipative systems are so-called (discrete) time crystals:
systems that have spontaneously broken the discrete time-
translational symmetry of the periodic drive [13–15]. Time
crystals have now been observed experimentally by multiple
groups around the world [16–22], but our focus in this paper
lies on the experimental realization of a space-time crystal
in a Bose-Einstein condensate (BEC) of sodium atoms as
described in Refs. [23,24]. Notice that only in this case a
space-time crystal is formed, which means that on top of the
periodic structure in time, with twice the period of the drive,
it also possesses a crystalline structure in space in the sense
that the periodicity of the atomic density is not imposed by
the external trapping potential. Hence, both the discrete time-
translation symmetry as well as the continuous translation
symmetry are broken spontaneously at the same time.

In the experiment of interest one starts from a cigar-
shaped, and therefore axially symmetric, gas, which is
evaporatively cooled to such low temperatures that an al-
most complete Bose-Einstein condensation has occurred. By
suddenly changing the radial trap frequency one excites a
long-lived radial breathing mode that effectively implements
a periodic drive for the axial collective modes of the Bose-
Einstein condensate. As a response to this drive exactly one
crystalline mode, i.e., a standing wave, is excited in the axial
direction. As already mentioned, this mode also has a fre-
quency of precisely half the drive frequency and on the basis
of its spontaneously broken symmetries it thus corresponds
precisely to a space-time crystal. Most interestingly for our
purposes, there exists a (hidden) Ising-like symmetry related
to the time evolution of the amplitude of the space-time crystal
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being, roughly speaking, either in phase or out of phase with
the drive. More precisely, the temporal phase difference of a
single realization of the experiment can be either φ or φ + π ,
where the phase φ depends on the microscopic details of the
experiment and is therefore not universal. This is the sponta-
neous symmetry breaking of the Z2 symmetry that has been
observed recently in Ref. [25] and that will be investigated
theoretically in great detail in this paper.

The layout of the rest of the paper is as follows. In Sec. II
we explain the theoretical methods that are needed to de-
scribe the spontaneous symmetry breaking observed in the
experiments. In particular, we will be using a functional for-
mulation of the Schwinger-Keldysh formalism that is very
convenient for our purposes. In the end it will lead us to the
exact Langevin and Fokker-Planck equations that accurately
describe the full quantum dynamics of both the amplitude and
the phase of the space-time crystal, including the nonlinear
dissipation from the small thermal cloud in the atomic gas. In
Sec. III, we then split our discussion into two parts, depending
on the assumptions we make about the frequency dependence
of the dissipation. We consider two cases that are both allowed
by the generalized fluctuation-dissipation theorem that we
derived in Sec. II, namely, frequency-independent dissipation
and a dissipation rate that depends linearly on the frequency.
More physically, the validity of these two cases depends on
the time scale of interest in the experiment, describing either
prethermalization or thermalization, respectively. We inves-
tigate the Langevin and Fokker-Planck equations in each of
the two approximations. In particular, we will look at the
equilibrium solutions, but also discuss numerical solutions of
the Fokker-Planck equation that explicitly show the dynamics
of the spontaneous symmetry breaking taking place in the
Bose-Einstein condensate after the drive is turned on and
the space-time crystal is formed out of quantum and thermal
fluctuations. After that, we are in a position to also compare
our results with experiments in Sec. IV. In Sec. V we end the
paper with conclusions and an outlook.

II. SCHWINGER-KELDYSH SETUP

The starting point for this paper comes from the results of
Ref. [24]. In that paper, the average dynamics of the space-
time crystals were found to be described very accurately by
the Hamiltonian

Ĥ = −h̄δâ†â + h̄ωDAD

8
(â†â† + ââ) + h̄g

2
â†â†ââ, (1)

where δ is the detuning from resonance, ωD is the driv-
ing frequency, AD is the relative driving amplitude, and
â(†) is the annihilation (creation) operator of a quantum in
the resonant axial mode. Note that the detuning enters this
Hamiltonian, as it describes the slow dynamics in the frame
rotating along with the drive. It is in this rotating frame
that the Hamiltonian becomes in a good approximation time
independent and that prethermalization can therefore occur.
Furthermore, there is the complex interaction parameter g =
g′ + ig′′ = |g|eiφg , which was introduced phenomenologically
to counter the exponential growth of the space-time crystal
due to the presence of the drive and to allow for a relaxation
into a long-lived prethermal state as observed experimentally.

Phenomenologically, this nonlinear interaction term leads to
an excellent agreement with the (average) growth and re-
laxation dynamics observed experimentally. In particular, the
nonlinear dissipation due to g′′ < 0 is required, and the more
common linear dissipation does not work in this case. Since
the Hamiltonian has an imaginary part and is thus non-
Hermitian, we expect that also noise will arise because of
the fluctuation-dissipation theorem. Therefore, we will ex-
pand and support the model of Ref. [24] by microscopically
deriving this imaginary piece and its associated noise. We will
do this via a nonlinear coupling with a heat bath, resulting
in both the imaginary part of the Hamiltonian, as well as
the noise that satisfies a generalized fluctuation-dissipation
theorem.

An, in our opinion, elegant way to develop our theory is
by using the functional techniques of the Schwinger-Keldysh
formalism. With that, we will derive an effective action that
precisely corresponds to the Hamiltonian of Eq. (1) and that
automatically also incorporates the fluctuations generated by
the non-Hermitian term in the Hamiltonian. As the dynamics
of the drive is fully coherent, we focus for simplicity first on
the derivation of the nonlinear interaction term by considering
the case of AD = 0 and ωD = 0, i.e., without the drive. After
that has been achieved, the effect of the drive can still be
easily incorporated exactly into the resulting Langevin and
Fokker-Planck equations. We hope that this makes the fol-
lowing discussion more clear by avoiding unnecessary long
expressions.

Let us first derive the microscopic action corresponding
to the nonlinear coupling with the heat bath. The probability
distribution P[a∗, a; t] for the space-time crystal to be in the
coherent state |a〉 of the annihilation operator â at time t can
be expressed in terms of the matrix elements 〈a; t |a0; t0〉 and
its complex conjugate 〈a; t |a0; t0〉∗ = 〈a0; t0|a; t〉, where |a; t〉
and |a0; t0〉 are the coherent states at the present time t and at
the initial time t0, respectively. For these matrix elements, the
“path”-integral expressions going through all possible field
configurations are calculated, e.g., in Refs. [26,27]. Because
of the fact that the complex conjugate has an opposite time
ordering, the actions corresponding to these elements will
have opposite evolutions in time. This leads to the intro-
duction of the Schwinger-Keldysh contour C, which obeys∫
C dt ′ = ∫ t

t0
dt+ + ∫ t0

t dt−. For our purposes of calculation of
equal-time correlation functions, we are allowed to deform the
contour such that it encircles the complete time axis by taking
the limits t0 → −∞ and t → ∞. For more details, we refer
to Ref. [28].

To reproduce the non-Hermitian interaction term in the
Hamiltonian we first of all make use of the fact that for ultra-
cold atoms a possible frequency dependence of the interaction
comes mostly from the dependence of the interatomic col-
lisions on the center-of-mass energy. Therefore, we imagine
a decoupling of the interaction in the particle-particle chan-
nel and consider a linear interaction of the heat bath with
ψ (t )ψ (t ), where ψ (t ) refers to the field of the space-time
crystal. This implies that two quanta from the resonant axial
mode can combine into a single quantum of the heat bath
and, because of time-reversal symmetry of the microscopic
action, that one quantum of the heat bath can also decay into
two quanta of the resonant axial mode. Since the quadratic
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piece of the Hamiltonian is not affected by these scattering
processes with the heat bath, we can in more detail write

for the microscopic action that is the starting point of our
discussion

S[ψ∗, ψ,ψ∗
R, ψR] = − 1√

V

∑
k

∫
C

dt{t (k)ψ (t )ψ (t )ψ∗
k (t ) + t∗(k)ψk(t )ψ∗(t )ψ∗(t )}

+
∫
C

dtψ∗(t )

(
ih̄

∂

∂t
+ h̄δ

)
ψ (t ) +

∑
k

∫
C

dtψ∗
k (t )

(
ih̄

∂

∂t
− ε(k)

)
ψk(t ), (2)

where ψR(x, t ) = ∑
k ψkeik·x/

√
V is the reservoir field de-

scribing the homogeneous heat bath with volume V , t (k)
are the “tunneling” matrix elements or scattering amplitudes
between the space-time crystal and the heat bath, ε(k) denotes
the energy of a reservoir state with wave vector k, and C
is the deformed Schwinger-Keldysh contour that was intro-
duced above. Note that since we are dealing in Eq. (1) with
a single-mode Hamiltonian for the space-time crystal, there
is no position dependence in the field ψ (t ) in contrast to the
reservoir field ψR(x, t ), which in the thermodynamic limit
V → ∞ describes the continuum required for the occurrence
of dissipation and the resulting “arrow of time.”

The next step is to integrate out the heat bath since the
action is quadratic in ψk. This gives the desired Schwinger-
Keldysh action for the full quantum dynamics of the
space-time crystal as

S[ψ∗, ψ] =
∫
C

dtψ∗(t )

(
ih̄

∂

∂t
+ h̄δ

)
ψ (t )

−
∫
C

dt
∫
C

dt ′ψ∗(t )ψ∗(t )
h̄g(t, t ′)

2
ψ (t ′)ψ (t ′).

(3)

Here we introduced the very important two-point
function on the Schwinger-Keldysh contour, h̄g(t, t ′) =

(2/h̄V )
∑

k t∗(k)G(k; t, t ′)t (k), which determines the
coupling strength of the effective interaction. Further-
more, the reservoir Green’s function G(k; t, t ′) satisfies
(ih̄∂/∂t − ε(k))G(k; t, t ′) = h̄δ(t, t ′). A Feynman diagram
corresponding to the effective interaction is shown in Fig. 1.
Note in particular the appearance of a fourth-order term
in ψ in our effective action, which would become a
quadratic self-energy term [28] if we would have used a
linear coupling with the heat bath as is common in the
Caldeira-Leggett-like models of macroscopic quantum
mechanics [29].

We have almost completed the derivation of the effective
nonequilibrium action. The last step is projecting the two
(forward and backward) branches of the Schwinger-Keldysh
contour onto the real axis to obtain the real-time dynam-
ics. This is achieved by making the transformation ψ (t±) =
a(t ) ± ξ (t )/2, where a(t ) represent the average or “classical”
part of the ψ field and ξ (t ) the fluctuations, as we will see
explicitly in a moment. Because of the fourth-order nature
of the effective interaction, we can in principle get fluctua-
tions up to fourth order in ξ , instead of only up to quadratic
order as in the Caldeira-Leggett-like models with a linear
coupling to the heat bath [28]. Nonetheless, we can still
work out the action. Up to second order in the fluctuations,
we find

Seff [a∗, a; ξ ∗, ξ ] =
∫

dt

{
a∗(t )

(
ih̄

∂

∂t
+ h̄δ

)
ξ (t ) + ξ ∗(t )

(
ih̄

∂

∂t
+ h̄δ

)
a(t )

}

−
∫

dt
∫

dt ′{a∗(t )a∗(t )h̄g(−)(t − t ′)a(t ′)ξ (t ′) + ξ ∗(t )a∗(t )h̄g(+)(t − t ′)a(t ′)a(t ′)}

−
∫

dt
∫

dt ′ξ ∗(t )a∗(t )h̄gK (t − t ′)a(t ′)ξ (t ′), (4)

where the retarded, advanced, and Keldysh functions, g(±)(t −
t ′) and gK (t − t ′), respectively, are related to the analytic
(known as bigger and lesser) pieces of g(t, t ′) via

g(±)(t − t ′) = ±θ (±(t − t ′))(g>(t − t ′) − g<(t − t ′)) (5)

and

gK (t − t ′) = g>(t − t ′) + g<(t − t ′), (6)

with θ (t ) the usual Heaviside step function. Using these defi-
nitions and our explicit expression for the two-point function
on the Schwinger-Keldysh contour g(t, t ′) we can now prove
that the Fourier transforms of the above retarded, advanced,

and Keldysh functions are related by the famous fluctuation-
dissipation theorem

gK (ω) = (g(+)(ω) − g(−)(ω))(1 + 2N (ω)), (7)

where we introduced the Bose or Planck distribution N (ω) =
1/(eh̄ω/kBT − 1) and the temperature T of the heat bath.
This crucial relation will ultimately ensure that our proba-
bility distribution P[a∗, a; t] relaxes to the correct physical
equilibrium.
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FIG. 1. Feynman diagram of the effective interaction in the
space-time crystal. The wiggly line corresponds to the Green’s func-
tion or propagator of the reservoir. The lower vertex is located at the
time t ′, whereas the upper vertex is located at the time t .

The effective action also has a third-order contribution,
namely,

−1

8

∫
dt

∫
dt ′(ξ ∗(t )ξ ∗(t )h̄g(−)(t − t ′)a(t ′)ξ (t ′)

+ ξ ∗(t )a∗(t )h̄g(+)(t − t ′)ξ (t ′)ξ (t ′)),

whereas the fourth-order term turns out to be exactly zero.
In the remainder of this paper, we will ignore these third-
order terms in the fluctuations, because they lead to quantum

corrections to the equations of motion resulting from the
Hamiltonian in Eq. (1), that we already know to be unim-
portant for an understanding of the experiments of interest
to us here. In the literature the neglect of these higher-order
fluctuations is sometimes also known as the truncated Wigner
approximation [30,31].

There are now two ways to proceed and extract the
nonequilibrium dynamics from the effective action in Eq. (4).
First, we can integrate out the fluctuations and arrive at an
effective action for the field a(t ) alone. Quantizing this action
and writing down the associated Schrödinger equation leads
then to the Fokker-Planck equation for the probability distri-
bution P[a∗, a; t]. Second, we can first derive the Langevin
equation for a(t ) and then obtain the desired Fokker-Planck
equation from that. We will follow the latter approach here,
because it avoids some operator-ordering problems that arise
in the former approach. But for consistency reasons and as a
check on our calculations, we illustrate also the direct deriva-
tion of the Fokker-Planck equation in the following section.

To obtain the Langevin equation we decouple the quadratic
term in the fluctuations by a Hubbard-Stratonovich trans-
formation (see, e.g., Ref. [26]). In this case this can most
conveniently be achieved by multiplying the integrand of our
functional integral over a(t ) and ξ (t ) by the Gaussian integral

1 =
∫

d[η∗]d[η] exp

(
iSeff [η∗, η]

h̄

)
, (8)

where we take

Seff [η∗, η] =
∫

dt
∫

dt ′
(

η∗(t ) −
∫

dt ′′ξ ∗(t ′′)a∗(t ′′)h̄gK (t ′′ − t )

)
gK −1(t − t ′)

h̄

(
η(t ′) −

∫
dt ′′h̄gK (t ′ − t ′′)ξ (t ′′)a(t ′′)

)
. (9)

This will by construction precisely cancel out the quadratic term in ξ of our effective action, and we thus end up with an action
that is completely linear in ξ . Adding the above Seff [η∗, η] to our effective action in Eq. (4) indeed leads to

Seff [a∗, a, ξ ∗, ξ , η∗, η] =
∫

dt

{
a∗(t )

(
ih̄

∂

∂t
+ h̄δ

)
−

∫
dt ′a∗(t ′)a∗(t ′)h̄g(−)(t ′ − t )a(t ) − a(t )η∗(t )

}
ξ (t )

+
∫

dtξ ∗(t )

{(
ih̄

∂

∂t
+ h̄δ

)
a(t ) −

∫
dt ′a∗(t )h̄g(+)(t − t ′)a(t ′)a(t ′) − η(t )a∗(t )

}

+
∫

dt
∫

dt ′η∗(t )
gK −1(t − t ′)

h̄
η(t ′). (10)

Because the effective action has become linear in the
fluctuations after the Hubbard-Stratonovich transformation,
integrating out ξ (t ) now leads to δ functionals in a similar
manner as in the well-known identity

∫
dkeikx = 2πδ(x). As

a result we can immediately read off from Eq. (10) that our
Langevin equation becomes

ih̄
∂

∂t
a(t ) = − h̄δa(t ) +

∫
dt ′a∗(t )h̄g(+)(t − t ′)a(t ′)a(t ′)

+ η(t )a∗(t ), (11)

together with the complex conjugate equation for
a∗(t ). Furthermore, we also conclude from our ef-

fective action in Eq. (10) that the noise correlations
obey

〈η(t )η(t ′)〉 = 〈η∗(t )η∗(t ′)〉 = 0, (12)

〈η∗(t )η(t ′)〉 = ih̄2gK (t − t ′). (13)

Note in particular that the Langevin equation contains mul-
tiplicative noise, due to the fact that the dissipation occurs
in the nonlinear term in our case. As always in physics, this
multiplicative noise must be interpreted as Stratonovich noise
that leads also to noise-induced drift terms as we show next.
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III. FREQUENCY DEPENDENCE OF THE DISSIPATION

At this point, we will split our discussion up into two
parts in order to further analyze the general Langevin equa-
tions given by Eq. (11). We will do this by calculating the
equations of motion for the averages 〈a(t )〉 and 〈a∗(t )〉 and
the fluctuations 〈a∗(t )a(t )〉, and then inferring the Fokker-
Planck equation from these equations of motion. We can,
as a first approximation, assume that the dissipation does
not have any frequency dependence, meaning that the in-
teractions act locally in time. Our second method will be
the situation where we allow for a linear frequency de-
pendence. These two options will be our two different
approaches.

The goal of our first approximation, which is a semi-
classical approach, is to describe the relatively short time
scales explored by the experiments in which the prethermal-
ization of the space-time crystal occurs. This will already
allow us to study the interesting physics associated with the
spontaneous symmetry breaking, as we will see explicitly
in Sec. III A 3, and to make a direct comparison with ex-
periments in Sec. IV. The second approach builds upon the
first one and uses its techniques to describe the full quantum
dynamics in the low-frequency limit that is needed to show
that on the longest time scales the system ultimately relaxes to
the correct thermal equilibrium. These long time scales have
not been explored experimentally and are also expected to
be very difficult to explore in practice. However, we add this
quantum approach here for completeness and to show the con-
sistency of our theory. In particular, it shows the crucial role
played by the fluctuation-dissipation theorem that is automati-
cally incorporated in the Schwinger-Keldysh formalism as we
have seen.

A. Semiclassical dynamics

So let us start with the semiclassical approach. We make
the approximation that the dynamics is dominated by a sin-
gle frequency ω̄ and the fluctuation-dissipation theorem can
be evaluated at twice that typical frequency. In the case
without a drive, that we are still considering at the mo-
ment, we have for instance ω̄ = −δ, where it should be
noted that with ωD = 0 we have that −δ just equals the
Bogoliubov excitation frequency of the resonant axial mode.
This means that our fluctuation-dissipation theorem takes
the form

gK = 2ig′′(1 + 2N (2ω̄)) 	 2ig′′ kBT

h̄ω̄
, (14)

where gK ≡ gK (2ω̄), g = g′ ± ig′′ ≡ g(±)(2ω̄), and for consis-
tency we also applied the semiclassical approximation to the
Bose distribution. Stated in the time domain, we thus have
g(±,K )(t − t ′) = g(±,K )δ(t − t ′) and all memory effects have
disappeared. Note that this local or Markovian approximation
is indeed only valid at shorter time scales as the Bose distri-
bution diverges for ω → 0. At the longest time scales a full
quantum approach is therefore needed, which we develop in
Sec. III B.

1. Langevin formulation

In the semiclassical approximation a general solution of the
Langevin equation in Eq. (11) reads

a(t ) = eiδt

{
a(0) − ig

∫ t

0
dt ′a∗(t ′)a(t ′)a(t ′)e−iδt ′

− i

h̄

∫ t

0
dt ′η(t ′)a∗(t ′)e−iδt ′

}
, (15)

and similarly for a∗(t ). With that, we can calculate the equal-
time correlation functions that contain η(t ), a(t ), and a∗(t ).
The results of interest to us become

〈η(t )a∗(t )〉 = − h̄gK

2
〈a(t )〉, (16)

〈η(t )a∗(t )a∗(t )〉 = −h̄gK 〈a∗(t )a(t )〉, (17)

where we used that gK is purely imaginary as explicitly shown
in Eq. (14), and 〈η(t )〉 = 〈η∗(t )〉 = 0. With these results, we
conclude that

ih̄
∂

∂t
〈a(t )〉 = − h̄δ〈a(t )〉 + h̄g〈a∗(t )a(t )a(t )〉 − h̄gK

2
〈a(t )〉,

(18)

and the complex conjugate equation for 〈a∗(t )〉. In addition
the fluctuations are determined by

ih̄
∂

∂t
〈a∗(t )a(t )〉 = 2ih̄g′′〈a∗(t )a∗(t )a(t )a(t )〉

− 2h̄gK〈a∗(t )a(t )〉. (19)

This is the full set of equations of motion in the semiclassical
approach, where the term on the right-hand side of Eq. (18)
proportional to gK is the noise-induced drift term from the
Stratonovich noise.

For the physical interpretation of Eq. (19) we now show
that it corresponds to the Boltzmann equation. The occu-
pation numbers N (t ) of the space-time crystal are given
by [28]

〈a∗(t )a(t )〉 = N (t ) + 1
2 , (20)

containing explicitly both thermal and quantum fluctu-
ations, respectively. Using Wick’s theorem [26,27] to
work out the four-point correlation function, we are able
to write

∂

∂t
N (t ) = −�

(
N (t ) + 1

2

){(
N (t ) + 1

2

)
− kBT

h̄ω̄

}
, (21)

where � ≡ −4g′′ is a rate of decay that determines the
relaxation of the occupation numbers towards the correct
semiclassical equilibrium. It is important to remember that
we are still discussing the situation without the presence
of a drive, and the equilibrium we have obtained here will
therefore later on in Sec. III A 3 be used as an initial state
for the numerical solution of the Fokker-Planck equation that
describes most clearly the spontaneous breaking of the Z2

symmetry after the drive is turned on. Before we start dis-
cussing this Fokker-Planck treatment, we would like to point
out that we can write the above rate equation into a more
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FIG. 2. Feynman diagram of the scattering process involved in
the right-hand side or “collision integral” of the Boltzmann equation.
A straight line represents 〈a∗(t )a(t )〉 and a wiggly line 〈a∗

k (t )ak (t )〉.
Both vertices are therefore located at the same time t , but drawn here
as distinct points for clarity.

familiar Boltzmann form as

∂

∂t
N (t ) = −�〈a∗(t )a(t )〉{N (t )(1 + Nk ) − Nk (1 + N (t ))},

(22)

with Nk describing the equilibrium occupation numbers of
the reservoir, the momentum k being fixed by the energy
conservation ε(k) = h̄ω̄. Note in particular the overall factor
〈a∗(t )a(t )〉 on the right-hand side that is due to the multiplica-
tive noise and effectively renormalizes the rate for quanta of
the space-time crystal to scatter into and out of the heat bath. A
Feynman diagram of the process involved is shown in Fig. 2.

2. Fokker-Planck formulation

We now turn to the Fokker-Planck description of the
obtained Langevin dynamics. We can show that the term
2ih̄g′′〈a∗a∗aa〉 on the right-hand side of Eq. (19) is taken
into account by the streaming terms of the Fokker-Planck
equation that follow from Eq. (18). It therefore does not lead
to a contribution in the diffusive part of the Fokker-Planck
equation. As a result the diffusion term only has to reproduce
the two terms proportional to gK , i.e., the last terms in the
right-hand side of Eq. (18) and of Eq. (19) that both arise from
the multiplicative noise. This completely fixes the diffusion
term of the Fokker-Planck equation to be

− h̄gK

2

[
∂

∂a∗

{
|a|2 ∂

∂a
P[a∗, a; t]

}
+ ∂

∂a

{
|a|2 ∂

∂a∗ P[a∗, a; t]

}]
.

Specifically for our case, we had to choose a symmetric
diffusion operator. Together with the streaming terms, which
follow directly from Eq. (18), we find that the Fokker-Planck
equation becomes

ih̄
∂

∂t
P[a∗, a; t] = − ∂

∂a
{(−h̄δ + h̄g|a|2)aP[a∗, a; t]}

+ ∂

∂a∗ {(−h̄δ + h̄g∗|a|2)a∗P[a∗, a; t]}

− h̄gK

2

∂

∂a∗

{
|a|2 ∂

∂a
P[a∗, a; t]

}

− h̄gK

2

∂

∂a

{
|a|2 ∂

∂a∗ P[a∗, a; t]

}
. (23)

From the Langevin equation and the resulting equations of
motion for the average moments 〈a(t )〉 and 〈a∗(t )a(t )〉 we
have found the Fokker-Planck description that is fully equiv-
alent to the Langevin dynamics. This is the most common
procedure in nonequilibrium statistical physics. However, as

already mentioned, we can also derive the Fokker-Planck
equation directly from the effective action, which is a conve-
nient consistency check for our theory. This is what we briefly
present now.

Performing the Gaussian integration over the fluctuation
field ξ (t ), we obtain from Eq. (4) the desired effective action
of the a(t ) field alone:

Seff [a∗, a] ≡
∫

dtL(t )

=
∫

dt
1

h̄gK |a(t )|2
∣∣∣∣
(

ih̄
∂

∂t
+ h̄δ − h̄g|a(t )|2

)
a(t )

∣∣∣∣
2

.

(24)

Since we still have to perform a functional integral over a(t )
to obtain the partition function, this effective action corre-
sponds to the quantum theory of a “classical” system with the
Lagrangian L(t ). The Schrödinger equation of this quantum
theory is exactly the Fokker-Planck equation we are interested
in. To obtain it we thus need to quantize the theory of Eq. (24).
In particular, the canonical momentum π (t ) of a(t ) satisfies

π (t ) = ih̄

h̄gK |a(t )|2
(

− ih̄
∂

∂t
+ h̄δ − h̄g∗|a(t )|2

)
a∗(t ),

(25)

and the complex conjugate for the canonical momentum π∗(t )
of a∗(t ). The rest of this derivation goes along the same way
as the discussion of Ref. [28]; i.e., we can now construct the
Hamiltonian H (t ) from the Lagrangian L(t ) to obtain

H (t ) = π (t )

ih̄
(−h̄δ + h̄g|a(t )|2)a(t )

− π∗(t )

ih̄
(−h̄δ + h̄g∗|a(t )|2)a∗(t ) + gK |a(t )|2

h̄
|π (t )|2.

(26)

After requiring the usual commutation relations between co-
ordinates and canonical momenta, the Schrödinger equation,

ih̄
∂

∂t
P[a∗, a; t] = HP[a∗, a; t], (27)

then indeed exactly reproduces the Fokker-Planck equation of
Eq. (23). As it stands the Hamiltonian in Eq. (26) has clearly
operator-ordering problems but these have fortunately already
been resolved from the Langevin derivation that we carried
out first. Interestingly, normal ordering is not appropriate for
the diffusion term in the Fokker-Planck equation, which is a
consequence of the Stratonovich nature of the multiplicative
noise that gives rise to a noise-induced drift term. Normal or-
dering would lead to the more mathematical Itô interpretation
of the multiplicative noise.

Of course, we can also rederive the Langevin equations
from the Fokker-Planck equation. Taking moments of the
Fokker-Planck equation and integrating by parts nicely re-
produces the desired equations of motion in Eqs. (18) and
(19). From this we can conclude that the Langevin equation
and the Fokker-Planck equation are really two sides of the
same coin. As a result the equilibrium probability distribu-
tion of the Fokker-Planck equation in Eq. (23) should agree
with the equilibrium occupation numbers obtained from the

043324-6



DYNAMICS OF SPONTANEOUS SYMMETRY BREAKING IN … PHYSICAL REVIEW A 104, 043324 (2021)

Boltzmann equation in Eq. (19). It can therefore be proven
that the equilibrium probability distribution is equal to the
semiclassical ideal-gas solution

P[a∗, a] = h̄ω̄

πkBT
exp

(
− h̄ω̄

kBT
|a|2

)
, (28)

a fact that is shown in Appendix A in more detail.
All the above was achieved without the drive terms

h̄ωDAD(â†â† + ââ)/8 in our starting Hamiltonian in Eq. (1).
Adding the drive to the system is actually the key ingredient

to observe the symmetry breaking we are interested in, since
this is the only term that has explicit phase dependence. More
precisely, the drive breaks the U(1) phase symmetry down
to a Z2 symmetry â → −â only. Because the time evolu-
tion due to the drive is unitary it is straightforward to add
these terms to our model. Our Langevin equation in Eq. (11)
gets just an additional term on the right-hand side, namely,
h̄ωDADa∗(t )/4, and h̄ωDADa(t )/4 for the complex conjugate
equation for a∗(t ). These will then also have to enter into the
streaming terms of the Fokker-Planck equation, leading to

ih̄
∂

∂t
P[a∗, a; t] = − ∂

∂a

{
(−h̄δ + h̄g|a|2)aP[a∗, a; t] + h̄ωDAD

4
a∗P[a∗, a; t]

}

+ ∂

∂a∗

{
(−h̄δ + h̄g∗|a|2)a∗P[a∗, a; t] + h̄ωDAD

4
aP[a∗, a; t]

}

− h̄gK

2

∂

∂a∗

{
|a|2 ∂

∂a
P[a∗, a; t]

}
− h̄gK

2

∂

∂a

{
|a|2 ∂

∂a∗ P[a∗, a; t]

}
. (29)

This is now the complete Fokker-Planck equation, containing
all the nonequilibrium dynamics of the space-time crystal in
the semiclassical approximation. As this equation accurately
describes the prethermalization of the space-time crystal ob-
served experimentally, it is the most important result of
our paper.

3. Numerical solution

We have numerically solved the Fokker-Planck equation
in Eq. (29) by using an implicit finite-difference method (see
Appendix B for details). We have used the same parameters as
obtained experimentally in Ref. [24], namely, δ/2π = 2 Hz,
|g|/2π = 3 × 10−4 Hz, φg = −0.4π , and AD = 0.091, except
that we have increased |g| by a factor of 10 in order to de-
crease |〈a〉|2 by the same factor for numerical convenience. In
particular, we simulate what happens when we start with the
thermal Gaussian initial distribution in Eq. (28) and then let
the system evolve in time under the influence of the drive.
Note that our initial condition is U(1) invariant, i.e., rota-
tionally invariant in the complex (a′, a′′) plane, and therefore
does not contain a preferred phase. It is also invariant under
inversion with respect to the origin |a| = 0, which is the Z2

symmetry we are most interested in. So the initial condition
does not break any symmetries as desired for a discussion
of spontaneous symmetry breaking. Our numerical findings
of the spontaneous symmetry breaking in our time crystal
are shown in Fig. 3. We clearly see that initially the drive
is only squeezing the probability distribution, which breaks
the initial U(1) symmetry down to a Z2 symmetry, as only
the inversion symmetry in the complex plane remains. This
symmetry breaking is not spontaneous as the drive is explicitly
breaking the U(1)/Z2 symmetry. In this stage of the evolution
the probability distribution is squeezed, but still has a max-
imum in the origin of the complex plane. In terms of order
parameters this phase is thus characterized by 〈aa〉 �= 0 and
〈a〉 = 0, so the Z2 symmetry is unbroken. Only at a later stage
this single maximum in the origin falls apart into two maxima

away from the origin that are related by the Z2 inversion
symmetry.

To emphasize this effect, we have integrated the probability
distribution over all lines perpendicular to the φ = 3π/4 (mod
π ) diagonal and show the results for this reduced probabil-
ity distribution in Fig. 4. Initially, the reduced distribution
is Gaussian with its center at |a| = 0. After the drive has
been turned on, the central part of the distribution spreads
out to the left and right and after 20 oscillations two distinct
peaks appear. However, note that even for a large number of
oscillations there remains a small part of the distribution near
a = 0. This comes about because the strength of the driving
h̄ωDAD/4 is multiplied with a and a∗ in the Fokker-Planck
equation and so for |a| 	 0 the effect of the drive becomes
negligible. Moreover, the noise is multiplicative and vanishes
in this limit.

The appearance of the two symmetry-related peaks corre-
sponds to the true spontaneous breaking of the Z2 symmetry
and the formation of the space-time crystal as now both
〈aa〉 �= 0 and 〈a〉 �= 0. Note that in principle the probabil-
ity distribution is inversion symmetric at all times, as the
Hamiltonian does not break this symmetry explicitly. This
implies that if one performs many experiments with the same
thermal initial condition for the Bose-Einstein condensate, the
observed space-time crystal will have a temporal phase of φ

or φ + π with exactly equal probability [25].

B. Quantum dynamics

In classical nonequilibrium physics we usually deal
with white noise, and a frequency-independent fluctuation-
dissipation theorem. Perhaps the most famous example of
white noise is Brownian motion with the Einstein rela-
tion between the diffusion constant and temperature. In the
above semiclassical approach for the experimentally relevant
(prethermalization) time scales, the same approximation was
made by evaluating the exact fluctuation-dissipation theorem
in Eq. (7) at twice the typical frequency ω̄. Quantum noise,
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FIG. 3. Dynamical behavior of the probability distribution P[a∗, a; t] in the complex (a′, a′′) plane. Numerically, 50 oscillations, i.e.,
50 periods of the drive, are simulated, and a picture was taken after every 10 oscillations. The number of oscillations past is therefore equal
to (a) 0, (b) 10, (c) 20, (d) 30, (e) 40, and (f) 50. For clarity, we have suppressed the center part of the distribution after 20 oscillations, since
otherwise the range of the color scale is suppressed by one order of magnitude.

however, is in general colored noise and this complicates
the analytical or numerical analysis of the relevant Langevin
problem considerably. Fortunately, if we are interested in the
longest time scales of the problem in which ultimately re-
laxation towards thermal equilibrium occurs, we are allowed
to make another approximation; i.e., we can take the long-
wavelength or in this case the low-frequency limit. In that
limit gK (ω) goes to the nonzero constant gK (0) and we have

gK (t − t ′) 	 gK (0)δ(t − t ′), (30)

which again corresponds to white noise in frequency space.
We would like to take the same limit in all quantities that
appear in the fluctuation-dissipation theorem, but this is not
possible because we have

(1 + 2N (h̄ω)) 	 2kBT

h̄ω
, (31)

which in fact diverges for ω → 0. In order to compensate
for this divergence in the exact fluctuation-dissipation theo-
rem in Eq. (7), we therefore obtain that in frequency space
we must have that g′′(ω) = (h̄ω/4ikBT )gK (0) or in the time
domain that

g′′(t − t ′) = gK (0)

4kBT
h̄

∂

∂t
δ(t − t ′). (32)

1. Langevin formulation

With that, our Langevin equation in Eq. (11) becomes

(
1 − h̄gK

2kBT
a∗(t )a(t )

)
ih̄

∂

∂t
a(t )

= −h̄δa(t ) + h̄g′a∗(t )a(t )a(t ) + η(t )a∗(t ), (33)
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FIG. 4. Time evolution of the reduced probability distribution on
the φ = 3π/4 (mod π ) diagonal, obtained by performing the integral
of the probability distribution P[a∗, a; t] over all lines perpendicular
to this diagonal.

and the complex conjugate equation for a∗(t ). Notice that for
g′ we are allowed to take the naive zero-frequency limit and
that from now on we use gK ≡ gK (ω = 0). Moreover, for the
same reasons as before we have briefly returned to the case
without drive, as the unitary evolution of the drive is easily
incorporated later on as we have seen. We also introduce the
(stochastic) quantities

I (t ) = 1 − h̄gK

2kBT
|a(t )|2 (34)

and thus

I∗(t ) = 1 + h̄gK

2kBT
|a(t )|2, (35)

as gK is purely imaginary. These will play a key role in our
following discussion.

We now want to work out again the relevant correlation
functions for the noise η(t ) with certain functions of a(t ) and
a∗(t ), in order to find the equations of motion for 〈a(t )〉 and
〈a∗(t )a(t )〉, similar to Eqs. (18) and (19). By dividing the
Langevin equation in Eq. (33) by I (t ), we can see that our
task now is to calculate quantities like 〈η(t )a∗(t )/I (t )〉 and
〈η(t )a∗(t )a∗(t )/I (t )〉. Let us therefore also define

A∗(t ) ≡ a∗(t )

I (t )
. (36)

We can expand this function as

A∗(t ) = A∗(0) + ∂A∗(0)

∂a∗ (a∗(t ) − a∗(0))

+∂A∗(0)

∂a
(a(t ) − a(0)), (37)

neglecting all higher-order contribution. So we always need
to remember that these stochastic quantities we introduced are
explicit functions of a∗(t ) and a(t ).

Using again that 〈η(t )〉 = 〈η∗(t )〉 = 〈η(t )η(t ′)〉 =
〈η∗(t )η∗(t ′)〉 = 0, and the general solution for a(t ) in this
case given by

a(t ) = a(0) − i

h̄

∫ t

0
dt ′

{
− h̄δ

I (t ′)
a(t ′)

+ h̄g′A∗(t ′)a(t ′)a(t ′) + η(t ′)A∗(t ′)
}
, (38)

we are in the position to calculate the desired correlation
functions. The results become

〈η(t )A∗(t )〉 = − h̄gK

2

〈
∂A∗(t )

∂a∗ A(t )

〉
(39)

and

〈η(t )a∗(t )A∗(t )〉 = − h̄gK

2
〈A(t )A∗(t )〉

− h̄gK

2

〈
a∗(t )

∂A∗(t )

∂a∗ A(t )

〉
. (40)

With that, the full set of equations of motion is now
obtained as

ih̄
∂

∂t
〈a(t )〉 =

〈
(−h̄δ + h̄g′a∗(t )a(t ))

a(t )

I (t )

〉

− h̄gK

2

〈
∂A∗(t )

∂a∗ A(t )

〉
, (41)

the complex conjugate equation for 〈a∗(t )〉, and

ih̄
∂

∂t
〈a∗(t )a(t )〉

=
〈
(−h̄δ + h̄g′a∗(t )a(t ))

(
a(t )

I (t )
− a∗(t )

I∗(t )

)〉

− h̄gK

2

〈
a∗(t )

∂A∗(t )

∂a∗ A(t ) + a(t )
∂A(t )

∂a
A∗(t )

〉

− h̄gK〈A∗(t )A(t )〉, (42)

which may be directly compared to Eqs. (18) and (19).

2. Fokker-Planck formulation

Following the same line of thought as in the semiclassical
case, we obtain for the case without drive the Fokker-Planck
equation

ih̄
∂

∂t
P[a∗, a; t] = − ∂

∂a

{
(−h̄δ + h̄g′|a|2)

a

I
P[a∗, a; t]

}

+ ∂

∂a∗

{
(−h̄δ + h̄g′|a|2)

a∗

I∗ P[a∗, a; t]

}

− h̄gK

2

∂

∂a∗

{
a

I∗
∂

∂a

a∗

I
P[a∗, a; t]

}

− h̄gK

2

∂

∂a

{
a∗

I

∂

∂a∗
a

I∗ P[a∗, a, t]

}
, (43)

where we want to emphasize the fact that g and g∗
in Eq. (23) have now both become equal to g′. As a
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result the dissipation in the equations of motion effectively
does no longer enter via the nonlinear coupling constant,
but through the imaginary parts of the quantities I and I∗
instead.

This Fokker-Planck equation can be derived directly from
the effective action in Eq. (4) in the same manner as
described before. Instead of a constant g′′ in Eq. (24),
we now have a contribution containing a time derivative.
For this situation, the canonical momentum π (t ) therefore
reads

π (t ) = ih̄I (t )

h̄gK |a(t )|2
(

− ih̄
∂

∂t
+ h̄δ − h̄g′|a(t )|2

)
a∗(t ),

(44)

and the Hamiltonian becomes after performing the usual Leg-
endre transformation

H (t ) = π (t )

ih̄I (t )
(−h̄δ + h̄g′|a(t )|2)a(t )

− π∗(t )

ih̄I∗(t )
(−h̄δ + h̄g′|a(t )|2)a∗(t )−gK |a(t )|2

h̄|I (t )|2 |π (t )|2,
(45)

which after quantization, and resolution of the usual operator-
ordering problems, indeed exactly reproduces the Fokker-
Planck equation in Eq. (43).

If we also include the drive terms again, similar to the
approach in the semiclassical case, the full Fokker-Planck
equation reads now

ih̄
∂

∂t
P[a∗, a; t] = − ∂

∂a

{
(−h̄δ + h̄g′|a|2)

a

I
P[a∗, a; t] + h̄ωDAD

4

a∗

I
P[a∗, a; t]

}

+ ∂

∂a∗

{
(−h̄δ + h̄g′|a|2)

a∗

I∗ P[a∗, a; t] + h̄ωDAD

4

a

I∗ P[a∗, a; t]

}

− h̄gK

2

∂

∂a∗

{
a

I∗
∂

∂a

a∗

I
P[a∗, a; t]

}
− h̄gK

2

∂

∂a

{
a∗

I

∂

∂a∗
a

I∗ P[a∗, a; t]

}
. (46)

Although this appears to be more complicated then in the semiclassical case, the equilibrium distribution can now be obtained
analytically and ultimately reads

P[a∗, a] ∝ |I (|a|2)| exp

(
− 1

kBT

{
− h̄δ|a|2 + h̄g′

2
|a|4 + h̄ωDAD

8
(a∗a∗ + aa)

})
. (47)

Notice that the equilibrium distribution scales with the Boltz-
mann factor e−E/kBT , where E [a∗, a] is the classical energy
associated with the quantum Hamiltonian in Eq. (1), which
was the starting point of our developments. Apart from
this Boltzmann factor, we find also a prefactor equal to
|I (|a|2)|. This precisely corresponds to the expected change
in phase-space volume [32,33] as our Hamiltonian dynamics
is modified into

ih̄I
∂a

∂t
= ∂E [a∗, a]

∂a∗ , − ih̄I∗ ∂a∗

∂t
= ∂E [a∗, a]

∂a
. (48)

In the overdamped limit h̄|gK |  kBT this prefactor becomes
h̄|gK ||a|2/2kBT and therefore the stationary solution will
always be zero at |a| = 0. On the other hand, in the un-
derdamped limit, we have I 	 1 and the prefactor does not
depend on a or a∗ and thus it can be absorbed in the normal-
ization constant. For the experimental parameters of Ref. [24],
the underdamped limit is indeed a very good approximation,
which confirms that dissipation is only playing a minor role
in this case as expected for a superfluid droplet that is almost
completely Bose-Einstein condensed.

IV. COMPARISON WITH EXPERIMENTS

In this section, our goal is to show the result for the station-
ary solution of the Fokker-Planck equation for the quantum
dynamics in Eq. (47) and compare it with the semiclas-
sical dynamics, using either the Langevin equation or the
Fokker-Planck equation. The semiclassical dynamics within

the Langevin formulation, after including also technical noise,
is found to agree very well with experiments in Ref. [25]. In
Fig. 5 we therefore compare the result for the equilibrium dis-
tribution from the Langevin equation with the result from the
Fokker-Planck equation, both for the semiclassical approach,
and obtain, as expected, excellent agreement. The results for
the Langevin equation are obtained by calculating 1 × 106

trajectories using random values of a and a∗ from the initial
distribution of Eq. (28) and integrating the evolution of the
individual trajectories over 100 oscillations, as discussed in
Ref. [25]. The results are then binned to obtain the probability
distribution P[a∗, a]. The results for the Fokker-Planck distri-
bution are obtained by taking an initial Gaussian distribution
and letting it evolve to an equilibrium using Eq. (29). Not
only do the two equations lead to the same equilibrium; also
the dynamics towards the equilibrium is very similar in both
cases and this numerically validates the equivalence between
the two theoretical frameworks.

To compare the semiclassical dynamics to the quantum dy-
namics, the Langevin equation of Eq. (33) is used to obtain the
stochastic trajectories in the quantum approach. Since in this
approach the imaginary part g′′ of the interaction parameter
has effectively been removed from the equations of motion in
favor of gK , we use g′ = |g| with |g| the interaction parameter
as previously used in the semiclassical approach. In detail the
probability distributions are very different as implicitly also
found in Ref. [24]. One important difference is immediately
clear from the location of the peaks. In the semiclassical
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FIG. 5. Comparison between the two numerical simulations of the equilibrium probability distributions P[a∗, a] for both the semiclassical
and quantum cases, respectively. The equilibrium distribution for the semiclassical case is shown in the top row for (a) the Langevin and
(b) the Fokker-Planck case, and the equilibrium distribution for the quantum case is shown in the bottom row for (c) the Langevin and (d) the
Fokker-Planck case. All the results are calculated for the experimental parameters of Ref. [24].

simulations, the peaks are located almost on the diagonal with
φ 	 3π/4 (mod π ), whereas in the ultimate equilibrium state
the peaks are located on the imaginary axis. In the experiment
we find the peak to locate nearly on the real axis, but in the
experiment we have determined the amplitude of the highly
excited axial mode, and this amplitude is proportional to the
time derivative of a in the laboratory frame and this leads to a
phase shift of π/4. Taking this subtle point into account, we
obtain excellent agreement between the experiment and the
simulations of the semiclassical Langevin equation as shown
in Ref. [24]. The location of the maxima in the semiclas-
sical equilibrium also depends sensitively on the detuning
used, whereas in the true equilibrium the peaks are always
on the imaginary axis independent of detuning. For instance,
in our numerical solution of the Fokker-Planck equation in
Sec. III A 3 we used g′ � g′′. In that case we obtain from the
equations of motion from 〈a(t )〉 that in the prethermal state

cos(2φ) = 4δ

ωDAD
, (49)

with sin(2φ) < 0, and

|〈a〉|2 = kBT

h̄ω̄
+ 1

|g|

√(
ωDAD

4

)2

− δ2. (50)

The latter agrees with Ref. [24] except for the first term in the
right-hand side that represents the contribution from the noise-
induced drift and that is small compared to the second term

under the conditions of interest. In that regime we can actually
take the limit ωDAD  max(4|δ|, |g|kBT/h̄ω̄) to show, next to
|〈a〉| 	 √

ωDAD/4|g|, that the phase of the space-time crystal
becomes in general

φ 	 π − φg

2
(mod π ), (51)

where −π < φg < 0 is the phase of g [25].
We thus confirm here that our semiclassical approach can

very accurately describe the experiments and that the ex-
periments have explored up to now only the relatively short
time scales in which prethermalization occurs, but not yet the
longer time scales on which the final thermalization would
take place. The latter may be very hard to realize in practice
for two reasons. First, the dissipation in the experiment also
affects the radial breathing mode that acts as a drive for the
axial collective modes. As a result the amplitude of the drive is
not constant and slowly decays at those long time scales. Sec-
ond, our analysis is based on the Hamiltonian in Eq. (1), which
is valid in the rotating frame of the drive after neglecting the
nonresonant terms. On the long time scales of interest for the
thermalization, these nonresonant, and therefore oscillating,
terms will lead to heating that requires a further analysis
outside the scope of our paper.

For completeness, we reiterate that when we look at the
width of the peaks, we notice that our theoretical results
are always narrower than the experimental data. This can
be explained by the fact that in the experiments additional
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broadening occurs from the fluctuations in the initial con-
ditions, most importantly the number of atoms in the
Bose-Einstein condensate. As is shown in Ref. [25] this can
be most easily accounted for in our theoretical modeling by
allowing for some fluctuations in the detuning δ.

V. CONCLUSION AND OUTLOOK

The main achievements of our work can be summarized
as follows. We developed the general theory to describe the
nonequilibrium physics of the space-time crystal in an atomic
Bose-Einstein condensate. Starting from a nonlinear (cubic)
coupling of the space-time crystal to a heat bath, we applied
the tools of the Schwinger-Keldysh formalism to derive the
general form of the Langevin equation. At that point, we
distinguished two cases: a semiclassical approach, where the
frequency dependence of the dissipation was neglected, and
a fully quantum approach, where this frequency dependency
was included in the long-wavelength limit. For both cases,
we presented the full system of equations describing the
dynamics: both in the Langevin formulation as well as in
the Fokker-Planck formulation. We also showed the consis-
tency of the two formulations. Furthermore, we were able to
derive stationary solutions for both of these Fokker-Planck
equations, which, as expected, turned out to scale with the
Boltzmann factor e−E/kBT , where E [a∗, a] is the appropriate
energy for that specific situation.

By solving the semiclassical Fokker-Planck equation nu-
merically, we were able to visualize very explicitly the
dynamical features of the spontaneous breaking of the Z2 sym-
metry and the associated formation of the space-time crystal.
Since the semiclassical dynamics describes the prethermaliza-
tion at relative short time scales, it can be directly compared
with the experimental data. Excellent agreement between the-
ory and experiment is obtained in this manner. The quantum
method, on the other hand, makes it possible to discuss the
ultimate thermalization of our theoretical model, but such long
time scales are presently not observable experimentally and
may be a topic of further investigations.

An open end in our discussion is the origin of the cubic
coupling term between the space-time crystal and the heat
bath. Although its theoretical implications work out nicely
as these are mostly based on universal features such as the
fluctuation-dissipation theorem, its precise (experimental) ori-
gin remains unclear. In particular, we would like to understand
better which modes of the thermal cloud effectively represent
the heat bath in our approach. In this manner it might be
possible to derive also the strength of the dissipation and the
noise from first principles. Nonetheless, our results shows that
we have already obtained a solid theoretical description of the
experiments, with minimal approximations, that underpins the
spontaneous symmetry breaking occurring in these kinds of
time crystals.

An interesting area for further research will be to use our
Fokker-Planck equation in order to study the phenomenon of
“tunneling” from one energy minimum to the other. Although
we did not look into this yet in our discussion, the nonequi-
librium physics of this problem is also fully captured by our
model and may also be in reach in future experiments with
space-time crystals in Bose-Einstein condensates.

APPENDIX A: SEMICLASSICAL EQUILIBRIUM
WITHOUT DRIVE

The equilibrium in the semiclassical approach has to sat-
isfy the stationary Fokker-Planck equation for that case, which
reads

0 = − ∂

∂a
{(−h̄δ + h̄g|a|2)aP[a∗, a]}

+ ∂

∂a∗ {(−h̄δ + h̄g∗|a|2)a∗P[a∗, a]}

− h̄gK

2

∂

∂a∗

{
|a|2 ∂

∂a
P[a∗, a]

}

− h̄gK

2

∂

∂a

{
|a|2 ∂

∂a∗ P[a∗, a]

}
. (A1)

Furthermore, the fluctuation-dissipation theorem in the semi-
classical approximation tells us that we have the relation gK =
2ig′′(kBT/h̄ω̄). Using then a phase-independent probability
distribution P[a∗, a] = P[|a|2], we can easily see that both the
terms with −h̄δ as well as the terms with h̄g′ (the real part of
h̄g) drop out. What is left is

0 =
(

kBT

h̄ω̄

)[
∂

∂a∗

{
|a|2 ∂

∂a
P

}
+ ∂

∂a

{
|a|2 ∂

∂a∗ P

}]

+ 4|a|2P + 2|a|4 ∂P

∂|a|2 . (A2)

Working this out further, we notice that

∂

∂a∗

{
|a|2 ∂

∂a
P

}
+ ∂

∂a

{
|a|2 ∂

∂a∗ P

}

= 4|a|2 ∂P

∂|a|2 + 2|a|4 ∂2P

(∂|a|2)2
, (A3)

which means that the stationary Fokker-Planck equation be-
comes

0 = 2|a|4
{(

kBT

h̄ω̄

)
∂2P

(∂|a|2)2
+ ∂P

∂|a|2
}

+ 4|a|2
{(

kBT

h̄ω̄

)
∂P

∂|a|2 + P

}
. (A4)

We therefore conclude that the probability distribution obeys
simply

∂P

∂|a|2 = − h̄ω̄

kBT
P, (A5)

which is the defining equation for the Gaussian ideal-gas
solution

P[a∗, a] ∝ exp

(
− h̄ω̄

kBT
|a|2

)
, (A6)

proportional to the expected classical Boltzmann factor. Note
that there is no change in the phase-space volume in this case
and there is no additional prefactor.

APPENDIX B: NUMERICAL SIMULATION
OF SEMICLASSICAL DYNAMICS

The Fokker-Planck equation of Eq. (29) is given in terms of
the eigenvalue a of the annihilation operator and its complex
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conjugate a∗. The equation looks deceptively simple with
the convection terms proportional to δ, g, and ωD, and the
diffusive term proportional to gK . The probability distribution
P[a∗, a; t] can be represented on a grid and the spatial deriva-
tives are evaluated using finite differences. The time evolution
of the probability distribution is then integrated forward in
time using simple first-order finite difference in time. How-
ever, since P is a real function, only terms on the right-hand
side of Eq. (29) that are imaginary contribute, whereas the real
terms cancel. Furthermore, some of the terms are proportional
to |a|2 and, since a becomes large, these terms become large
at the edges of the grid. At the same time the probability
distribution can become narrow in some directions and thus
the step size a has to be chosen rather small. This makes
the number of points in the grid large and precludes the use
of implicit finite-difference methods. In the case of explicit
finite-difference methods, the step size t in time is bound by
a through the Courant condition, which requires small step
sizes in time.

To avoid the cancellation of terms in the evolution of P, we
use real coordinates x = (a + a∗)/2 and y = (a − a∗)/2i and
rewrite the Fokker-Planck equation in terms of these coordi-
nates using

∂

∂a
= 1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂a∗ = 1

2

(
∂

∂x
+ i

∂

∂y

)
. (B1)

For the numerical integration, it is beneficial to write the
evolution equation in the form of a conservation law and after
some algebra we find

∂

∂t
P = − ∂

∂x
jP
x − ∂

∂y
jP
y , (B2)

with the probability current densities

jP
x = − δyP + (g′y + g′′x)(x2 + y2)P

− ωDAD

4
yP + gK

4i
(x2 + y2)

∂

∂x
P, (B3)

and

jP
y = δxP + (−g′x + g′′y)(x2 + y2)P

− ωDAD

4
xP + gK

4i
(x2 + y2)

∂

∂y
P, (B4)

where we remind ourselves that gK is purely imaginary. These
equations are used for the simulations shown in Fig. 3.

There are many finite-difference methods proposed for this
convection-diffusion problem. After some trial and error, we
have selected the MacCormack method [34], where the evolu-
tion is obtained after first making a predictor step, displacing

the grid over half a grid spacing a to the right, followed by
a corrector step displacing the grid back by shifting it half a
grid spacing to the left. This makes the method conditionally
stable, compared to the simple forward-time, centered-space
(FTCS) method. The stability is determined by the Courant-
Friedrichs-Lewy criterion, or Courant condition, given in our
case by

| jx|t

Pa
� 1,

| jy|t

Pa
� 1. (B5)

Since the width of P can become small in the evolution, we
have to choose a small and thus require a large number of
time steps for the evolution.

The Fokker-Planck equation can also be rewritten in po-
lar coordinates ρ and φ and again after some algebra one
arrives at

∂

∂t
P = − 1

ρ

∂

∂ρ

(
ρ jP

ρ

) − 1

ρ

∂

∂φ
jP
φ , (B6)

with

jP
ρ = −ωDAD

4
ρ sin 2φP + g′′ρ3P + gK

4i
ρ2 ∂

∂ρ
P, (B7)

and

jP
φ = δρP − ωDAD

4
ρ cos 2φP − g′ρ3P + gK

4i
ρ

∂

∂φ
P,

(B8)

where we have expressed the right-hand side of Eq. (B6) in
the form of a conservation law in polar coordinates. Note that
the division by ρ for each of the terms can be avoided by
performing the integration in time using ρP(ρ, φ) instead of
P(ρ, φ).

These equations allow us to find the location of the maxi-
mum of the equilibrium distribution using jP

ρ = 0 and jP
φ = 0.

The maximum is located at

〈ρ〉2 = 1

|g|

⎛
⎝δ cos φg +

√(
ωDAD

4

)2

− δ2 sin2 φg

⎞
⎠, (B9)

and

tan 2φ = g′′〈ρ〉2

δ − g′〈ρ〉2
. (B10)

The first result has already been derived by Smits et al. [24].
In the case of small g′, these equations correspond to Eqs. (49)
and (50) without the noise-induced drift that gives the small
difference between the location of the maximum of the prob-
ability distribution and the average 〈ρ〉.
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