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Bell correlations in a split two-mode-squeezed Bose-Einstein condensate
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We propose and analyze a protocol for observing a violation of the Clauser-Horne-Shimony-Holt (CHSH) Bell
inequality using two spatially separated Bose-Einstein condensates (BECs). To prepare the Bell correlated state,
spin-changing collisions are used to first prepare a two-mode squeezed BEC. This is then split into two BECs by
controlling the spatial wave function, e.g., by modifying the trapping potential. Finally, spin-changing collisions
are also exploited locally, to compensate local squeezing terms. The correlators appearing in the inequality are
evaluated using three different approaches. In the first approach, correlators are estimated using normalized
expectation values of number operators, in a similar way to evaluating continuous-variable Bell inequalities. An
improvement to this approach is developed using the sign binning of total spin measurements, which allows
for the construction of two-outcome measurements and violations of the CHSH inequality without auxiliary
assumptions. Finally, we show a third approach where maximal violations of the CH inequality can be obtained
by assigning zero values to local vacua outcomes under a no-enhancement assumption. The effect of loss and
imperfect detection efficiency is investigated, and the observed violations are found to be robust to noise.
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I. INTRODUCTION

Entanglement constitutes an essential resource for quan-
tum technologies such as quantum computing, quantum
communication, and quantum metrology [1]. From a funda-
mental point of view, the challenge that entanglement poses to
local-realistic theories was famously highlighted by Einstein,
Podolsky, and Rosen (EPR) in their 1935 thought experiment
[2], but it was not until Bell’s seminal work [3] that the EPR
paradox was turned into an experimentally testable criterion.
Bell’s work inspired extensive theoretical research into nonlo-
cality [4], as well as the experimental search for violations of
Bell inequalities. In a quantum information context, Bell cor-
relations are considered the most correlated class of quantum
states in a hierarchy including quantum coherence, quantum
discord, and EPR steerability [5–11]. Following the intro-
duction of the Clauser-Horne-Shimony-Holt (CHSH) Bell
inequality [12], first experiments confirmed that entangled
photon pairs are able to result in its violation [13–16], albeit
with a number of loopholes that posed a conceptual challenge
on the conclusions that can be drawn from this violation [17].
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Since then, Bell inequality violations have also been reported
using other systems as diverse as ions [18], electron spins
[19], transmon qubits [20], or ultracold atoms [21]. During
the last decades the different loopholes have been successively
addressed and closed, finally culminating in the observation of
loophole-free Bell inequality violations [19,22–24].

As Bell correlations (i.e., nonlocality) represent the most
profound departure of quantum from classical physics, their
observation in macroscopic objects, which typically behave
classically, is of extreme interest. For this reason, intense
efforts have been put into trying to detect such correlations in
multipartite and massive systems, such as optomechanical de-
vices [25–27] or Bose-Einstein condensates (BECs) [28,29].
The latter are also versatile systems for a variety of quantum
information processing tasks [30–33] and for quantum metrol-
ogy [34–38]. In these ensembles, the internal states of the
atoms form a collective spin. By controlling atom-atom inter-
actions, a variety of nonclassical collective spin states can be
prepared, such as spin-squeezed states [39], twin-Fock states
[40], and two-mode squeezed (TMS) states [41]. These states,
observed in BECs in Ref. [42–46], were shown to exhibit
entanglement and EPR steering [47–49]. Moreover, follow-
ing the discovery of a multipartite Bell inequality involving
only low-order correlators [50], Bell correlations have been
observed in a BEC [51] and in a thermal atomic ensemble
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(a) (b)

FIG. 1. Schematic procedure for realizing split two-mode
squeezed Bose-Einstein condensates (BECs). (a) A BEC in a single
trap prepared in the state a0 is two-mode squeezed by spin-changing
collisions, scattering into two other spin states a1, a−1. (b) The atoms
are then spatially separated into two ensembles via a beamsplitter
interaction. The atoms in the two BECs remain correlated after the
split, producing Bell correlations between the two wells.

[52] from the violation of an experimentally practical witness
involving only collective spin measurements.

So far, the successful violations of Bell correlation wit-
nesses [53,54] were demonstrated within single atomic
ensembles prepared in a nonclassical spin state. On the other
hand, the violation of a CHSH Bell inequality with such
systems has proven to be surprisingly difficult, and a scheme
that is both experimentally practical and shows a strong vio-
lation is still missing even in the simplest bipartite scenario.
For example, in Ref. [55], it was shown that a split spin-
squeezed BEC shows Bell violations, but only when atomic
parity measurements can be performed. This requires col-
lective measurements with single-atom resolution, which are
experimentally challenging. In Ref. [56], the two-axis two-
spin squeezed state was shown to violate a CHSH inequality
using the sign of total spin operators, which is experimentally
more accessible. However, the level of violation was found to
diminish with increasing total atom number N . This mirrors
the problems of Bell inequalities for continuous-variable (CV)
systems (e.g., [57]), which can be seen as the large N limiting
case of spin systems. In the CV case, many proposals have
prohibitively difficult requirements on either the measure-
ments or the considered states [4,58]. Despite these obstacles,
the first experimental violation of a CV Bell inequality as
proposed by Ralph et al. [59] was recently reported [60].

In this paper, we propose a scheme for violating the CHSH
Bell inequality with a split two-mode squeezed (TMS) BEC
(see Fig. 1) and discuss several strategies for evaluating
the necessary correlators. Two spatially separated entangled
BECs are generated by spatially splitting a TMS BEC, as
experimentally realized in Ref. [47]. This is analogous to
protocols previously considered for split spin-squeezed BECs
[49,61,62]. As for the optical case, where splitting a squeezed
state is equivalent to a TMS state with additional local squeez-
ing on the two modes, we show that the same occurs in a
split TMS BEC. In the context of detecting Bell correlations,
which are enabled by the entanglement present between the
two BECs, the local squeezing terms within each BEC give
rise to undesirable terms in the wave function. However, these
can be eliminated by locally “desqueezing” each BEC, as part
of the state preparation sequence. As we show, the resulting
state can be used to evaluate the correlators following the
approach by Ralph et al. [59], to obtain a maximal violation
of the CHSH inequality. However, this method of evaluating
correlators does not strictly follow a two-valued probabilistic
evaluation of the CHSH correlators and implicitly discards

particular measurement outcomes. We therefore introduce an
alternative way of evaluating Bell correlators which resolves
both of these issues. We show that this scheme allows for
CHSH violations to be observed in a split TMS BEC even
in the case where all measurement outcomes are assigned ±1
values and the effect of losses is taken into account. We finally
show a variation of this same strategy using the CH inequality
with the no-enhancement assumption, which allows for larger
violations.

This paper is organized as follows. In Sec. II we describe
the physical system and the type of operations that are re-
quired to prepare the Bell correlations in the system. The
split-squeezing method and the full state preparation proto-
col are presented in Sec. III. In Sec. IV we then use the
approach of Ralph et al. [59] (which we call Approach I) to
show that a Bell violation can be detected using normalized
averages of atom number measurements. We further improve
this approach in Sec. V by introducing genuine two-valued
measurement operators and a way of evaluating the correla-
tors without discarding any measurement outcomes, making
it more consistent with the original CHSH inequality. This
Approach II is discussed in Sec. V C and is found to also
violate the CHSH inequality, albeit by a smaller amount. A
larger violation can be obtained (Approach III, Sec. V D) by
using the CH inequality with the no-enhancement assumption,
where a “0” value is assigned to local vacuum detection. In
Sec. VI we discuss the effects of loss and detector efficiency
for the three approaches. Finally, in Sec. VII we summarize
our findings and conclude.

II. THE PHYSICAL SYSTEM AND REQUIRED
OPERATIONS

In this section we describe our model of the physical sys-
tem underlying this work, as well as the operations that will
be needed for the preparation of the Bell correlated state.

A. Spin-changing collisions

We start by considering a BEC of N atoms in the same
internal state. The system is thus in state

|ψ0〉 = 1√
N!

(a†
0)N |0〉, (1)

where a†
0 is the bosonic creation operator for mode m = 0.

Note that all atoms are in the same internal state, as well as
in the same spatial wave function. We then consider atom-
atom interactions of the form of spin-changing collisions [63],
where the collision between two atoms in spin state 0 change
their spin states to +1 and −1, respectively. Such interactions
can be turned on for a desired duration by applying a magnetic
field for a specified time [64]. This results in populating two
different modes, which we associate with the bosonic annihi-
lation operators a1 and a−1 [see Fig. 1(a)]. The Hamiltonian
describing this type of interaction is [65,66]

H = h̄g(a†
−1a†

1a0a0 + a†
0a†

0a−1a1), (2)

where g describes the strength of the scattering process.
Such dynamics were realized in numerous experiments
[40,45,47] and now represents a standard approach to prepare
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nonclassical states of atomic ensembles. In general, the modes
±1 have a nearly identical spatial wave function to mode
0, e.g., the ground state of the trapping potential. However,
in the case of Ref. [47], mode 0 corresponds to the |F =
1, m = 0〉 hyperfine state of 87Rb atoms in the ground state
of the trapping potential, while the states ±1 correspond to
the |F = 1, m = ±1〉 states in the spatial first excited state.

Due to the typically very large number of atoms N initially
in the spin-0 state, and the short evolution time we consider
for the Hamiltonian Eq. (2), we can approximate mode |0〉 as a

classical field (local oscillator) with amplitude
√

a†
0a0 = √

N ,
and thus replace the operator a0 with a c-number. This results
in the effective Hamiltonian

H ≈ h̄gN (a†
−1a†

1 + a−1a1), (3)

which is of the same form as the two-mode squeezing Hamil-
tonian in quantum optics [67–69]. For the approximation
to be valid, we require N � 1 for the atom number and
gt < 1/N for the evolution time. An explicit calculation and
numerical results showing that the two Hamiltonians lead to
equivalent results in the small-squeezing limit can be found in
Appendix A.

The above Hamiltonian (3) has been experimentally
demonstrated in BECs to produce entanglement [45,47]. It
induces a unitary transformation given by

Ur = e−iHt/h̄ = e−ir(a†
−1a†

1+a−1a1 ), (4)

where the squeezing parameter is defined as r = gNt . In
the Heisenberg picture this transforms the mode operators as
[69,70]

U †
r a1Ur = a1 cosh r − ia†

−1 sinh r,

U †
r a−1Ur = a−1 cosh r − ia†

1 sinh r. (5)

The state that is generated is thus [69,70]

|ψr〉 = Ur |ψ0〉
= sechr

∑
k

(−i)k tanhk r|k, k〉, (6)

where we defined the Fock states as

|k, l〉 = (a†
1)k (a†

−1)l

√
k!l!

|0〉. (7)

The state (6) has only an equal number Fock states of the a±1

modes, characteristic of a TMS state.
We remind that in the following, under the local oscillator

approximation, only the a±1 modes are considered as quantum
states. There is always a large population of atoms in the
0 state, as the transfer of population to the ±1 states does
not deplete it to any significant extent, which allows us to
approximate it as a classical field. The large population in the
a0 state should be considered implicitly, even when it does
not appear in the definitions of states as written in (7). Under
this approximation, the initial state (1) therefore corresponds
to the vacuum according to (7).

B. Splitting the BEC

An important operation that we will perform is to split the
BEC into two spatially separated locations, as shown in Fig. 1.
We associate the modes in the left trap with the annihilation
operators am (Alice’s BEC), and the modes in the right trap
with bm (Bob’s BEC). The spatial splitting corresponds to
applying the splitting operator [61]

UW = e−iHW π/4 (8)

with

HW =
∑

m=−1,0,1

(−ia†
mbm + ib†

mam). (9)

Applying the splitting operator, we transform

U †
W amUW = 1√

2
(am + bm), (10)

U †
W bmUW = 1√

2
(bm − am). (11)

This transformation is analogous to a 50/50 beamsplitter in
the context of optics. A possible method for performing the
splitting illustrated in Fig. 1 is to change a harmonic trapping
potential into a double-well potential and then separate the
two wells arbitrarily further apart. A difference between opti-
cal and atomic systems, however, is that interference between
two initially populated spatial modes am, bm is more difficult
to perform in a controlled way for atoms. We therefore con-
sider only application of the splitting operator when the bm

modes are initially unpopulated.
After a single BEC is split into two wells, the N atoms are

distributed randomly according to a binomial distribution. To
see this, we note that the initial state (1) containing the bulk
of the atoms evolves under the splitting operations as

UW |ψ0〉 = 1√
N!

(
a†

0 + b†
0√

2

)N

|0〉

= 1√
2N

∑
k

√(
N

k

)
(a†

0)k (b†
0)N−k|0〉. (12)

The number of atoms in each well is therefore a conserved
number satisfying

N = Na + Nb. (13)

C. Spin-changing collisions after splitting

After splitting the BEC, spin-changing collisions can also
take place locally in each trap. For this, we assume that the
mode m = 0 is also split coherently and equally according
to (12). Using the local oscillator approximation as before,
the Hamiltonian for the local spin-changing dynamics is de-
scribed by

H = h̄g
N

2
(a†

−1a†
1 + a−1a1) + h̄g

N

2
(b†

−1b†
1 + b−1b1), (14)

which is shown in Appendix A. Accordingly we may define
the squeezing transformation on each well as

U (a)
r = e−i r

2 (a†
−1a†

1+a−1a1 ),

U (b)
r = e−i r

2 (b†
−1b†

1+b−1b1 ), (15)

where r = gNt as before.
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D. Local spin rotations

In the following, we will require applying local spin ro-
tations on Alice and Bob’s BECs. First, define local spin
operators as [71]

Sy
A = −ia†

−1a1 + ia†
1a−1,

Sy
B = −ib†

−1b1 + ib†
1b−1. (16)

Then the rotation of the spin around the y-axis of the Bloch
sphere is defined as

V (θA, θB) = e−iSy
AθA e−iSy

BθB . (17)

Such rotations can be performed by applying a two-photon
microwave transition between the m = ±1 states [45].

In the state preparation protocol, we will also need to
imprint a relative phase between the m = −1 and +1. We
consider to be in the interaction picture, such that the default
phase evolution of both the ±1 states is zero. Then we intro-
duce a time-dependent controllable energy shift between the
states �, which results in the effective Hamiltonian

Hφ = h̄�(a†
1a1 + b†

1b1). (18)

Experimentally, this can be realized by applying a magnetic
field, or producing an AC Stark shift on the ±1 states. A
relative phase of π can be imprinted on the state by applying
this Hamiltonian for a time t = π/�. This corresponds to the
π -gate

Uπ = e−i(a†
1a1+b†

1b1 )π . (19)

E. Measurement

Finally, to readout the state of the atoms, the population
of the atoms in the am, bm states are measured by Alice and
Bob. This can be performed, for example, by spin-selective
absorption imaging [37]. This corresponds to a projective
measurement

�kl = |k, l〉〈k, l| (20)

for Alice, and similarly for Bob. The readout values k, l are
then used to evaluate Bell correlations as described in the
following sections.

III. CONSTRUCTING THE BELL CORRELATED STATE

A. Split-squeezed state

Before introducing our protocol for generating the Bell cor-
related state, it is instructive to write down the wave function
of the state that results from applying the two-mode squeezing
operation Ur and then spatially splitting the state with UW .
Starting from (6) and splitting the state for r � 1 we may
write

UW Ur |0〉 ≈ |0〉 − ir

2
(a†

1a†
−1 + b†

1b†
−1 + a†

1b†
−1 + b†

1a†
−1)|0〉.

(21)

We see that the last two terms a†
1b†

−1 + b†
1a†

−1 take the form of
a Bell state. It is tempting to design experimental observables
that are sensitive to this part of the wave function and use
the methods of Ref. [59] to observe a Bell violation. Such

operators are in fact not hard to construct, e.g., any number
operator of the form nanb automatically gives zero for the
a†

1a†
−1 + b†

1b†
−1 terms. However, this approach is vulnerable

to the postselection loophole, as it assigns the value of 0
to the corresponding measurements and thereby effectively
discards these outcomes. Such a postselection is known to be
problematic as it can distort the measurement outcome statis-
tics and artificially create Bell violations [17,72,73]. Indeed,
the problematic nature of such an approach can be seen by
observing that the two-boson terms in (21) can be written as
a product state (a†

1 + b†
1)(a†

−1 + b†
−1), which does not take the

form of a Bell state [74]. For these reasons, we will show in
the next section that it is possible to obtain a wave function
which exhibits a genuine Bell state for the two-boson terms,
by eliminating the a†

1a†
−1 + b†

1b†
−1 terms.

B. State preparation protocol

Here we introduce a protocol for generating Bell correlated
states in the context of atomic BECs:

(1) Starting from state (1), apply the squeezing operation
U2r . This can be performed by applying the Hamiltonian (2)
for a time 2t , resulting in squeezing characterized by the
parameter 2r = 2gNt .

(2) Apply a π -pulse on the states according to the operator
Uπ [Eq. (19)].

(3) Split the BEC into two wells, according to the trans-
formation UW [Eq. (8)].

(4) Squeeze each of the BECs in the wells individually,
according to the operator U (a)

2r U (b)
2r [Eq. (15)].

To lowest order in r, the above procedure results in the state

|�〉 = U� |0〉 (22)

≈ |0〉 + ir(a†
1b†

−1 + b†
1a†

−1)|0〉, (23)

where we defined the unitary operator for the full state prepa-
ration

U� = U (a)
2r U (b)

2r UW UπU2r . (24)

The above state does not contain the unwanted two-boson
terms that were present in (21). The intuition behind this state
preparation protocol is as follows. As can be seen from (21),
the split-squeezing procedure produces terms corresponding
to squeezing on each BEC individually (the a†

1a†
−1 + b†

1b†
−1

terms) and cross-squeezing between the BECs (the a†
1b†

−1 +
b†

1a†
−1 terms). A similar effect was observed in Ref. [61],

where splitting a squeezed state produced both local squeez-
ing as well as cross-squeezing between the BECs. However,
first applying a π -phase shift to reverse the sign of π , and
then applying local squeezing operators (15), results in a local
“desqueezing,” meaning that the local squeezing is effectively
canceled. The factor of 2 between the squeezing interaction
time in Steps 1 and 4 arises because the splitting procedure
introduces a factor of 2 as seen in (21).

We note that such a procedure is analogous to a well-
known procedure in quantum optics, where a two-mode
squeezed state is produced by sending two squeezed states
into a beamsplitter [58]. It is also true in the optics case that
if a single squeezed mode is sent into a beamsplitter, the final
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FIG. 2. The probability distribution (26) for the particle-number
sectors (a) NA = NB = 5; (b) NA = NB = 7; (c) NA = NB = 11;
(d) NA = 7, NB = 5. For all plots r = 0.5.

state is a combination of single- and two-mode squeezed states
(see Appendix B). By interfering two squeezed states, the
single-mode squeezing terms can be eliminated, such that the
final state is purely a two-mode squeezed state. As explained
above, the analog of such a procedure is not practical for BECs
as it would involve interfering two split BECs, hence we opt
for an alternative strategy where the splitting is performed on
a single BEC.

In Fig. 2 we show the probability distribution of the pre-
pared state in subspaces with definite particle numbers for
Alice and Bob, as defined by

NA = a†
1a1 + a†

−1a−1,

NB = b†
1b1 + b†

−1b−1. (25)

The probability in the number sector (NA, NB) is defined as

pNANB (kA, kB) = |〈�|kA, NA − kA〉 ⊗ |kB, NB − kB〉|2. (26)

We see that for particle-number sectors such that |NA − NB|
is even, anticorrelations are observed. Zero probability dis-
tributions are obtained when |NA − NB| is an odd integer.
This can be understood as a consequence of the fundamental
Hamiltonian (2): Atoms can scatter only into the +1 and −1
modes in pairs, so that the sum NA + NB and therefore also the
difference NA − NB must be even. The probabilities diminish
for larger NA, NB values for the relatively small squeezing that
is shown in Fig. 2. For the r = 0.5 case that is shown, for
small NA, NB, the probabilities are evenly distributed along the
diagonal.

C. Alternative methods

As other methods to generate EPR correlated states of
the desired form (22) may be possible, we briefly discuss
alternative state preparation strategies. For example, a similar

state to (23) could be generated by looking at the momentum
or energy degrees of freedom in the atoms. In this case the
relevant Hamiltonian would be

H ∝ a†
−1b†

1 + a†
1b†

−1 + a−1b1 + a1b−1, (27)

where am and bm label, for example, the positive and neg-
ative momentum atoms, respectively. Momentum resolving
measurements could be performed by a time-of-flight mea-
surement after releasing the atoms from the trap. Then, by
performing a spin measurement in a suitable basis, Bell cor-
relations should be present between two groups of atoms with
different momenta. Related approaches have been discussed
at the single atom level in Refs. [21,75]. Such alternative state
preparation strategies are compatible with the measurement
techniques of the next section, as long as the lowest order
expansions are of the form (23).

IV. APPROACH I: EVALUATING BELL’S INEQUALITY
USING NORMALIZED AVERAGES

In this section we apply the methods of Ref. [59] to eval-
uate the Bell inequality using the split-squeezed state (22).
Following the notation of Ref. [59], the quantity we wish to
evaluate is

B = E (θA, θB) + E (θ ′
A, θB) + E (θA, θ ′

B) − E (θ ′
A, θ ′

B). (28)

For any local realistic description of the system under investi-
gation, the observed correlations must obey [12]

|B| � 2. (29)

In (28) we defined

EI(θA, θB) = P++(θA, θB) + P−−(θA, θB)

− P+−(θA, θB) − P−+(θA, θB), (30)

where

Pi j (θA, θB) = 〈Ri j (θA, θB)〉∑
kl=± 〈Rkl (θA, θB)〉 . (31)

The correlation operators are

Ri j (θA, θB) = A†
i (θA)Ai(θA)B†

j (θB)Bj (θB), (32)

where i, j = ±, and the Ai(θA), Bj (θB) are annihilation opera-
tors on Alice and Bob’s subsystems in a basis specified by the
angles θA, θB. In our case, the operators are defined as

A+(θA) = cos θAa1 + sin θAa−1,

A−(θA) = cos θAa−1 − sin θAa1,

B+(θB) = cos θBb1 + sin θBb−1,

B−(θB) = cos θBb−1 − sin θBb1. (33)

Using the rotation operators (17) we may then write

Aj (θA) = V †(θA, θB)a jV (θA, θB),

Bj (θB) = V †(θA, θB)b jV (θA, θB), (34)

where j = ±. When considering the state (22), the correlators
appearing in (31) can then be written as

〈Ri j (θA, θB)〉 = 〈�|Ri j (θA, θB)|�〉
= 〈0|Ã†

i ÃiB̃
†
j B̃ j |0〉, (35)
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where

Ãi = U †
�V †(θA, θB)aiV (θA, θB)U�,

B̃i = U †
�V †(θA, θB)biV (θA, θB)U�. (36)

Combining the transformations (5), (10), and (33), we arrive
at the explicit expressions

Ã+ = cosh r(−c1 cos θA + c−1 sin θA)

+i sinh r(d†
−1 cos θA − d†

1 sin θA),

B̃+ = cosh r(d1 cos θB − d−1 sin θB)

−i sinh r(c†
−1 cos θB − c†

1 sin θB),

Ã− = cosh r(c−1 cos θA + c1 sin θA)

−i sinh r(d†
1 cos θA + d†

−1 sin θA),

B̃− = − cosh r(d−1 cos θB + d1 sin θB)

+i sinh r(c†
1 cos θB + c†

−1 sin θB),

where we have defined

cm = 1√
2

(am + bm),

dm = 1√
2

(am − bm) (37)

for m = ±1. Substituting these expressions into (35), and
evaluating (28) with the optimal angles

θA = 3π

8
, θ ′

A = π

8
, θB = π

4
, θ ′

B = 0, (38)

we obtain

B = 4
√

2 cosh2 r

3 cosh 2r − 1
. (39)

The largest violation is thus obtained in the limit of r → 0,
where B = 2

√
2.

A plot of (39) is shown in Fig. 3(a) (solid line). We see
that violations of the Bell inequality are seen for r � 0.49.
Similarly to what is shown in Ref. [59], the level of violation
decreases with squeezing. This occurs since the operators to
detect the Bell correlations are constructed with the lowest
order terms (23) in mind, and larger values of squeezing create
additional undesired contributions. We expect that the angle
choices (38) are optimal only for the NA = NB = 1 particle
sector, analogously to what has been found in the optical
case of Bell inequalities for states with large photon numbers
[16,56]. However, for small r, the dominant terms responsible
for the Bell violation are the first-order terms with NA = NB =
1, so that (38) should be close to optimal in this regime. This
is confirmed by Fig. 3(a). In practice, due to the presence of
experimental imperfections one may require working at finite
levels of squeezing such that a sufficient signal-to-noise is
obtained. Hence there is a practical trade-off between maxi-
mizing the CHSH violation and working at squeezing levels
within an experimentally accessible range.

In the following sections we will compare two other al-
ternative ways of defining the correlators E (θA, θB). In order
to distinguish which alternative is being used, we refer to
the method used in this section as “Approach I” henceforth.

FIG. 3. The Bell-CHSH quantity B as a function of the dimen-
sionless squeezing parameter r for (a) Approaches I and III and
(b) Approach II. Numerically evaluated lines (dashed and dotted
lines) for (a) Approaches I and III, corresponding to the methods
given in Sec. IV and Sec. V D, respectively; and (b) Approach II,
given in Sec. V C are shown. The black (solid) line in (a) is the exact
result (39). In all cases B is calculated using (28), but using various
definitions of E (θA, θB ), where for Approach I Eq. (54), II Eq. (53),
and III Eq. (70) is used for the cases without loss γ = 1. For the cases
with loss γ < 1, for Approach II Eq. (79), and III Eq. (81) is used.
For all numerical calculations kcut = 40 is used.

Quantities that can be evaluated in different ways, such as the
correlators, will be labeled by I, II, or III, to specify which
approach is being used.

V. EVALUATING THE BELL INEQUALITY USING
TWO-OUTCOME MEASUREMENTS

A. Evaluation of correlators using Born’s rule

In the derivation of the original CHSH inequality [12], each
of the terms E (θA, θB) in (28) is calculated by assigning a
value of ±1 to every measurement outcome and averaging
over the full set of probabilistic outcomes. Closer inspection
of (30) reveals that this is not precisely the quantity that is
being evaluated, following the procedure in Ref. [59]. The key
point is that (31) is evaluated using a normalized average of
number operators and is not a probabilistic average over ±1
outcomes.

It is also possible to understand the evaluation of the corre-
lators E (θA, θB) in a different way, which more clearly shows
this point. Although the expression (30) has the appearance
of assigning ±1 outcomes based on the probabilities Pi j ,
in fact, the same expressions can be written in a way that
reveals how it deviates from a simple average over two-valued

043323-6



BELL CORRELATIONS IN A SPLIT … PHYSICAL REVIEW A 104, 043323 (2021)

outcomes. To see this, let us first write (30) more explicitly by
substituting the expressions (31) and (32), which gives

EI(θA, θB) =
∑

i j=± i j
〈
Ni

A(θA)N j
B (θB)

〉
∑

kl=±
〈
Nk

A (θA)Nl
B(θB)

〉 , (40)

where we defined the number operators

N j
A (θA) = A†

j (θA)Aj (θA),

N j
B (θB) = B†

j (θB)Bj (θB). (41)

This can be equally written in a spin language as

EI(θA, θB) = 〈SA(θA)SB(θB)〉
〈NANB〉 , (42)

where we defined the spin operators

SA(θA) = N+
A (θA) − N−

A (θA),

SB(θA) = N+
B (θA) − N−

B (θA), (43)

and total number operators

NA = N+
A (θA) + N−

A (θA),

NB = N+
B (θA) + N−

B (θA), (44)

where there is no angular dependence for the total number
operators.

In the one-particle sector NA = NB = 1, the spin opera-
tor in the numerator of (42) has two eigenvalues ±1, and
NANB = 1. However, in higher particle-number sectors the
spin operators SA(θA) take eigenvalues between −NA and NA,
and similarly for Bob. Furthermore, it is also clear that (42)
has no contribution when either Alice or Bob measures a
vacuum. This is because for a vacuum measurement on Alice
we have NA = SA = 0 and similarly NB = SB = 0 when Bob
measures his vacuum. This immediately gives a 0 coefficient
for such outcomes and effectively removes these events from
the correlations. This explains why in Fig. 3(a) the violations
are maximal as r → 0. In this limit, the state is well approx-
imated by (23), which is a Bell state except for the vacuum
term. By removing the vacuum contribution from the mea-
surements implicitly, only the Bell state is included, yielding
the maximal violation. This shows that the correlators are not
calculated as an average over two-outcomed events, which is
assumed in the original derivation of the CHSH inequality.

B. Approach II: Alternative definition of the correlators

We now propose an alternative way to define the correla-
tors such that each measurement outcome is assigned to ±1,
and the correlators are averaged over the full set of possible
outcomes. This not only gives a more direct connection to the
original CHSH inequality [12], but in fact it also improves
the level of violation beyond that given by (39), under certain
assumptions. Our proposed modification is to redefine (30) as

EII(θA, θB) = 〈sgn[SA(θA)]sgn[SB(θB)]〉, (45)

where we use a two-valued version of the sign function with
definition

sgn(x) =
{−1 for x < 0

1 for x � 0 . (46)

A similar sign-binning approach is regularly considered for
homodyne measurements on CV systems [76–79]. Note that
our definition of the sign function bins x = 0 into the +1
outcome, which ensures that two-valued measurement out-
comes are constructed without discarding any data. Due to this
feature, our sign function is not multiplicative, i.e., sgn(xy) �=
sgn(x)sgn(y), which is why we define the expectation values
using a product of two sign functions in (45). This enables Al-
ice and Bob to evaluate their outcomes independently, without
the knowledge of each other’s result. We call this Approach II
and label (45) accordingly.

To be clear on the meaning of (45), let us rewrite the
expression entirely in terms of probabilities. First, we define
the eigenstates of the number operators (41)

|kA, lA〉(θA ) = 1√
kA!lA!

(A†
+(θA))kA (A†

−(θA))lA |0〉, (47)

|kB, lB〉(θB ) = 1√
kB!lB!

(B†
+(θB))kB (B†

−(θB))lB |0〉, (48)

|kA, lA, kB, lB〉(θA,θB ) ≡ |kA, lA〉(θA ) ⊗ |kB, lB〉(θB ), (49)

which satisfy

N+
A (θA)|kA, lA〉(θA ) = kA|kA, lA〉(θA ),

N−
A (θA)|kA, lA〉(θA ) = lA|kA, lA〉(θA ),

N+
B (θB)|kB, lB〉(θB ) = kB|kB, lB〉(θB ),

N−
B (θB)|kB, lB〉(θB ) = lB|kB, lB〉(θB ). (50)

Then the sign operators take the explicit form

sgn[SA(θA)] =
∑

kA�lA

|kA, lA〉(θA )〈kA, lA|(θA )

−
∑
kA<lA

|kA, lA〉(θA )〈kA, lA|(θA ),

sgn[SB(θB)] =
∑

kB�lB

|kB, lB〉(θB )〈kB, lB|(θB )

−
∑

kB<lB

|kB, lB〉(θB )〈kB, lB|(θB ). (51)

When a measurement of the state (22) is made in the
basis (49), the probabilities of the corresponding measurement
outcomes are given by Born’s rule as

p(θA,θB )
kAlAkBlB

= |〈�|kA, lA, kB, lB〉(θA,θB )|2. (52)

Then we can evaluate the quantity (45) explicitly to be

EII(θA, θB)

=
∑

kAlAkBlB

p(θA,θB )
kAlAkBlB

sgn(kA − lA)sgn(kB − lB). (53)

It is clear from this expression that for each outcome labeled
by (kA, lA, kB, lB), an outcome of ±1 is assigned, and the
average is performed over the full probability distribution for
all possible outcomes.
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C. Numerical evaluation

In this section we discuss the numerical results correspond-
ing to the alternative definition of the correlator (53). For
details regarding the numerical calculation, see Appendix C.

In Fig. 3(b) we show the Bell quantity B using Approach
II. We see that in the ideal case (γ = 1), its value starts at
2 and increases with the amount of squeezing. Bell violations
are seen for all values of squeezing r > 0. This rather different
behavior compared to Approach I calls for an explanation. As
we have seen in the low-order expansion of the state |�〉 (23),
for small values of squeezing the state is dominated by the
vacuum state, with a small contribution of a Bell state. For the
vacuum state, (45) evaluates to E (θA, θB) = 1 for all choices
of angles. Substituting this into (28), we recover the result
B = 2, which explains the result for r = 0. As r is increased,
the Bell state gives a contribution of 2

√
2 and increases the

overall level of violation. In fact, higher order terms to (23)
also show analogous anticorrelations in terms of SA(0) and
SB(0), hence the level of violation continues to increase with
r as seen in Fig. 2.

The dependence of the Bell quantity B on the amount of
squeezing in Fig. 3(b) appears to reach an inflection point
around r ≈ 0.4, from where it starts to plateau to a finite
value. This flattening might however be partly caused by
the truncation at kcut in our simulation. We expect that the
violation will monotonically increase with r, but due to the
limits of our numerical methods we were unable to find
the limiting value [80]. In Fig. 3(a) we show a comparison of
the numerically determined B and the exact value, both for
Approach I. We see that they are perfectly congruent until
at least r = 0.6, from where they start to deviate, with the
numerical value underestimating the true value. For levels
of squeezing r < 0.6 we expect the numerical results to be
reliable, as the numerical calculation of B with Approach I
agrees with the exact result (39) to within 0.5%.

At this point it is natural to ask why, contrary to Approach
II, Approach I shows an increasing violation for r → 0. The
reason for this is that by using the correlators according
to (42), we implicitly discard all vacuum states for which
SA = NA = 0 or SB = NB = 0. Since these states do not con-
tribute to the normalization factor in the correlators, this can
be considered an effective postselection of the vacuum. To
see this explicitly, we write the correlators (42) in terms of
probabilities as

EI(θA, θB) =
∑

kAlAkBlB
p(θA,θB )

kAlAkBlB
(kA − lA)(kB − lB)∑

kAlAkBlB
p(θA,θB )

kAlAkBlB
(kA + lA)(kB + lB)

. (54)

Written in this form, it is clear that all vacuum terms with
kA = lA = 0 or kB = lB = 0 are excluded from the sums. Also,
the probabilities for kA = lA or kB = lB are assigned a factor
of zero and do not contribute to the numerator. We note that
a similar decrease in the level of CHSH violation when in-
cluding the vacuum and higher-order contributions was also
observed in Refs. [80,81].

While for small r the level of violation is lower using
Approach II than I, we consider the former to be a more rigor-
ous evaluation of the CHSH inequality, as the full probability
distribution over all possible measurement outcomes is used
in the calculation, and only ±1 outcomes are assigned. We

also note that using Approach II, no auxiliary assumptions
such as the fair-sampling or the no-enhancement assumptions
[82] are needed to achieve a violation of the CHSH inequality
or, equivalently, of the CH inequality [83]. Intuitively, the
dependence of the Bell quantity violation on r is reasonable,
as one expects that the amount of correlations should increase
with the level of squeezing r, which also reflects the amount of
entanglement that is present in the system. At r = 0 there are
no quantum correlations in the system, hence one expects no
violation of the CHSH inequality. Therefore, in our opinion,
evaluation of the correlators following (53) provides a more
rigorous approach if one is interested in the evaluation of the
original CHSH inequality with as few additional assumptions
as possible.

D. Approach III: Evaluation with the CH inequality

As discussed in the previous section, one of the disadvan-
tages of Approach II is that the level of violation is much
smaller than the one of Approach I. The main reason for this
difference is that in Approach I measurements of the vacuum
by Alice or Bob are assigned to a value of 0, as can be seen
from (42) or (54). Since the vacuum does not contain any
correlations, but yet is the dominant term in the expansion
(23), removing this contribution allows one to obtain a large
violation for small r. However, the postselection of undesir-
able measurement outcomes is well known to carry the risk
of opening loopholes in a Bell test, thereby invalidating the
conclusion of a Bell inequality violation [17,72,73]. Hence,
any such procedure should be carefully analyzed and justified
with regard to the physical system on which the Bell test is
performed.

To this end, we consider the Clauser-Horne (CH) inequal-
ity including the no-enhancement assumption [17,83]. In our
notation this reads

−P∀∀ �Pσσ ′
(θA, θB) + Pσσ ′

(θA, θ ′
B) + Pσσ ′

(θ ′
A, θB)

− Pσσ ′
(θ ′

A, θ ′
B) − Pσ∀(θA) − P∀σ ′

(θB) � 0, (55)

where Pσσ ′
is the probability of detecting an event of type

σ at Alice and σ ′ at Bob, where σ, σ ′ ∈ ±. The index ∀
denotes that any detection event is counted. In the case of,
e.g., photons with polarization encoding, this corresponds to
removing the polarization analyzer and detecting all photons.
In our case, we may define this more concretely by

P∀∀ =
∑

σ,σ ′=±
Pσσ ′

(θA, θB), (56)

Pσ∀(θA) =
∑
σ ′=±

Pσσ ′
(θA, θB), (57)

P∀σ (θB) =
∑
σ ′=±

Pσ ′σ (θA, θB). (58)

An important aspect of all the probabilities that appear in (55)
is that only outcomes for Alice and Bob both registering a
detection are counted. This means that if Alice or Bob detects
the vacuum, they are not counted in any of the probabilities.
The no-enhancement assumption amounts to demanding that
the probability of an event of type σ is less than that where
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any detection is allowed:

Pσ (θ ) � P∀ (59)

for Alice or Bob. We note that the definitions (56)–(58) imply
that we should define P∀ = ∑

σ=± Pσ (θ ), which would mean
that (59) will always be satisfied.

An alternative form of the CH inequality can be derived
from (55) taking the form [17]

B � 2 (60)

by using the definition (28) and defining the correlators

EIII(θA, θB) = 1

P∀∀ [P++(θA, θB) + P−−(θA, θB)

−P+−(θA, θB) − P−+(θA, θB)]. (61)

We show the derivation of this alternative form of the CH
inequality in Appendix D. The advantage of the CH inequality
with the no-enhancement assumption is apparent in (61). All
probabilities involve only probability outcomes where Alice
and Bob both record nonvacuum events, and 0 is assigned
otherwise. This means that events corresponding to vacuum
measurements can be eliminated, and the factor of P∀∀ acts
as a normalizing factor to account for the small probabilities
of the nonvacuum terms. In the case of atom number mea-
surements, the detection of the vacuum corresponds to all the
atoms being detected in the state m = 0. This is different to
the photonic situation where vacuum detection corresponds to
“no click” and is indistinguishable from no detection. In the
framework of the CH inequality, we may nevertheless assign
such vacuum detection events to zero outcomes, which can be
considered as a particular binning strategy.

We now explicitly show the expressions for the proba-
bilities that appear in the CH inequality. The two-outcome
probabilities are binned as

Pσσ ′
(θA, θB) = 〈

�σ
A (θA)�σ ′

B (θB)
〉
, (62)

with projection operators defined as

�+
A (θA) =

∑
kA � lA

( �= kA = lA = 0)

|kA, lA〉(θA )〈kA, lA|(θA ),

�−
A (θA) =

∑
kA<lA

|kA, lA〉(θA )〈kA, lA|(θA ),

�+
B (θB) =

∑
kB � lB

( �= kB = lB = 0)

|kB, lB〉(θB )〈kB, lB|(θB ),

�−
B (θB) =

∑
kB<lB

|kB, lB〉(θB )〈kB, lB|(θB ). (63)

The four projection operators divide all possible outcomes
into four regions, depending on whether kA � lA or kA < lA,
and similarly for Bob. This is the same strategy as we per-
formed in Approach II, and it involves the same quantities
as seen in (51). The only difference here is that the vacuum
outcomes kA = lA = 0 and kB = lB = 0 are excluded from
the sums, which amounts to assigning them a value of zero.
This is done in accordance to the CH inequality, where only

coincidence outcomes (i.e., a particle is detected by Alice and
Bob in the m = ±1 states) are included.

Expressions for the other probabilities are given from the
definitions (56)–(58). We have

P∀∀ = 〈�〉, (64)

where

� = (
IA − �0

A

)(
IB − �0

B

)
(65)

is the projector onto the space where the vacuum state for
Alice and Bob is removed. Here we defined the identity op-
erators IA, IB, and the vacuum projectors

�0
A = |0A, 0A〉〈0A, 0A|,

�0
B = |0B, 0B〉〈0B, 0B| (66)

for Alice and Bob’s respective subspaces. Although we do not
need the expressions for (57) and (58), we provide them for
completeness:

Pσ∀(θA) = 〈
�σ

A (θA)�
〉
,

P∀σ (θB) = 〈
�σ

B (θB)�
〉
. (67)

We point out that the assignment of the 1 or 0 values can be
done locally by Alice and Bob since the projections in (62)
are of a product form.

In terms of the correlators, using (61) we may write

EIII(θA, θB) = 〈�sgn[SA(θA)]sgn[SB(θB)]〉
〈�〉 . (68)

Here we used the fact that

sgn[SA(θ )] = �+
A (θ ) − �−

A (θ ) + �0
A,

sgn[SB(θ )] = �+
B (θ ) − �−

B (θ ) + �0
B. (69)

In terms of probabilities, the correlators in this case are

EIII(θA, θB) = 1

〈�〉
×

∑
kAlAkBlB

( �= kA = lA = 0,

�= kB = lB = 0)

p(θA,θB )
kAlAkBlB

sgn(kA−lA)sgn(kB−lB),

(70)

where

〈�〉 = 1 −
∑
kAlA

p(θA,θB )
kAlA00 −

∑
kBlB

p(θA,θB )
00kBlB

+ p(θA,θB )
0000 . (71)

In the summation in (70), all terms where Alice detects the
vacuum (i.e., kA = lA = 0), or Bob detects the vacuum (i.e.,
kB = lB = 0) are excluded. Written in this form, it is clear that
(68) can be evaluated by assigning a two-valued ±1 outcome
for every measurement outcome labeled by kA, lA, kB, lB, ex-
cept for local vacuum outcomes.

In Fig. 3(a) we show the Bell quantity using CH correla-
tors (70), indicated by the Approach III labels. We observe
that the level of violation is significantly greater than that of
Approach I for finite values of squeezing r. It also improves
upon Approach II, which starts at B = 2 due to the included
vacuum contribution. Even for the largest values of squeezing
we calculated, there is a violation of B ≈ 2.48. Overall, this
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approach is an improvement to Approach I, since it shows a
significantly larger level of violation without discarding any
further measurement outcomes.

VI. EFFECTS OF LOSS AND IMPERFECT ATOM NUMBER
RESOLUTION

We finally show the robustness to noise of the approaches
we considered, by showing the effect of loss and imperfect
atom number resolution on the Bell violations previously eval-
uated.

A. Loss

The primary mechanism of decoherence in atomic systems
is particle losses, where atoms escape from the trap. We take a
relatively simple approach to incorporating losses, where we
assume that initially the state (22) is prepared and the rotation
operators (17) are applied without decoherence, producing the
state

|�(θA, θB)〉 = V (θA, θB)U� |0〉. (72)

Losses are then considered to take place after state prepara-
tion, resulting in the state

ρ =
∑

nAmAnBmB

FnA FmA FnB FmB

× |�(θA, θB〉〈�(θA, θB|F †
mB

F †
nB

F †
mA

F †
nA

(73)

according to the operator-sum representation. Here the Kraus
operators for the loss of n atoms on a single mode are defined
as [84]

Fn =
∞∑

k=n

√(
k

n

)√
γ k−n(1 − γ )n|k − n〉〈k|, (74)

where 1 − γ is the probability of losing an atom. The four
operators in (73) are for the four-atom species as given in (49).

Since we have already taken account of the Bell angle
rotations in the state (72), here the relevant correlations to be
evaluated using Approach I are

Eγ

I (θA, θB) = Tr
(
Sz

ASz
Bρ
)

Tr(NANBρ)
, (75)

while for Approach II we have

Eγ

II (θA, θB) = Tr
(
sgn

[
Sz

A

]
sgn

[
Sz

B

]
ρ
)
, (76)

where

Sz
A = a†

1a1 − a†
−1a−1,

Sz
B = b†

1b1 − b†
−1b−1, (77)

NA, NB are defined in (25), and the sign function is taken as
before.

When evaluating (76), instead of applying the Kraus oper-
ators on the state, we find it more convenient to apply them on
the observable operator, defining an observable incorporating
losses. We defer the derivations to Appendix E and present
only the final results here. For Approach I, from the fact that∑

n

F †
n a†aFn = γ a†a, (78)

all γ factors cancel out and the same expression as (54) is
obtained. Hence, for Approach I, the Bell measurements are
unchanged under loss.

For Approach II, we obtain

Eγ

II (θA, θB) =
∑

kAlAkBlB

p(θA,θB )
kAlAkBlB

Gγ

kAlA
Gγ

kBlB
, (79)

where the sign operators including loss are defined as

Gγ

kl = 1 − 2
∑
n<m

(
k

k − n

)(
l

l − m

)
γ n+m(1 − γ )k−n+l−m.

(80)

For Approach III, using the expression (68) we may write

Eγ

III(θA, θB) = 1

Tr(�ρ)

[
Tr
(
sgn

[
Sz

A

]
sgn

[
Sz

B

]
ρ
)

− Tr
(
�0

Asgn
[
Sz

B

]
ρ
)

− Tr
(
sgn

[
Sz

A

]
�0

Bρ
) + 〈0|ρ|0〉]. (81)

Here the first term in the numerator is the same as the Ap-
proach II correlator (79). The remaining terms are given by

Tr
(
�0

Asgn
[
Sz

B

]
ρ
) =

∑
kAlAkBlB

p(θA,θB )
kAlAkBlB

Hγ

kAlA
Gγ

kBlB
,

Tr
(
sgn

[
Sz

A

]
ρ�0

B

) =
∑

kAlAkBlB

p(θA,θB )
kAlAkBlB

Gγ

kAlA
Hγ

kBlB

〈0|ρ|0〉 =
∑

kAlAkBlB

p(θA,θB )
kAlAkBlB

Hγ

kAlA
Hγ

kBlB
, (82)

where we defined

Hγ

kl = |〈0, 0|FkFl |kl〉|2 = (1 − γ )k+l . (83)

Finally, we have

Tr(�ρ) = 1 − Tr
(
�0

Aρ
) − Tr

(
�0

Bρ
) + 〈0|ρ|0〉, (84)

where

Tr
(
�0

Aρ
) =

∑
kAlAkBlB

p(θA,θB )
kAlAkBlB

Hγ

kAlA
,

Tr
(
�0

Bρ
) =

∑
kAlAkBlB

p(θA,θB )
kAlAkBlB

Hγ

kBlB
. (85)

B. Imperfect number resolution

Atom number detectors in practice have often an imperfect
number resolution. We model this as a detector inefficiency,
where there is a probability 1 − η of failing to detect an atom.
Following Ref. [85], we define the probability of obtaining a
readout of k − n for a physical number state k as

Pη(k, n) =
(

k

n

)
ηk−n(1 − η)n, (86)

which is a normalized as
∑

n Pη(k, n) = 1. With respect to the
readout k − n, this distribution has a mean value

μdet = kη (87)

and standard deviation

σdet =
√

k(1 − η)η. (88)
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The distribution is approximately distributed as a Gaussian for
1/k � η � 1 − 1/k. A typical efficiency that may be achieved
experimentally using absorption imaging is a resolution of ±4
atoms for 1000 atoms [37].

Now consider a physical collapse on a number state |k〉.
Then with probability Pη(k, n) this will be counted as an
outcome with k − n atoms. The number operator including
detector inefficiency is then

Nη =
∑

k

∑
n

(k − n)Pη(k, n)|k〉〈k|

= ηa†a. (89)

In this case, correlators for Approach I are defined as

Eη
I (θA, θB) =

〈(
Nη+

A − Nη−
A

)(
Nη+

B − Nη−
B

)〉〈(
Nη+

A + Nη−
A

)(
Nη+

B + Nη−
B

)〉 , (90)

where the expectation values are evaluated with respect to
the state (72). Due to the linear nature of (89), as with loss,
the factors η cancel out, and the same expression as (54) is
obtained. Hence, for Approach I the Bell measurements are
unchanged under imperfect detector efficiency.

For Approach II, we define a version of the spin sign
operator with detection inefficiency as

sgnη(Sz ) =
∑

kl

∑
nm

sgn(k − n − l + m)

× Pη(k, n)Pη(l, m)|k, l〉〈k, l|
=
∑

kl

Gη

kl |k, l〉〈k, l|, (91)

where the function Gη

kl is the same as that defined in (80)
with γ → η. The correlators for Approach II are in this case
defined as

Eη
II (θA, θB) = 〈

sgnη

[
Sz

A

]
sgnη

[
Sz

B

]〉
, (92)

where the expectation values are evaluated with respect to the
state (72). This takes precisely the same form as (79), since the
functional form of the lossy spin sign operators is the same as
that for that including detection inefficiency.

Similarly, for Approach III the correlators give exactly the
same result as (81). The calculations are shown in Appendix F.
The reason for this is that in our model, loss occurs after state
preparation, and occurs with a probability distribution that is
identical to (86). In this case the loss of physical photons is
exactly equivalent to the lack of detection of atoms and results
in the same modified probability distribution up to the replace-
ment γ → η. Since the results for loss and imperfect detector
efficiency have exactly the same dependence, we henceforth
consider only the effect of loss.

C. Numerical results

In Fig. 3(a) we show numerical results including Approach
III with losses. We see that as expected, the effect of the loss
is to diminish the level of violation. We see that for 1 − γ =
0.1 loss probability, the results are almost unchanged from
the ideal results and still show a large violation even for loss
probabilities up to 1 − γ = 0.3. We also do not see a very
large change in the r dependence when including losses. Our

results suggest that our observed Bell violations are robust to
experimental imperfections.

For Approach II, we found a more significant dependence
on losses; see Fig. 3(b). At r → 0, all curves including those
with losses start at B = 2, which is expected as the pres-
ence of losses should increase only the vacuum contribution.
When losses are taken into account, the violation decreases for
r > 0, and no violation is seen for any r when 1 − γ ∼ 0.3.
For loss probabilities in the region of 1 − γ = 0.1, however,
we conclude that it is still possible to detect Bell violations.
Since the level of violation is smaller in this postselection-free
approach, we imagine that it could be more difficult to observe
experimentally.

Another possible experimental imperfection lies in the in-
teraction time for which the squeezing and “desqueezing” are
performed. To investigate the effect of nonideal squeezing
times, we numerically calculated the Bell violations for all
three approaches using “desqueezing” times that were 50%
lower than the ideal times. As expected, the level of Bell
violation decreases as interaction times differ from their op-
timal values. The maximum Bell violations decreased by less
than 10% for r < 0.2. We therefore expect that this source of
imperfection can be sufficiently controlled in realistic experi-
mental scenarios.

VII. SUMMARY AND CONCLUSIONS

We have proposed a scheme for observing Bell correlations
between spatially separated Bose-Einstein condensates using
the CHSH inequality. The state preparation protocol consists
of three main steps. The first step involves exploiting spin-
changing collisions in a single BEC to produce the analog of
a two-mode squeezed state. In the second step, this system is
split into two BECs by controlling, e.g., the trapping potential.
As a third step, spin-changing collisions are exploited locally
on each BEC, in order to remove undesired local squeezing
terms from the state. In the two-particle sector, this leaves
the two BECs in a Bell state. To evaluate the Bell correla-
tions, three approaches were considered. In Approach I, the
methods of Ref. [59] was used, where the correlators are
evaluated as ratios of number operator expectation values.
Despite the fact that maximal Bell violations are observed
using this approach, we find that this method of evaluating the
correlators deviates from the original CHSH derivation, since
it does not use genuine two-valued measurement outcomes
±1. Moreover, it also implicitly does not sum over the full
probability distribution of all possible outcomes, since partic-
ular outcomes (notably vacuum measurements by Alice and
Bob) are assigned to a zero value and thus do not contribute to
the correlators. We therefore introduced Approach II based on
sign functions of spin operators, such that genuine ±1 mea-
surement outcomes are constructed and averaged over the full
set of possible outcomes. Even though this approach involves
no postselection and no auxiliary assumptions, violations are
still observed, albeit at a lower level due to the inclusion
of the vacuum. In Approach III, we use the CH inequality
with the no-enhancement assumption to effectively remove
the local vacuum contributions. Here the level of violation
again reaches the maximum value of 2

√
2 for small squeezing

and shows larger levels of violation than Approach I. The
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results are found to be rather robust in the presence of loss,
and violations are observed for reasonable parameters.

Each of the approaches that we have considered possess
advantages and disadvantages. One major advantage of Ap-
proach I is that it is highly robust against loss and detector
resolution issues. For the models considered in this work,
the results remain completely unchanged. However, it has the
conceptual disadvantage that the correlators are evaluated not
strictly following a CHSH evaluation. Both Approaches II
and III are improvements of Approach I, and in this sense
they should be the preferred methods if a rigorous evaluation
of correlators is a priority. Approach II represents the most
rigorous violation of Bell’s inequality, in the sense that it
does not require any auxiliary assumptions besides those of
Bell’s theorem. However, it has the practical disadvantage of
a smaller level of violation and higher susceptibility to losses.
Approach III provides significantly larger levels of viola-
tion, but it requires an auxiliary no-enhancement assumption.
When losses are taken into account, it additionally requires a
fair-sampling assumption, i.e., that losses are independent of
the measurement settings. It is thus vulnerable to two more
loopholes than Approach II.

The main experimental challenges of our scheme lie
in the splitting process during the initial state preparation
and the imperfect atomic number resolution in order to eval-
uate the probability densities (52). With current technology, a
resolution at the level of ±4 atoms can be performed within
∼1000 atoms [37]. One of the advantages of our approach
is that the sign-operator approach is relatively insensitive
to atom number fluctuations, unlike, for example, the par-
ity operator [55]. We do note that for small squeezing the
dominant contribution to the Bell violation is in the NA =
NB = 1 particle sector, for which single-atom resolution is

required. Hence in the case of limited atom number resolution,
it may be advantageous to probe the large squeezing regime
where the effective spins are larger. We note that there have
been improvements in atom number resolution recently which
are beneficial towards the observation of Bell correlations
[86–88]. While we primarily considered the split-squeezing
approach to generate correlations between spatially separated
BECs, alternative methods such as that discussed in Sec. III C
could equally be applied to the sign-operator method of Ap-
proaches II and III.
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APPENDIX A: APPROXIMATED HAMILTONIANS (3)
AND (14)

At two points [Eq. (3) and Eq. (14)] we make use of the lo-
cal oscillator approximation, i.e., the approximation of the a0

and b0 modes as classical fields. In the following we provide
calculations confirming the validity of the approximations in
the limits of r � 1 and N � 1, and present additional nu-
merical results which were obtained with the unapproximated
Hamiltonian (2).

1. First-order calculation confirming the approximated Hamiltonian (3)

Given the exact Hamiltonian (2), H = h̄g(a†
−1a†

1a0a0 + a†
0a†

0a−1a1), its induced unitary transformation Ur now reads

Ur = e−iHt/h̄ = e− ir
N (a†

−1a†
1a0a0+a†

0a†
0a−1a1 ). (A1)

In the following we evaluate each of the steps in the state preparation protocol (24) to first order in r. Up to the linear term in r,
the state after the first step can be directly calculated to be

|ψ1〉 = U2r |ψ0〉 =
[

1 − i
2r

N
(a†

−1a†
1a0a0 + a†

0a†
0a−1a1)

]
1√
N!

(a†
0)N |0〉

=
[

1√
N!

(a†
0)N − i2r

√
N (N − 1)

N

1√
(N − 2)!

(a†
0)N−2a†

1a†
−1

]
|0〉. (A2)

The result of the second step can also immediately be evaluated to

|ψ2〉 = Uπ |ψ1〉 =
[

1√
N!

(a†
0)N + i2r

√
N (N − 1)

N

1√
(N − 2)!

(a†
0)N−2a†

1a†
−1

]
|0〉. (A3)

The third step evenly splits all three modes:

|ψ3〉 = UW |ψ2〉

=

⎡
⎢⎢⎢⎢⎣

1√
N!

(
a†

0 + b†
0√

2

)N

︸ ︷︷ ︸
(i)

+ i2r

√
N (N − 1)

N

1√
(N − 2)!

(
a†

0 + b†
0√

2

)N−2(
a†

1 + b†
1√

2

)(
a†

−1 + b†
−1√

2

)
︸ ︷︷ ︸

(ii)

⎤
⎥⎥⎥⎥⎦|0〉. (A4)
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To evaluate the fourth step |ψ4〉 = U (a)
2r U (b)

2r |ψ3〉, we divide the above formula into the two terms labeled by (i) and (ii). Starting
with the unitary U (a)

2r and the first term (i) in |ψ3〉, we can rewrite and evaluate

U (a)
2r

1√
N!

(
a†

0 + b†
0√

2

)N

|0〉 = U a
W

(
U a

W

)†
e−i 2r

N (a†
1a†

−1a2
0+H.c.)U a

W

(
U a

W

)† 1√
N!

(
a†

0 + b†
0√

2

)N

U a
W

(
U a

W

)†|0〉 (A5)

= U a
W e

−i 2r
N

(
a†

1a†
−1

(a0+b0 )2

2 +H.c.
)

1√
N!

(a†
0)N |0〉 (A6)

≈ U a
W

{
1 − i

r

N

[
a†

1a†
−1(a0 + b0)2 + (a†

0 + b†
0)2a1a−1

]} 1√
N!

(a†
0)N |0〉 (A7)

= U a
W

(
1√
N!

(a†
0)N − ir

√
N (N − 1)

N
a†

1a†
−1

(a†
0)N−2

√
(N − 2)!

)
|0〉 (A8)

=
[

1√
N!

(
a†

0 + b†
0√

2

)N

− ir

√
N (N − 1)

N
a†

1a†
−1

1√
(N − 2)!

(
a†

0 + b†
0√

2

)N−2]
|0〉 (A9)

to first order in r, with

U a
W = e− π

4 (a†
0b0+b†

0a0 ). (A10)

With a completely analogous calculation we also obtain

U (b)
2r

1√
N!

(
a†

0 + b†
0√

2

)N

|0〉 =
[

1√
N!

(
a†

0 + b†
0√

2

)N

− ir

√
N (N − 1)

N
b†

1b†
−1

1√
(N − 2)!

(
a†

0 + b†
0√

2

)N−2]
|0〉 (A11)

to first order in r. The action on the second term (ii) can be evaluated in a similar fashion. Performing the same manipulations
as before (inserting three copies of U a

W (U a
W )† and expanding the exponential to first order), we arrive at

U (a)
2r

[
ir

√
N (N − 1)

N

1√
(N − 2)!

(
a†

0 + b†
0√

2

)N−2

(a†
1 + b†

1)(a†
−1 + b†

−1)

]
|0〉 (A12)

≈ U a
W

{
1 − ir

[
a†

1a†
−1(a0 + b0)2 + (a†

0 + b†
0)2a1a−1

]}
ir

√
N (N − 1)

N

1√
(N − 2)!

(a†
0)N−2(a†

1 + b†
1)(a†

−1 + b†
−1)|0〉 (A13)

= U a
W

[
ir

√
N (N − 1)

N

1√
(N − 2)!

(a†
0)N−2(a†

1 + b†
1)(a†

−1 + b†
−1) + r2(· · · )

]
|0〉, (A14)

where we omitted the detailed evaluation of terms entering in the second order of r. Keeping only terms up to linear order in r
and applying the rotation, this is simply

ir

√
N (N − 1)

N
(a†

1 + b†
1)(a†

−1 + b†
−1)

1√
(N − 2)!

(
a†

0 + b†
0√

2

)N−2

|0〉. (A15)

When we also apply U (b)
2r to this state, only the U (b)

2r ≈ 1 term will be relevant to first order in r, so that we finally arrive at

U (b)
2r U (a)

2r

[
ir

√
N (N − 1)

N

1√
(N − 2)!

(
a†

0 + b†
0√

2

)N−2

(a†
1 + b†

1)(a†
−1 + b†

−1)

]
|0〉 (A16)

≈ ir

√
N (N − 1)

N
(a†

1 + b†
1)(a†

−1 + b†
−1)

1√
(N − 2)!

(
a†

0 + b†
0√

2

)N−2

|0〉. (A17)

Combining the actions on the two terms of |ψ3〉 gives the final state

|ψ4〉 = U (b)
2r U (a)

2r |ψ3〉 =
[

1√
N!

(
a†

0 + b†
0√

2

)N

− ir

√
N (N − 1)

N
(a†

1a†
−1 + b†

1b†
−1)

1√
(N − 2)!

(
a†

0 + b†
0√

2

)N−2

+ ir

√
N (N − 1)

N
(a†

1 + b†
1)(a†

−1 + b†
−1)

1√
(N − 2)!

(
a†

0 + b†
0√

2

)N−2]
|0〉 (A18)

=
[

1√
N!

(
a†

0 + b†
0√

2

)N

+ ir

√
N (N − 1)

N
(a†

1b†
−1 + b†

1a†
−1)

1√
(N − 2)!

(
a†

0 + b†
0√

2

)N−2]
|0〉 (A19)

to first order in r.
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We can also write the state in a Fock basis as

|ψ4〉 = |0, 0, 0, 0, N, 0〉 + ir

√
N (N − 1)

N
(|1, 0, 1, 1, N − 2, 0〉 + |0, 1, 1, 1, N − 2, 0〉) + · · · , (A20)

where we defined the Fock states as

|kA, kB, NA, NB, N+, N−〉 = (a†
1)kA

√
kA!

(a†
−1)NA−kA

√
(NA − kA)!

(b†
1)kB

√
kB!

(b†
−1)NB−kB

√
(NB − kB)!

1√
N+!

(
a†

0 + b†
0√

2

)N+ 1√
N−!

(
a†

0 − b†
0√

2

)N−

|0〉. (A21)

For large N , we can approximate
√

N (N−1)
N ≈ 1. We can trace out the NA, NB, N+, and N− modes, leading to the state

ρ = |0, 0〉〈0, 0| + r2(|1, 0〉 + |0, 1〉)(〈1, 0| + 〈0, 1|) + · · · (A22)

for large N . This is almost the same state as (23): in contrast to (23), it lacks coherences between different particle-number
sectors. This does not affect any of the results, however, since all observables in Approaches I, II, and III conserve particle
number.

2. Derivation of the Hamiltonian (14) for spin-changing collisions after splitting

We now show that the application of the local Hamiltonian for spin-changing collisions (2) to the split initial state (12) results
in the Hamiltonian (14). First, we apply the local squeezing Hamiltonian (2) for the BEC labeled by a on the split state,

e−igt (a†
1a†

−1a2
0+(a†

0 )2a1a−1 ) 1√
N!

(
a†

0 + b†
0√

2

)N

|0〉. (A23)

With U a
W as in (A10) we can rewrite this state as

U a
W U a

W
†e−igt (a†

1a†
−1a2

0+(a†
0 )2a1a−1 )U a

W U a
W

† 1√
N!

(
a†

0 + b†
0√

2

)N

U a
W U a

W
†|0〉

= U a
W e−igt (a†

1a†
−1

(a0+b0 )2

2 + (a†
0+b†

0 )2

2 a1a−1 ) 1√
N!

(a†
0)N |0〉. (A24)

Since the state on which the squeezing Hamiltonian acts in (A24) now contains only atoms in the a0 mode, all terms in the
Hamiltonian that directly act on it with a b0, a1 or a−1 annihilation operator will evaluate to zero. After expanding the exponential
up to second order and simplifying in this way, we obtain

U a
W

[
(a†

0)N

√
N!

− igt
√

N (N − 1)

2

(a†
0)N−2

√
(N − 2)!

a†
1a†

−1 − (gt )2

2

√
N (N − 1)(N − 2)(N − 3)

4

(a†
0)N−4

√
(N − 4)!

(a†
1a†

−1)2

− (gt )2

2

N (N − 1)

2

(
a†

0 + b†
0√

2

)2
(a†

0)N−2

√
N!

+ · · ·
]
|0〉. (A25)

For N � 1, this can be approximated as

≈ U a
W

[
(a†

0)N

√
N!

− igtN

2

(a†
0)N−2

√
(N − 2)!

a†
1a†

−1 − (gtN )2

8

(a†
0)N−4

√
(N − 4)!

(a†
1a†

−1)2 − (gtN )2

4

(
a†

0 + b†
0√

2

)2
(a†

0)N−2

√
N!

+ · · ·
]
|0〉. (A26)

Now consider the last term in this expansion:(
a†

0 + b†
0√

2

)2
(a†

0)N−2

√
N!

|0〉 = 1

2

[(
(a†

0)N

√
N!

)
+ 2√

N

(
(a†

0)N−1b†
0√

(N − 1)!

)
+
√

2

N (N − 1)

(
(a†

0)N−2(b†
0)2

√
N!

√
2

)]
|0〉. (A27)

The terms in the brackets, when applied on the vacuum, give normalized states. For N � 1, only the first term is the dominant
contribution, hence we drop the remaining terms to give

≈ U a
W

[
(a†

0)N

√
N!

− igtN

2

(a†
0)N−2

√
(N − 2)!

a†
1a†

−1 − (gtN )2

8

(a†
0)N−4

√
(N − 4)!

(a†
1a†

−1)2 − (gtN )2

8

(a†
0)N

√
N!

+ · · ·
]
|0〉. (A28)

We can also express this state in terms of the Fock basis (A21) as(
1 − (gtN )2

8

)
|0, 0, 0, 0, N, 0〉 − igtN

2
|1, 0, 2, 0, N − 2, 0〉 − (gtN )2

4
|2, 0, 4, 0, N − 4, 0〉 + · · · . (A29)
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Like in the previous section, we can trace out the NA, NB, N+, and N− modes. Noting again that our approach only uses particle-
number-conserving observables, we can also treat these modes as implicit and rewrite the above state as[

1 − (gtN )2

8
− igtN

2
a†

1a†
−1 − (gtN )2

8
(a†

1a†
−1)2 + · · ·

]
|0〉, (A30)

which has the same expansion coefficients as

e−igt N
2 (a†

1a†
−1+a1a−1 )|0〉. (A31)

The calculation for the local squeezing Hamiltonian acting on the BEC labeled by b gives the same results up to the interchange
of am � bm. This shows that local squeezing on an equally split BEC with total atom number N is, in the limit of large N ,
equivalent to local squeezing with N/2 atoms as given in (14).

3. Additional numerical results using the unapproximated
Hamiltonian (2)

In Fig. 4 we present additional numerical results which are
analogous to Fig. 3. The main difference is that we used the
unapproximated Hamiltonian (2) instead of the approximated
expression (3). Since the numerical simulation for this case
is significantly more resource-intensive, we performed it only
with N = 10 and up to a squeezing parameter of r = 0.5. This
is not yet within the regime N � 1 in which our approxima-
tion is valid. Deviations from Fig. 3 are therefore explicable
by the very low total atom number N = 10. Especially for Ap-
proach III, however, the results are still in excellent agreement
with Fig. 3 in the regime of low r. For Approach II, displayed
in Fig. 4(b), we note an overall reduced level of violation and

FIG. 4. Analogous results to Fig. 3 obtained using the unapprox-
imated Hamiltonian (2): the Bell-CHSH quantity B as a function of
the dimensionless squeezing parameter r for (a) Approaches I and
III and (b) Approach II. Layout and calculation of the three different
Bell-CHSH quantities are identical to Fig. 3. For the simulation of
the unapproximated Hamiltonian (2) a total atom number N = 10
and a numerical truncation value of kcut = 10 were used.

a larger susceptibility to noise. We expect these deviations
to disappear when the atom number N becomes sufficiently
large.

APPENDIX B: GENERATING TWO-MODE SQUEEZED
STATES BY INTERFERENCE

In this section we show how a two-mode optical squeezed
state can be produced by interfering two single-mode
squeezed states.

First, define the squeezing operators for modes a, b:

S(a)
r = e

r
2 ((a† )2−a2 ),

S(b)
r = e− r

2 ((b† )2−b2 ). (B1)

For r > 0, this generates p = (−ia + ia†)/2 squeezed states
for mode a and x = (b + b†)/2 squeezed states for mode b.

Splitting a single-mode squeezed state produces the state

UW S(a)
r |0〉 ≈ |0〉 + r

2
[(a†)2 + 2a†b† + (b†)2]|0〉 (B2)

for r � 1. This is a combination of single- and two-mode
squeezed states on modes a and b. The single-mode squeezing
terms can be eliminated by squeezing the b mode by the same
amount

UW S(b)
r S(a)

r |0〉 ≈ |0〉 + 2ra†b†|0〉, (B3)

which is the two-mode squeezed state to leading order.

APPENDIX C: NUMERICAL CALCULATION

Numerical results are obtained by evolving the wave-
function in Fock space (49) with the Schrödinger equation,
according to the sequence (24), starting from the vacuum
state. After the final state is obtained, basis rotations according
to (17) are made and probabilities are evaluated according to
(52). Finally, (53) is evaluated for the optimal angles (38) and
substituted into (28). The code for reproducing Figs. 3 and
4 is available online [89]. For our simulation we made use
of the JULIA package [90] and Tsitouras’ 5/4 Runge-Kutta
method [91]. Due to the numerical evaluation, the Hilbert
space must be truncated within the range 0 � kA, lA, kB, lB �
kcut. The maximal truncation value we use is kcut = 40. To
ensure that the truncation does not affect the physical results,
we first check for convergence with kcut and evaluate (42)
to check that it recovers the exact result (39). For values
in the range 0 < r < 0.6 in Fig. 3(a), our numerical results
agree with the exact result (39) to within 0.5%. The numerical
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estimates underestimate the true values, which is likely caused
by neglecting higher order correlations due to the numerical
truncation.

APPENDIX D: CH INEQUALITY

Here we show how the CH inequality (55) can be rewritten
in a CHSH-like inequality (28) and (29).

From (55), we can write

Pσσ ′
(θA, θB) + Pσσ ′

(θA, θ ′
B) + Pσσ ′

(θ ′
A, θB)

− Pσσ ′
(θ ′

A, θ ′
B) � Pσ∀(θA) + P∀σ ′

(θB) (D1)

and

− [Pσσ ′
(θA, θB) + Pσσ ′

(θA, θ ′
B) + Pσσ ′

(θ ′
A, θB)

− Pσσ ′
(θ ′

A, θ ′
B)] � P∀∀ − Pσ∀(θA) − P∀σ ′

(θB). (D2)

Setting σ = σ ′ = ± in (D1) and σ = −σ ′ = ± in (D2) and
adding the four inequalities gives

B = EIII(θA, θB) + EIII(θ
′
A, θB) + EIII(θA, θ ′

B)

− EIII(θ
′
A, θ ′

B) � 2, (D3)

where we used the definition (61).

APPENDIX E: DERIVATION OF THE SIGN OPERATORS
INCLUDING LOSS

We first show the derivation of (79). Substituting (73) into

Tr
(
sgn

[
Sz

A

]
sgn

[
Sz

B

]
ρ
)

=
∑
kn

〈k|sgn
(
Sz

A

)
sgn

(
Sz

B

)
FnA FmA FnB FmB |�(θA, θB)〉

× 〈�(θA, θB)|F †
mB

F †
nB

F †
mA

F †
nA

|k〉 (E1)

=
∑
kk′n

〈�(θA, θB)|k〉〈k|F †
mB

F †
nB

F †
mA

F †
nA

× sgn
(
Sz

A

)
sgn

(
Sz

B

)
FnA FmA FnB FmB |k′〉〈k′|�(θA, θB)〉,

(E2)

where for brevity we defined n = (nA, mA, nB, mB) and k =
(kA, lA, kB, lB). Since the Kraus operators shift the Fock states
by a number given by their indices, and the Sz

A, Sz
B are di-

agonal, we have k = k′ and we can eliminate one of the
summations to give

Tr
[
sgn

(
Sz

A

)
sgn

(
Sz

B

)
ρ
] =

∑
k

p(θA,θB )
kAlAkBlB

Gγ

kAlA
Gγ

kBlB
, (E3)

where we defined

Gγ

kl =
∑
nm

〈kl|F †
m F †

n sgn(Sz )FnFm|kl〉. (E4)

From the fact that

sgn(Sz ) = 1 − 2
∑
k<l

|kl〉〈kl| (E5)

and substituting the definitions (74), we obtain explicitly the
form (80).

For the Approach I correlators, similar steps to the above
can be used to show that

Tr
(
Sz

ASz
Bρ
) =

∑
kn

|〈�(θA, θB)|k〉|2

× 〈k|F †
mB

F †
nB

F †
mA

F †
nA

Sz
ASz

BFnA FmA FnB FmB |k′〉.
(E6)

We require the lossy version of the number operators which
can be evaluated as∑

n

F †
n a†aFn =

∑
n

n∑
k=0

(k − n)

(
k

n

)
γ k−n(1 − γ )n|k〉〈k|

(E7)

giving the result (78).

APPENDIX F: APPROACH III CORRELATORS
FOR IMPERFECT DETECTION EFFICIENCY

First, let us find the probability that the physical state col-
lapses to the Fock state |k〉 where k = (kA, lA, kB, lB), but each
of the detectors fails to detect n = (nA, mA, nB, mB) atoms.
The joint probability of this occurrence is

p(θA,θB )
kn =Pη(kA, nA)Pη(lA, mA)

× Pη(kB, nB)Pη(lB, mB)p(θA,θB )
kAlAkBlB

. (F1)

Since local vacua events by Alice and Bob are assigned 0
outcomes, let us define an unnormalized probability-like dis-
tribution where these events are removed:

p̃(θA,θB )
kn = p(θA,θB )

kn − p(θA,θB )
kn δkAnAδlAmA

− p(θA,θB )
kn δkBnBδlBmB + p(θA,θB )

kn δkn. (F2)

This distribution is then used to evaluate the average of the
sign functions. Meanwhile the denominator is

P∀∀ = 1 −
∑

k

p(θA,θB )
kAlAkBlB

(1 − η)kA+lA

−
∑

k

p(θA,θB )
kAlAkBlB

(1 − η)kB+lB

+
∑

k

p(θA,θB )
kAlAkBlB

(1 − η)kA+lA+kB+lB , (F3)

where we used the fact that
∑

n Pη(k, n) = 1. The Approach
III correlators can be defined in this context as

Eγ

III(θA, θB) = 1

P∀∀
∑
kn

p̃(θA,θB )
kn sgn(kA − nA − lA + mA)

× sgn(kB − nB − lB + mB). (F4)

Substitution yields exactly the same expression as (81) with
the replacement γ → η.
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