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Bose-Einstein statistics for a finite number of particles
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This paper presents a study of the grand canonical Bose-Einstein (BE) statistics for a finite number of particles
in an arbitrary quantum system. The thermodynamical quantities that identify BE condensation—namely, the
fraction of particles in the ground state and the specific heat—are calculated here exactly in terms of temperature
and fugacity. These calculations are complemented by a numerical calculation of fugacity in terms of the
number of particles, without taking the thermodynamic limit. The main advantage of this approach is that
it does not rely on approximations made in the vicinity of the usually defined critical temperature, rather it
makes calculations with arbitrary precision possible, irrespective of temperature. Graphs for the calculated
thermodynamical quantities are presented in comparison to the results previously obtained in the thermodynamic
limit. In particular, it is observed that for the gas trapped in a three-dimensional box, the derivative of specific
heat reaches smaller values than what was expected in the thermodynamic limit—here, this result is also verified
with analytical calculations. This is an important result for understanding the role of the thermodynamic limit in
phase transitions and makes possible to further study BE statistics without relying neither on the thermodynamic
limit nor on approximations near critical temperature.
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I. INTRODUCTION

In most textbooks on statistical physics, e.g., Refs. [1–3],
Bose-Einstein (BE) condensation is taught as one of the first
examples of phase transitions. This phase transition is iden-
tified by the fact that there is a low value in temperature,
namely, critical temperature, for which the specific heat for
a noninteracting quantum gas of bosons is not analytical.
Physically, the condensation/phase transition happens because
a thermodynamically relevant fraction of particles inhabits the
quantum state of lowest energy, namely, the ground state. The
fraction of particles in the ground state itself also exhibits a
nonanalytical behavior at critical temperature, indicative of
phase transitions.

BE condensation was observed experimentally in 1995
[4–6]. In these experiments, the number of particles ranged
in the order of thousands [4] to millions [6]. This sprung
interest in studies of BE statistics that do not rely on the
thermodynamic limit (number of particles N → ∞) [7–14]. It
is important to note that the nonanalytical behavior mentioned
previously is a consequence of the thermodynamic limit ap-
plied to BE statistics and therefore shouldn’t be expected for
a finite number of particles.

In the present paper, I obtain more general results allowing
for the studies of a broader range of quantum systems. Specif-
ically, the present paper studies quantum systems for which
the density of states is proportional to a power of the energy
[15], G(ε) ∝ εη. A D-dimensional harmonically trapped gas
is identified with η = D − 1, while the well-studied example
of a gas in a box is identified with η = D/2 − 1.

*ppessoa@albany.edu

The major difficulty halting progress in this investigation
comes from the lack of a closed form expression for the
fugacity ξ of a BE gas in terms of the number of particles
N and temperature T , which is given by

N = κ
�(η + 1)

βη+1
Liη+1(ξ ) + ξ

1 − ξ
, (1)

where β is the unit corrected inverse temperature, β = 1
kBT ,

where kB is the Boltzmann constant and Li refers to the poly-
logarithm family of functions [16]

Liϕ (y) = 1

�(ϕ)

∫ ∞

0
du

uϕ−1

y−1eu − 1
=

∞∑
k=1

yk

kϕ
, (2)

with �(ϕ) being the Euler’s gamma function. BE statistics
assumes ξ ∈ [0, 1). Note that for fixed β and η > 0, N is
strictly increasing with ξ . Therefore, ξ (β, N ) is well-defined
as the inverse of (1). This, however, has not been written in
closed analytical form to the best of my knowledge [17]. This
is fundamental for the study of BE statistics for a finite number
of particles since the thermodynamical quantities that identify
the phase transition—fraction of particles in the ground state
and specific heat—can be written exactly in terms of β and ξ ,
as we will see in the present paper.

Most of the investigations done in BE statistics for fi-
nite number of particles [7–12] is restricted to harmonically
trapped gases, η = D − 1. Among the investigations that went
beyond the study of harmonically trapped gases, it is impor-
tant to mention the work of Jaouadi et al. [13] that investigated
the three-dimensional gas of bosons in a power-law trap and
the work of Noronha and Toms [14] investigating the statistics
for the Bose gas for a particular set of spaces and potentials,
namely, the particle in a box and a three-sphere. Both of these
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works, however, rely on approximations taken in the vicinity
of critical temperature.

The present paper differs from these aforementioned works
since it does not assume a specific quantum system, rather
here I presented an exact calculation of thermodynamical
quantities in terms of β and ξ for arbitrary η—later it will
be explained that one can only identify condensation for
η > 1—making it general. Moreover, these exact results are
complemented by the numerical calculation of ξ (β, N ), so
all thermodynamical quantities can be calculated for a finite
number of particles, allowing for reliable results irrespective
of temperature.

A numerical implementation of ξ (β, N ) is found in my
GitHub repository [18]. It is important to point out that the
calculation of fugacity cannot be simply implemented with
the floating point arithmetic built in most computer languages,
since for large N , ξ is extremely close to unity. This difficulty
is avoided by using the MPMATH Python library [19] which
allows for arbitrary precision float point arithmetic—roughly
speaking, all quantities can be calculated with an arbitrary
number of decimal places [20].

From the fugacity obtained numerically, one can calculate
the fraction of particles in the ground state, specific heat,
and specific-heat first derivative and compare to the results
obtained for them in the thermodynamic limit, available in
Refs. [1–3,21]. For transparent presentation of the results,
graphs for all the calculated quantities are presented for a
number of particles ranging from N = 102 to N = 107, and
its comparison to the thermodynamic limit.

The layout of the present paper is as follows: Section II
will review the statistical mechanical description of quantum
gases in terms of β and ξ and obtain the parameter η for some
well-known models. Section III will present the description of
Bose gases in the thermodynamic limit for different values of
η and show how these values affect the convergence of critical
temperature and the existence of phase transition identified by
nonanalytical behavior. Section IV presents exact results for
the fraction of particles in the ground state and specific heat
in terms of β and ξ . These quantities are graphed in terms of
β and N from the numerical implementation of ξ (β, N ) found
in Ref. [18]. These calculations do not specify a value of η

and the graphs are presented from η = 1/2 and η = 2.

II. SPECTRUM AND DENSITY OF STATES

Quantum statistical mechanics consists of assigning proba-
bility distributions for the space of occupancy number of each
quantum state—also referred to as Fock space. Mathemati-
cally, this means assigning a probability ρ(x) where x = {xi}
in which i enumerates the quantum states. In this description,
xi is the number of particles occupying the state i—for bosons
xi takes positive integer values, xi ∈ [0, 1, 2, . . .)—and each
quantum state is associated to an energy value εi. The relation-
ship between i and εi is also referred to as the spectrum and is
obtained through regular methods in quantum mechanics [22],
that means εi are the eigenvalues of the Hamiltonian operator
Ĥ defined as

Ĥ
.= p̂2

2m
+ φ(q), (3)

where q = {q1, q2, . . . qD} are the system’s position
coordinates—which, for simplicity, are assumed to be
rectangular—p̂ is the momentum identified as p̂ =
−ih̄

∑D
μ=1 eμ

∂
∂qμ

—where eμ refers to the unit vector in
the direction of the μth dimension—and φ(q) is the potential,
m refers to the mass of the confined particles, and h̄ is the
reduced Planck’s constant. For mathematical simplicity, one
can shift the energy spectrum so the energy of the ground
state is zero, mini εi = 0.

In the grand canonical ensemble, ρ(x) is assigned as the
maximum entropy distribution constrained on the total num-
ber of particles, N

.= ∑
i〈xi〉, and the system’s internal energy,

U
.= ∑

i εi〈xi〉. This leads to the grand canonical Gibbs distri-
bution,

ρ(x|β, ξ ) ∝
∏

i

e−βεixiξ xi , (4)

where, as mentioned, β = 1
kBT and the fugacity ξ is identified

to the chemical potential μ as ξ = eβμ. The number of parti-
cles N and the internal energy U can be calculated from (4)
as

N =
∑

i

ξ

eβεi − ξ
, (5a)

U =
∑

i

εi ξ

eβεi − ξ
. (5b)

The details of how the Gibbs distribution (4) is derived as well
as how it leads to (5) are presented in Appendix A.

To calculate N and U in terms of β and ξ , one needs the
full spectrum of energies. I am not aware of any calculations
of the series (5) in closed form for a general spectrum nor any
calculation directly from (5) for physically relevant systems.

Because of this, generally the study of quantum statistics
mechanics relies on treating the spectrum as a continuous—
justified when the energy of the system is much larger than the
differences of energy in the spectrum, U � maxi, j |εi − ε j |.
In such approximation, the summations in (5) can be substi-
tuted as ∑

i

−→
∫

dε G(ε) = κ

∫
dε εη, (6)

where κ and η are parameters to be calculated from the full
spectrum of energies, as will be presented below. Note that κ

has units of [energy](η+1)—or κ
1/(η+1) has units of energy—one

can choose a system of units in which κ = 1, or, equivalently,
use κ

1/(η+1) as the unit of energy given by the system.
As a first example of the continuous approximation, one

can study the D-dimensional gas trapped in a regular box of
edge length L, related to a potential φ of the form: φ(q) =
0 if maxμ |qμ| � L

2 and +∞ otherwise. In this potential,
the quantum states will be enumerated by D integers—i =
{n1, n2, . . . , nD}—and the spectrum of energies is given by
[22]

εi = π2h̄2

2mL2

D∑
μ=0

n2
μ. (7)
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In this case, the continuous approximation yields
[2,14,21,23,24]

η = D

2
− 1 and κ = gsV

�(D/2)

(
m

2π h̄2

)D/2

, (8)

where V is the volume of the box, V = LD, and gs is the mul-
tiplicity of energy levels of a particle with spin s, gs = 2s + 1.

Another useful example is the D-dimensional gas in a
harmonic trap, meaning a potential of the form φ(q) =
m
2 ω2 ∑

μ q2
μ. In this potential, the quantum states will be enu-

merated by D positive integers, i = {n1, n2, . . . , nD}, and the
spectrum of energies is given by [22]

εi = h̄ω

D∑
μ=0

nμ. (9)

The extra term 1
2 h̄ωD in the energy of a harmonic trapped

particle is ignored to assign zero energy to the ground state—
nμ = 0 for all μ. In this case, the continuous approximation
yields [7,9,21,23,24]

η = D − 1 and κ = gs

�(D)

(
1

h̄ω

)D

. (10)

Interestingly, it has been verified experimentally by Schmitt
et al. [25] that the grand canonical noninteracting gases
trapped in a harmonic potential are an accurate model of BE
condensation of photons in a dye microcavity.

In a third example—useful to describe a more general
set of quantum systems—one can calculate the values of κ

and η for a potential of the form φ(q) = φ0
∑

μ |2 qμ

L |τ . Such
potential can be understood as an interpolation between a box
(τ → ∞) and an oscillator (τ = 2), as described in Ref. [26].
The density of states can be calculated in a semiclassical
manner [27] from the phase space volume, meaning∫ E

0
dε G(ε) = 1

(2π h̄)D

∫
A(E )

dD p dDq, (11)

where A(E ) = {(p, q) : 1
2m

∑
μ p2

μ + φ(q) � E} as presented
in Refs. [13,28,29]. This yields

η =D

2
+ D

τ
− 1 and

κ = gsV

�(D/2 + D/τ )

(
2m

π h̄2

)D/2[
�(1/τ + 1)√

2φ0

]D

. (12)

It is straightforward to see that when the potential φ(x) is a
harmonic oscillator, τ = 2 and ( 2

L )2φ0 = m
2 ω2, the values of

η and κ in (12) match those of (10). On the same note, when
φ(x) reduces to the potential of a particle in a box, τ → ∞
and φ0 = 1, the values of η and κ in (12) match those of (8).

As a final example of an even more general quantum
system, one could study a potential of the form φ(q) =∑

μ φμ|2 qμ

Lμ
|τμ , which reduces to the potential treated in the

previous paragraph when φμ, Lμ, and τμ are equal for all
μ. This is a potential that describes a gas trapped in an
anisotropic harmonic (or otherwise) potential or an irregu-
lar box. In this case, the continuous approximation yields

[13,28,29]

η = D

2
+ D

τ ′ − 1 and

κ = gs

�(D/2 + D/τ ′)

(
2m

π h̄2

)D/2 ∏
μ

Lμ

�(1/τμ + 1)

(2φμ)1/τμ
, (13)

where τ ′ .= D(
∑

μ
1/τμ)−1. It is straightforward to see that

when φμ = φ0, Lμ = L = V 1/D, and τμ = τ for all μ, the val-
ues η and κ in (13) reduce to the ones in (12).

Having the values of η and κ from the energy spectrum, one
can calculate the number of particles and the internal energy
(5) using the continuous approximation (6), thus obtaining

N = κ
�(η + 1)

βη+1
Liη+1(ξ ) + n0, where n0 = ξ

1 − ξ
,

(14a)

U = κ
�(η + 2)

βη+2
Liη+2(ξ ). (14b)

Note that n0 is the number of particles in the ground state,
which needs to be added ad hoc since the continuous approxi-
mation (6) assigns no particle in the ground state, G(0) = 0. It
can also be seen that n0 is the term in N equivalent to the zero
energy state in (5a). As will be discussed in the remainder of
the present paper, the addition of this term is fundamental for
the study of BE condensation.

Before studying the thermodynamical consequences of
(14), two important properties of polylogarithms need atten-
tion for future use. First, it is useful to note that from (2) one
obtains

∂

∂y
Liϕ (y) = 1

y
Liϕ−1(y). (15)

Second, for noninteger φ polylogarithms can be written as a
series

Liϕ (y)=�(1 − ϕ)(− ln (y))ϕ−1 +
∞∑

k=0

ζ (ϕ − k)
(ln y)k

k!
,

(16)

where ζ refers to the Riemann’s zeta function, ζ (ϕ) =∑∞
k=1 k−ϕ . This series expression goes back to Ref. [30] (see

also Ref. [31]) and is valid for | ln y| < 1. A similar expres-
sion of integer ϕ is also found in Ref. [30]. Note that for ϕ > 1
it implies that limy→1− Liϕ (y) = ζ (ϕ) while ϕ � 1 implies
limy→1− Liϕ (y) = ∞. These expressions will be useful in the
remainder of the paper.

III. BE STATISTICS IN THE THERMODYNAMIC LIMIT

This section will describe the phase transition for BE
statistics in the thermodynamic limit by presenting the nonan-
alytical form of the fraction of particles in the ground state and
the specific heat. Appendix B will show how these quantities
derive from the thermodynamical quantities presented in this
section follow from the calculations made for finite N in
Sec. IV. These calculations will leave η undetermined, they
reduce to those found in textbooks [1–3] when η = 1/2.
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When studying BE condensation, βc defined as

βc
.=

[
κ

�(η + 1)

N
lim

ξ→1−
Liη+1(ξ )

] 1
η+1

(17)

is identified as the inverse critical temperature [32]. This def-
inition is motivated as the temperature for which ξ goes to 1
when the ground state particles are ignored in (14a). From
(16), it follows that for η � 0, βc diverges—or the critical
temperature goes to the absolute zero. When η is positive,
βc converges and it yields βc = [κ �(η+1)

N ζ (η + 1)]
1

η+1 . For the
discussion presented here, one can assume η > 0, guaran-
teeing a positive critical temperature. Note that this means,
per Sec. II, a one- or two-dimensional Bose gas in a box
will not have a positive critical temperature. Similarly, a one-
dimensional Bose gas in a box has divergent βc.

A sequence of assumptions is applied when studying the
Bose gas in the thermodynamic limit. These can be summa-
rized as

(1) For β < βc: Treat the calculations of thermodynamical
quantities as if n0 = 0.

(2) For β � βc: Treat the calculations of thermodynamical
quantities as if ξ = 1.

This leads to a nonanalytical behavior in thermodynamical
quantities as will be presented below. Before presenting the
results in the thermodynamic limit, they will be calculated
for a finite number of particles in Sec. IV and the thermody-
namic limit will be taken in Appendix B. It will also present
comparisons in the form of graphs between the quantities
calculated in the thermodynamic limit and for a finite number
of particles.

The fraction of particle in the ground state is given by

ñ0

N
=

{
0 for β < βc

1 − (
β

βc

)−(η+1)
for β � βc.

(18)

For the remainder of the present paper, I will use the tilde
notation as above to mean that the quantity is calculated in the
thermodynamic limit.

Similarly, the specific heat [33] defined as cv
.=

1
N ( ∂U

∂T )N,κ = −kB
β2

N ( ∂U
∂β

)N,κ yields, in the thermodynamic
limit,

c̃v

kB
=

⎧⎨
⎩

(η + 2)(η + 1) Liη+2(ξ̃ )
Liη+1(ξ̃ )

− (η + 1)2 Liη+1(ξ̃ )
Liη (ξ̃ )

for β < βc

(η + 2)(η + 1) ζ (η+2)
ζ (η+1)

(
β

βc

)−(η+1)
for β � βc,

(19)

where ξ̃ is the fugacity in the thermodynamic limit for β <

βc, which can be obtained as the solution to (14a) with the
ground-state particles ignored and substituting βc defined in
(17), namely, ξ̃ (β ) is the solution to

Liη+1(ξ̃ ) = ζ (η + 1)

(
β

βc

)η+1

. (20)

Note that the limit β → 0 leads to ξ̃ → 0 and for β → β−
c it

follows that ξ̃ → 1. To study the nonanalytical behavior of c̃v ,

it is interesting to define the quantity

�c̃v

kB

.= lim
β→β+

c

c̃v

kB
− lim

β→β−
c

c̃v

kB
= (η + 1)2 lim

ξ→1−

Liη+1(ξ )

Liη(ξ )
,

(21)
which is the discontinuity gap of c̃v at β = βc. For η � 1,
it follows that limξ→1− Liη(ξ ) = ∞ and limξ→1− Liη+1(ξ ) =
ζ (η + 1), therefore �c̃v = 0 while for η > 1, c̃v is discontin-
uous in βc, yielding � c̃v

kB
= (η + 1)2 ζ (η+1)

ζ (η) .
One can further study the derivative of cv , using the unitless

quantity 1
k2

Bβ
( ∂cv

∂T )N,κ = − β

kB
( ∂cv

∂β
)N,κ obtained from differenti-

ating (19), yielding

1

k2
Bβ

(
∂ c̃v

∂T

)
N,κ

=
⎧⎨
⎩

(η + 2)(η + 1)2 Liη+2(ξ̃ )
Liη+1(ξ̃ )

− (η + 1)2 Liη+1(ξ̃ )
Liη (ξ̃ )

− (η + 1)3 (Liη+1(ξ̃ ))2Liη−1(ξ̃ )
(Liη (ξ̃ ))3 for β < βc

(η + 2)(η + 1)2 ζ (η+2)
ζ (η+1)

(
β

βc

)−(η+1)
for β � βc.

(22)

Similarly to (21), one can define the discontinuity gap of the derivative of c̃v at β = βc:

1

k2
Bβ

�

(
∂ c̃v

∂T

)
N,κ

.= lim
β→β+

c

1

k2
Bβ

(
∂ c̃v

∂T

)
N,κ

− lim
β→β−

c

1

k2
Bβ

(
∂ c̃v

∂T

)
N,κ

. (23)

Calculating the quantity �( ∂ c̃v

∂T )N,κ for η � 0 is inexpressive,
since βc diverges, on the same understanding calculating
�( ∂ c̃v

∂T )N,κ is not representative for η > 1 since c̃v is already
discontinuous. This calculation will focus on values 0 < η �
1. In that regime, it follows from (22) that the limit from the

right is given by

lim
β→β+

c

1

k2
Bβ

(
∂ c̃v

∂T

)
N,κ

= (η + 2)(η + 1)2 ζ (η + 2)

ζ (η + 1)
. (24)
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TABLE I. Diagram relating the convergence of polylogarithms in terms of the density of states exponent η to the convergence of the critical
temperature, βc in (17). It is also presented how, as a consequence, the value of η affects the continuity of specific heat, c̃v in (19) and of its
derivative in (23).

η � 0 0 < η < 1/2 η = 1/2 1/2 < η � 1 η > 1

lim
ξ→1−

Liη+1(ξ ) Divergent (+∞) Convergent ζ (η + 1)

lim
ξ→1−

Liη(ξ ) Divergent (+∞) Convergent ζ (η)

βc Divergent (+∞) Convergent — see (17)

c̃v – Continuous at βc Discontinuous at βc

�c̃v – 0 kB(η + 1)2 ζ (η+1)
ζ (η)

( ∂ c̃v

∂β
)N,κ – Continuous at βc Discontinuous at βc –

�( ∂ c̃v

∂β
)N,κ – 0 ≈3.66 k2

Bβc +∞ –

To calculate the equivalent limit from the left, one has to
recall the series expansion in (16). Note that, for the values
of η of interest, Liη(ξ ) scales as (ln (ξ ))η−1 as ξ → 1−, while

Liη−1(ξ ) scales as (ln (ξ ))η−2, while Liη+1(ξ ) and Liη+2(ξ )
converge to ζ (η + 1) and ζ (η + 2), respectively. Substituting
the series expansion in (22), it follows that

lim
β→β−

c

1

k2
Bβ

(
∂ c̃v

∂T

)
N,κ

= (η + 2)(η + 1)2 ζ (η + 2)

ζ (η + 1)
− (η + 1)3(ζ (η + 1))2 �(2 − η)

(�(1 − η))3
lim

ξ→1−
(− ln ξ )1−2η. (25)

For 0 < η < 1/2, the exponent in the last factor in (25) is positive, therefore �( ∂ c̃v

∂T )N,κ = 0. For 1/2 < η � 1, the exponent in the
last factor in (25) is negative, therefore �( ∂ c̃v

∂T )N,κ = ∞. In the particular case of η = 1/2—respective to the three-dimensional
gas trapped in a box—the exponent vanishes, therefore

lim
β→β−

c

1

k2
Bβ

(
∂ c̃v

∂T

)
N,κ

=
(

45

8

)
�(5/2)

�(3/2)
−

(
3

2

)3

(ζ (3/2))2 �(3/2)

(�(1/2))3
≈ −0.77726, (26)

leading to a convergent �( ∂ c̃v

∂T )N,κ ≈ 3.6657k2
Bβc in accor-

dance to Refs. [1,2].
A summary for the convergence of βc along with the dis-

continuities of c̃v and ( ∂ c̃v

∂T )N,κ in terms of η are presented in
Table I. With the study of the thermodynamic limit for general
values of η done, the following section studies BE statistics for
a finite number of particles.

IV. BE STATISTICS FOR A FINITE NUMBER
OF PARTICLES

To appropriately study BE condensation in terms of N , one
needs to express the thermodynamical quantities of interest—
namely, the fraction of particles in the ground state, specific
heat, and its derivative—in a manner that is appropriate to
compare to the critical temperature. Since βc in (17) is defined
in terms of N , one has to write n0 and U in terms of β and N ,
since these were written in (14) in terms of β and ξ it would
suffice to obtain ξ as a function of β and N . From (14a),
it is straightforward to see that N is strictly increasing with
ξ ∈ [0, 1), therefore ξ (β, N ) is well defined as the inverse of
(14a).

To the best of my knowledge, ξ (β, N ) has never been
written in closed analytical form. However, as the inverse of
a strictly increasing function, ξ (β, N ) can be implemented
through simple numerical algorithms. An implementation of

it can be seen in the IGQG Python library, available in my
GitHub repository [18]. This implementation is based on the
MPMATH library [19] that allows for calculations of arbitrary
precision. All thermodynamical quantities of interest can be
exactly written in terms of ξ (β, N ), which will be written
only as ξ in this section for simpler notation. Graphs for the
thermodynamical quantities obtained from this implementa-
tion will be presented below. It is observed that for finite N,
the nonanalytical behavior disappears, which is in accordance
with the fact that U and N in (14) are continuous for positive
β and 0 � ξ < 1.

The fraction of particles in the ground state can be obtained
by dividing (14a) by the number of particles N and substitut-
ing βc as in (17), obtaining

n0

N
= 1 − Liη+1(ξ )

ζ (η + 1)

(
β

βc

)−(η+1)

. (27)

Above it is supposed a value of η for which βc converges,
hence limξ→1− Liη+1(ξ ) is taken to be ζ (η + 1). Graphs for n0

N
are presented for the three-dimensional gas in a box (η = 1/2)
and the three-dimensional harmonically trapped gas (η = 2)
in Fig. 1 with a comparison to the fraction of particles calcu-
lated in the thermodynamic limit (19).
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The specific heat, cv
.= 1

N ( ∂U
∂T )N,κ = −kB

β2

N ( ∂U
∂β

)N,κ , can be calculated from the direct differentiation of U in (14b), obtaining

cv

kB
= κ

N

�(η + 2)

βη+1

[
(η + 2)Liη+2(ξ ) − β

ξ

(
∂ξ

∂β

)
N,κ

Liη+1(ξ )

]
, (28)

where ( ∂ξ

∂β
)N,κ can be obtained from the implicit differentiation of N in (14a) with respect to β, yielding

1

ξ

(
∂ξ

∂β

)
N,κ

=
κ

�(η+2)
βη+2 Liη+1(ξ )

κ
�(η+1)
βη+1 Liη(ξ ) + ξ

(1−ξ )2

. (29)

Note that the ground-state contribution to cv appears in the second term of the denominator of (29). Graphs for cv are presented
for η = 1/2 and η = 2 in Fig. 2. The comparison to the thermodynamic limit is obtained from (19). For β � βc, it follows that c̃v

can be calculated directly in terms of β directly, for β < βc the graphed values of c̃v are based on the numerical implementation
of the solution of (20) also found in Ref. [18]. It is particularly interesting to notice, in Fig. 2, how the discontinuity in c̃v for
η = 2 is approached from the continuous values calculated for finite N .

To further compare the study of BE statistics for finite N to the one in the thermodynamic limit, it is important to study the
derivative of cv . Again, this can be done by the study of the unitless quantity 1

k2
Bβ

( ∂cv

∂T )N,κ = − β

kB
( ∂cv

∂β
)N,κ which can be obtained

from differentiating (28), yielding

1

k2
Bβ

(
∂cv

∂T

)
N,κ

= κ

N

�(η + 2)

βη+1

[
(η + 2)(η + 1) Liη+2(ξ ) − β

ξ

(
∂ξ

∂β

)
N,κ

2(η + 1) Liη+1(ξ )

+
(

β

ξ

(
∂ξ

∂β

)
N,κ

)2

(Liη(ξ ) − Liη+1(ξ )) + β2

ξ

(
∂2ξ

∂β2

)
N,κ

Liη+1(ξ )

]
, (30)

where ( ∂ξ

∂β
)N,κ was already calculated in (29) and ( ∂2ξ

∂β2 )N,κ can similarly be obtained from the second implicit differentiation of
N in (14a) with respect to β, yielding

1

ξ

(
∂2ξ

∂β2

)
N,κ

= −
[
κ

�(η + 3)

βη+3
Liη+1(ξ ) − 1

ξ

(
∂ξ

∂β

)
N,κ

2κ
�(η + 2)

βη+2
Liη(ξ )

+
(

1

ξ

(
∂ξ

∂β

)
N,κ

)2

κ
�(η + 1)

βη+1
(Liη−1(ξ ) − Liη(ξ ))

+ 2

(
1

ξ

(
∂ξ

∂β

)
N,κ

)2
ξ 2

(1 − ξ )3

]
×

[
κ

�(η + 1)

βη+1
Liη(ξ ) + ξ

(1 − ξ )2

]−1

. (31)

Graphs for the unitless quantity 1
k2

Bβ
( ∂cv

∂T )N,κ are presented for
η = 1/2 and η = 2 in Fig. 3.

An interesting nonintuitive behavior becomes clear in
Fig. 3. For η = 1/2, it can be seen that the value of 1

k2
Bβ

( ∂cv

∂T )N,κ

grows smaller than the minimum possible value obtained in
the thermodynamic limit, given as limβ→β−

c

1
k2

Bβ
( ∂ c̃v

∂T )N,κ in
(26). Such behavior is not observed for η < 1/2—since at
those values ( ∂ c̃v

∂T )N,κ is continuous. It is also not observed for
η > 1/2—since, per (25), it follows that limβ→β−

c

1
k2

Bβ
( ∂ c̃v

∂T )N,κ

goes to negative infinite.
This implies that the thermodynamic limit, as presented

in Sec. III, misses interesting physical behavior. Mainly,
the calculation of c̃v was made assuming that there are
no particles in the ground state for β < βc, as is also the
case for all calculations made in Sec. III. The fact that
( ∂ c̃v

∂T )N,κ obtained this way is strictly decreasing for β < βc

indicated that the discontinuity at βc is approached from
above. The behavior found in Fig. 3 indicates that ac-
counting for n0 above the critical temperature leads to a
smaller value of ( ∂cv

∂T )N,κ . Therefore, the discontinuity found

in the thermodynamic limit is approached from below, not
above.

Interestingly, this result is supported by analytical calcula-
tions. For η = 1/2, the minimal value of ( ∂ c̃v

∂T )N,κ—calculated
without assuming n0 = 0 below βc—is related to N as

z(N )
.= min

β

(
∂ c̃v

∂T

)
N,κ

= zm + z̄N−1/3 + o(N−1/3 ), (32)

where

zm ≈ −0.97337 and z̄ ≈ 3.5881, (33)

and where o stands for the smaller order notation,

limN→∞ o(N−1/3 )
N−1/3

= 0. Note that, as expected from Fig. 3,

limN→∞ z(N ) = zm < limβ→β−
c

1
k2

Bβ
( ∂ c̃v

∂T )N,κ calculated in
(26). The analytical calculation proving (32) is presented
in Appendix C. A comparison between the values of Z (N )
calculated numerically compared to the ones given by (32) in
the order of N−1/3 is presented in Fig. 4.

Other interesting properties can be observed from the study
of Bose gases in finite N. As commented in Sec. III, cv and its

043318-6



BOSE-EINSTEIN STATISTICS FOR A FINITE NUMBER … PHYSICAL REVIEW A 104, 043318 (2021)

FIG. 1. Fraction of particles in the ground state (27) for η = 1/2

(above) and η = 2 (below). In both cases, it can be seen how the frac-
tion of particle in the ground state, for finite N , approach, smoothly,
the nonanalytical curve for the thermodynamic limit.

derivative are continuous for 0 < η < 1/2. The same numerical
investigation used in Figs. 1–3 can also illustrate an important
difference in qualitative behavior for this regime. In Fig. 5,
the graphs for cv and ( ∂cv

∂T )N,κ are presented for η = 1/4, which
is equivalent, per (12), to a quartic interaction (τ = 4) in a
two-dimensional gas. It is interesting to see that for η = 1/4,
the specific heat at β = 0 is larger than for β → β−

c . In this
case, cv is increasing for small β—in accordance to (19)—
but as β increases, it reduces smoothly—as expected from
Table I—so no nonanalytical behavior is observed for cv or
its first derivative at βc.

V. CONCLUSIONS

The present paper presents a complete description of BE
statistics that does not rely on the thermodynamic limit. This
is made possible from the numerical calculation of ξ (β, N ) as
the inverse of (14a). From this, all thermodynamical quantities
can be written in terms of β and N , allowing for a direct
comparison to βc.

The thermodynamical quantities that identify the BE con-
densation were calculated here. The fraction of particles in
the ground state is calculated exactly, for arbitrary η, in terms
of ξ (β, N ) in (27). Supplemented by the numerical inversion,

FIG. 2. Specific heat of a Bose gas (28) for η = 1/2 (above) and
η = 2 (below). In the first picture is seen that the quantity is contin-
uous, albeit not smooth, as β approaches βc in the thermodynamic
limit. In the second one is seen how, in the thermodynamic limit,
the value diverges and is discontinuous when β approaches βc from
the left. In both cases, it can be seen how the nonanalytical curve is
approached from the curves of specific heat for finite N .

graphs of this quantity for a gas trapped in a regular box
(η = 1/2) and in a harmonic potential (η = 2) are presented
in Fig. 1. Similarly, the specific heat is calculated in (28)
and the numerical results are presented in Fig. 2. Finally, the
derivative of specific heat is calculated in (30) and presented
in Fig. 3.

In all of these figures, the thermodynamical quantities were
calculated for values of N raging from 102 to 107—in accor-
dance to the numbers found in the experimental observation of
BE condensation—where significant differences are observed
in comparison to the calculations made in the thermodynamic
limit. A summary for the convergence and continuity of these
quantities in the thermodynamic limit is presented in Table I.
These graphs by themselves are an important visualization
of the role of the thermodynamic limit for the nonanalytical
behavior, indicating the phase transition in BE gases, hence an
important pedagogical tool for the study of phase transitions.

Particularly in Fig. 3, a fundamental difference in the
qualitative behavior of specific-heat derivative is observed.
Considering particles in the ground state below critical tem-
perature, the minimum value of this quantity is smaller than
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FIG. 3. Graphs for ( ∂cv

∂T )N,κ of a Bose gas (30) η = 1/2 (above)
and η = 2 (below). In the first image, it is seen that the quantity
becomes smaller than the one expected from calculations in the
thermodynamic limit. In the second one is seen how in the thermody-
namic limit, the value diverges to −∞ when β approaches βc from
the left.

the one given in the thermodynamic limit. This result is sup-
ported by analytical calculations (32) and it is found—both
by numerical results in Fig. 4 and analytical calculations in
(32)—that such minimum value scales with N−1/3.

With the numerical inversion of (14a) established and
available in Ref. [18], further studies on BE condensation

FIG. 4. Graph for the value of z, defined in (32), calculated
numerically for N ranging from 102 to 108 (scattered blue points)
and the approximation in order of N−1/3 (solid orange line)—meaning
z(N ) = zm + z̄N−1/3 as in (32).

FIG. 5. Graphs for cv in (28) (above) and ( ∂cv

∂T )N,κ in (30) (below)
of a Bose gas for η = 1/4. Unlike in the previous pictures, we see that
both quantities are smooth for this value of η.

for a broad range of quantum systems—whenever the den-
sity of states exponent η can be identified—are now possible
without relying on the thermodynamic limit nor on specific
approximations—the method presented here obtains calcula-
tions with arbitrary precision for any value of β and N .

Future work may entail a precise calculation for other defi-
nitions of BE critical temperature [13,14] and the information
geometry of quantum gases [24,34]. Another possible venue
for future work is to study interactive Bose gases, as the inver-
sion of (14a) presented here (for which the code is available in
Ref. [18]) allows for calculating both the number of particles
in the ground state and out of the ground state, coupling
collisions coefficients between particles in these—as defined
in Refs. [35–37]—can be calculated in the grand canonical
ensemble.
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APPENDIX A: MAXIMUM ENTROPY IN FOCK SPACES

This Appendix will derive the grand canonical Gibbs dis-
tribution (4) for BE statistics and obtain the expected values
for the number of particles and internal energy found in (5).
Probabilities in statistical mechanics [38,39] are assigned by
finding the probability ρ(x) that maximizes entropy, ρ(x) =
arg maxp S[p|q], where

S[p|q] = −
∑

x

p(x) ln

(
p(x)

q(x)

)
, (A1)

with constraints on the form of expected values of the suffi-
cient statistics, aα ,

Aα =
∑

x

p(x)aα (x), (A2)

and normalization. This maximization is achieved by the
Gibbs distribution

ρ(x|λ) = q(x)

Z (λ)
exp

(
−

∑
α

λαaα (x)

)
, (A3)

where each λα is the Lagrange multiplier related to the ex-
pected value constraints in aα . Z (λ) is the partition function,
a normalization factor independent of x. The expected values
in (A2) can be recovered as Aα = − ∂

∂λα
ln Z .

In Fock spaces, x = {xi}, the measure is given as
∑

x =∑∞
x1=0

∑∞
x2=0 . . . , and q(x) in uniform. In the grand canonical

ensemble, the sufficient statistics are chosen as the energy
a1(x) = ∑

i εixi and the total number of particles a2(x) =∑
i xi. The Gibbs distribution is, therefore, of the form

ρ(x|λ1, λ2) = 1

Z (λ)

∏
i

e−λ1εixi e−λ2xi , (A4)

where λ1 is identified as β and λ2 is identified as −βμ or,
equivalently, ξ = e−λ2 , leading to (4). The normalization fac-
tor is identified as

Z (β, ξ ) =
∑

x

∏
i

e−βεixi ξ xi =
∏

i

(1 − e−βεiξ )−1. (A5)

Leading to the expected values (A2),

A1 = U =
∑

i

ξ εi(e
βεi − ξ )−1, (A6a)

A2 = N =
∑

i

ξ (eβεi − ξ )−1, (A6b)

which are equivalent to (5b) and (5a), respectively.

APPENDIX B: CALCULATIONS IN THE
THERMODYNAMIC LIMIT

This Appendix will derive the thermodynamical quantities
of interest—calculated for finite N in (27), (28), and (30)—
reduce to the ones presented in the thermodynamic limit,
respectively, (18), (19), and (22).

As explained in Sec. III, β < βc implies n0 = 0 in the
thermodynamic limit. It follows directly that n0

N = 0, reducing
to (18) for β < βc. From implicit differentiation of (14a), it
follows that

1

ξ

(
∂ξ

∂β

)
N,κ

= 1

β
(η + 1)

Liη+1(ξ )

Liη(ξ )
, (B1)

which is equivalent to (29) in the thermodynamic limit for
β < βc. Similarly, it follows from the second differentiation
of (14a) that

1

ξ

(
∂2ξ

∂β2

)
N,κ

= − 1

β2

[
(η + 2)(η + 1)

Liη+1(ξ )

Liη(ξ )
− (η + 1)2 Liη+1(ξ )

Liη(ξ )
− (η + 1)2 (Liη+1(ξ ))2

(Liη(ξ ))3
(Liη−1(ξ ) − Liη(ξ ))

]
, (B2)

equivalent to (31) in the thermodynamic limit for β < βc.
Substituting (B1) into (28), one obtains (19) for β < βc and
substituting (B1) and (B2) into (30) one obtains (22) for
β < βc, completing the calculation.

As β � βc it implies ξ = 1 in the thermodynamic limit.
Substituting βc in (17) into (27) becomes (18) for β � βc.
Analogously, substituting ξ = 1 into (29) and (31), it follows
directly that ( ∂ξ

∂β
)N,κ = 0. Therefore, (28) becomes (19) for

β � βc and from the direct differentiation of (19) one obtains
(22) for β � βc, completing the calculation.

APPENDIX C: MINIMUM VALUE OF ( ∂cv

∂T )N,κ

This Appendix will derive (32) analytically by an expan-
sion of (30), thus explaining the observance of values of
( ∂cv

∂T )N,κ for η = 1/2 smaller than those found in the thermody-
namic limit in (22)—as presented from numerical calculations
in Fig. 3. This is done by calculating ( ∂cv

∂T )N,κ , finding its
minimum in a large N approximation [40].

Two variables will be important for this calculation. The
first, β∗, is the argument to the minimum value of the quantity
of interest—abscissa of the minimum values for each N in

Fig. 3—meaning, β∗ .= arg minβ
1

k2
Bβ

( ∂cv

∂T )N,κ . The second, ξ ∗,
is defined as the fugacity at the minimum value of the quantity
of interest, meaning ξ ∗ .= ξ (β∗, N ). From this, two other vari-
ables can be constructed: the reduced inverse temperature at
the minimum γ ∗ .= β∗−βc

βc
, and λ∗

2
.= − ln ξ ∗, whose notation

λ2 is inspired by it being the second Lagrange multiplier at the
minimum, as explained in Appendix A.

If one assumes a scaling relation between β∗ and λ∗
2 of the

form

γ ∗ = γ̄ N−ψ and λ∗
2 = λ̄2N−φ (C1)

in the leading order of N—where γ̄ and λ̄2 are constants and
ψ and φ are positive. Substituting those variables in (14a) and
βc in (17), one obtains

N = N (1 + γ ∗)−3/2
Li3/2(e−λ∗

2 )

ζ (3/2)
+ 1

eλ∗
2 − 1

. (C2)

Note that accounting for only the first term would yield the
regular calculation in the thermodynamic limit—expressed
previously in (20).
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Using the scaling relations in (C1), the series expansion for
polylogarithms in (16) and eλ∗

2 = 1 + λ∗
2 + o(λ∗

2 ) one obtains,
in the leading terms,

0 = −3

2
γ̄ N1−ψ − 2

�(1/2)

ζ (3/2)
λ̄

1/2

2 N1−φ/2 + λ̄ −1
2 Nφ. (C3)

A result that depends on both β∗ and λ∗
2 requires that the

first and at least one other term in (C3) must contribute to
the highest order in N . If only the first two terms contribute,
the result would ignore the particles in the ground state,
leading to the same results in the thermodynamic limit —
equivalent to (20). If only the first and last term in (C3)
contribute, one would find γ̄ = 3

2 λ̄−1
2 . This result, however, is

undesirable physically—as observed in Fig. 3, we can expect
β∗ < βc and, consequentially, γ̄ < 0; and for BE statistics
one must have ξ ∗ � 1, implying λ̄2 > 0. Therefore, it follows
that all terms in (C3) must contribute to the highest order,
accounting for these terms one obtains 1 − ψ = 1 − φ/2 = φ,
hence ψ = 1/3 and φ = 2/3—later these values will be verified
numerically.

To obtain the values of z(N ), one needs to substitute β∗
and ξ ∗ in (30). To do so, it is necessary to first substitute
these values in 1

ξ
( ∂2ξ

∂β2 )N,κ in (29) and 1
ξ

( ∂2ξ

∂β2 )N,κ in (31) as an

expansion in terms of N . The parameters γ̄ and λ̄2 will later be

identified by imposing ∂
∂β

[ 1
k2

Bβ
( ∂cv

∂T )N,κ ]|β=β∗ = 0. These will
be done in the following subsections.

1. Expanding 1
ξ
( ∂ξ

∂β
)N,κ

One can expand the numerator of (29), Qn, as

Qn = 1

βc

3

2
N + o(N ), (C4)

where o stands for the smaller order notation,
limN→∞ o( f (N ))

f (N ) = 0. Similarly, for the denominator of
(29), Qd , is expanded as

Qd = aN 4/3(1 + bN−1/3 ) + o(N ), (C5)

where

a = 1

λ̄ 2
2

+ �(1/2)

ζ (1/2)

1

λ̄
1/2

2

and (C6a)

b = 1

a

[
ζ (1/2)

ζ (3/2)
− 3

2

�(1/2)

ζ (3/2)

γ̄

λ̄
1/2

2

]
. (C6b)

Therefore, using 1
ξ

( ∂ξ

∂β
)N,κ = Qn

Qd
, it follows that

1

ξ

(
∂ξ

∂β

)
N,κ

∣∣∣∣
β=β∗

= 1

βc
q̄N−1/3 + o(N−1/3 ), (C7)

where

q̄ = 3

2a
. (C8)

Note that the second term for Qd in (C5) does not appear
in (C7). The importance of calculating the second term in
Qd will be shown to be relevant when other quantities are
calculated from it, as will be done in the following subsection.

2. Expanding 1
ξ
( ∂2ξ

∂β2 )N,κ

One can expand the numerator of (31), Fn, as

Fn = − a

β2
c

rmN 4/3 + a

β2
c

r̄N + o(N ), (C9)

where

rm = − 1

a3

[
9

2

1

λ̄3
2

+ 3

2

�(5/2)

ζ (3/2)

1

λ̄
3/2

2

]
and (C10a)

r̄ = 1

a3

[
−15

4
a2 + 9

2

�(1/2)

ζ (3/2)

a

λ̄
1/2

2

+ 9

2

�(5/2)

ζ (3/2)

b

λ̄
3/2

2

+ 27

2

b

λ̄ 3
2

+ 39

4

�(5/2)

ζ (3/2)

γ̄

λ̄
3/2

2

+ 45

2

γ̄

λ̄ 3
2

− 9
�(−1/2)

ζ (3/2)

1

λ̄
5/2

2

− 3
�(−1/2)�(5/2)

(ζ (3/2))2

1

λ̄2

]
. (C10b)

Note that the denominator of (31) is the same as Qd , expanded
in (C5). Therefore, it follows that

1

ξ

(
∂2ξ

∂β2

)
N,κ

∣∣∣∣
β=β∗

= rm

β2
c

+ r̄

β2
c

N−1/3 + o(N−1/3 ). (C11)

3. Expanding 1
k2

Bβ
( ∂cv

∂T )N,κ

The quantity of interest, 1
k2

Bβ
( ∂cv

∂T )N,κ in (30), can be ex-
pressed by substituting βc in (17) as

1

k2
Bβ

(
∂cv

∂T

)
N,κ

= 3

2

1

ζ (3/2)

[(
β

βc

)−3/2 5

2

3

2
Li5/2(ξ )

+
(

β

βc

)−1/2
βc

ξ

(
∂ξ

∂β

)
N,κ

Li3/2(ξ )

+
(

β

βc

)1/2 (
βc

ξ

(
∂ξ

∂β

)
N,κ

)2

(Li1/2(ξ )

− Li3/2(ξ ))+
(

β

βc

)1/2
β2

c

ξ

(
∂2ξ

∂β2

)
N,κ

Li3/2(ξ )

]
,

(C12)

using the expression for polylogarithms (16) and the results
of the previous subsections—(C7) and (C11)—this can be
expanded as

1

k2
Bβ

(
∂cv

∂T

)
N,κ

∣∣∣∣
β=β∗

= zm + z̄N−1/3 + o(N−1/3 ), (C13)

where

zm = 3

2

1

ζ (3/2)

[
rmζ (3/2) + 15

4
ζ (5/2)

]
and (C14a)

z̄ = 3

2

1

ζ (3/2)

[
q̄2�(1/2)λ̄ −1/2

2 − 3q̄ζ (3/2) + r̄ζ (3/2)

+ 1

2
rmγ̄ ζ (3/2) + rmλ̄

1/2

2 �(−1/2) − 45

8
γ̄ ζ (5/2)

]
,

(C14b)
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FIG. 6. Graph for the values of γ ∗ (left) and λ∗
2 (right) calculated numerically for N ranging from 102 to 108 (scattered blue points) and the

approximation in order of N−1/3 and N−2/3 (solid orange line), respectively, meaning γ ∗(N ) = γ̄ N−1/3 and λ∗
2(N ) = λ̄2N−2/3 as in (C1), with λ̄2

and γ̄ given by (C22).

thus obtaining the scaling of 1
k2

Bβ
( ∂cv

∂T )N,κ expressed in (32). To
complete the goals of this Appendix, one needs to obtain the
values of γ̄ , λ̄2, a, b, q̄, rm, and r̄ and substitute those in
(C14). This will be done in the next two subsections.

4. Obtaining γ̄ and λ̄2

Substituting the values of ψ and φ in (C3), it follows that

3

2
γ̄ + 2

�(1/2)

ζ (3/2)
λ̄

1/2

2 − λ̄ −1
2 = 0. (C15)

By implicit derivation of the equation above, one finds

dλ̄2

d γ̄
= −3

2

(
λ̄ −2

2 + �(1/2)

ζ (3/2)
λ̄

−1/2

2

)−1

, (C16a)

d2λ̄2

d γ̄ 2
= −2

3

(
dλ̄2

d γ̄

)3(
2λ̄ −3

2 + �(3/2)

ζ (3/2)
λ̄

−3/2

2

)
, (C16b)

d3λ̄2

d γ̄ 3
= −4

9

(
dλ̄2

d γ̄

)5(
6λ̄ −6

2 + �(5/2)

ζ (3/2)
λ̄

−9/2

2

)
. (C16c)

The minimum occurs when ∂
∂β

[ 1
k2

Bβ
( ∂cv

∂T )N,κ ]|β=β∗ = 0, which
means

0 = 3

2

β−1
c

ζ (3/2)

[
−

(
β

βc

)−5/2 5

2

(
3

2

)2

Li5/2(ξ )

+
(

β

βc

)−3/2 5

2

3

2

βc

ξ

(
∂ξ

∂β

)
N,κ

Li3/2(ξ )

+
(

β

βc

)−1/2 5

2

(
βc

ξ

(
∂ξ

∂β

)
N,κ

)2

(Li3/2(ξ ) − Li1/2(ξ ))

−
(

β

βc

)−1/2 5

2

β2
c

ξ

(
∂2ξ

∂β2

)
N,κ

Li3/2(ξ )

+
(

β

βc

)1/2(
βc

ξ

(
∂ξ

∂β

)
N,κ

)3

× (2Li3/2(ξ ) − 3Li1/2(ξ )) + Li−1/2(ξ ))

−
(

β

βc

)1/2

3

(
βc

ξ

(
∂2ξ

∂β2

)
N,κ

)(
β2

c

ξ

(
∂2ξ

∂β2

)
N,κ

)

× (Li3/2(ξ ) − Li1/2(ξ ))

+
(

β

βc

)1/2
β3

c

ξ

(
∂3ξ

∂β3

)
N,κ

Li3/2(ξ )

]
. (C17)

To solve (C17), one may have to expand 1
ξ

( ∂3ξ

∂β3 )N,κ , as done

for 1
ξ

( ∂ξ

∂β
)N,κ in Appendix C 1 and 1

ξ
( ∂2ξ

∂β2 )N,κ in Appendix C 2.
However, a less laborious manner to perform this calculation
involves identifying from (C1) that

βc

ξ

(
∂ξ

∂β

)
N,κ

= −dλ̄2

d γ̄
N−1/3 + o(N−1/3 ), (C18a)

β2
c

ξ

(
∂2ξ

∂β2

)
N,κ

= −d2λ̄2

d γ̄ 2
+ o(1), and (C18b)

β3
c

ξ

(
∂3ξ

∂β3

)
N,κ

= −d3λ̄2

d γ̄ 3
N 1/3 + o(N 1/3 ). (C18c)

Later it will be shown that q̄ = − dλ̄2
d γ̄

, as expected from (C7),

and rm = − d2λ̄2
d γ̄ 2 , as expected from (C11) [41].

Expanding (C15), it follows that

0 = −d3λ̄2

d γ̄ 3
N 1/3ζ (3/2) + o(N 1/3 ). (C19)

Hence, the minimum condition implies d3λ̄2
d γ̄ 3 = 0, which is

equivalent, per (C16c), to

6λ̄ −6
2 + �(5/2)

ζ (3/2)
λ̄

−9/2

2 = 0 ⇒ λ̄2 =
[

1

6

�(5/2)

ζ (3/2)

]−2/3

, (C20)

and applying this into (C15), it follows that

γ̄ = 2

3

[
λ̄ −1

2 − 2
�(1/2)

ζ (3/2)
λ̄

1/2
2

]
, (C21)

leading to the values

λ̄2 ≈ 5.1804 and γ̄ ≈ −1.9303. (C22)

The numerical verification of (C1) with these values of γ̄

and λ̄2 is presented in Fig. 6.
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5. Obtaining a, b, q̄, rm, r̄, zm, and z̄

Substituting the values of γ̄ and λ̄2 from (C22) into (C6a),
one obtains

a ≈ 0.33536 and b ≈ 0.90686. (C23)

Sequentially applying these values in (C8) yields

q̄ ≈ 4.47284. (C24)

Note that substituting the value of λ̄2 from (C22) into (C16a)
implies q̄ = − d2λ̄2

d γ̄ 2 in accordance to (C18a). Similarly, apply-
ing (C24), (C23), and (C22) into (C10) yields

rm ≈ −2.5746 and r̄ ≈ −6.1656. (C25)

Note that substituting the value of λ̄2 from (C22) into (C16b)
implies rm = − d2λ̄2

d γ̄ 2 in accordance to (C18b). Finally, substi-
tuting (C22), (C24), and (C25) into (C14), one obtains zm and
z̄ as in (33) completing the calculation.
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