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Atomic bright vector soliton as an active particle
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Solitons in general are configurations of extended fields which move like isolated particles. Vector bright
solitons can occur in a two-component self-attractive Bose-Einstein condensate. If the components of the
condensate have different chemical potentials, the total spin of the soliton can serve as an internal energy depot
that makes the soliton into an active particle, able to move against an external force using energy carried within
the particle—if there is a dynamical mechanism for steadily transferring energy from soliton spin into soliton
motion. Here we present such a dynamical mechanism, embed it in an experimentally feasible way within the
larger system of a spinor condensate mean field, and show how the mechanism works to realize a solitonic active
particle. In what can be considered a toy model for the project of going beyond toy models for active particles,
we test the robustness of the activity mechanism by exploring a range of deformations to the simplest model for
embedding the nonlinear mechanism in the condensate system.
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I. INTRODUCTION

One of the most elementary tasks in nature and everyday
life is the transport of objects. Nature has developed “motor
proteins” to achieve transport in cells [1,2], while humans
build engines for larger scale transport. In both cases some
kind of internal energy is used to perform motional work (in-
cluding work against friction). The phenomenological model
of an active particle [3–8] has emerged as a useful concept for
modeling internally powered motion in general. Fuel does not
just automatically convert itself into work, however. Macro-
scopic engines are nontrivial dynamical mechanisms, subject
to laws of thermodynamics whose emergence from micro-
scopic mechanics is still being studied, and the microscopic
mechanisms of biological motors are not yet understood. In
this paper, we contribute a concrete example of an active par-
ticle realized within an extended environment yet described
microscopically.

A bright matter-wave soliton is a small cloud of cohesive
gas [9–13] that has mechanical properties like a particle. Ex-
ternal force can accelerate the small cloud as a whole, and its
motion is well described with a single collective coordinate
that can carry both kinetic and potential energy. If the soliton
is created in a multi-component Bose-Einstein condensate
[14–18], it can also have internal energy. If for example the
bright vector soliton is placed in a constant magnetic field,
and is composed of atoms of one atomic species with atoms
in spin states |−〉 = |F (1), m(1)

F 〉 or |+〉 = |F (2), m(2)
F 〉, then

the soliton has a large range of internal energies depending
on the total spin of all its constituent atoms. By the ex-
perimentally feasible technique of Rabi driving, this internal
energy can be coupled to the soliton’s motion in such a way
as to realize an active particle, within a real, extended sys-
tem that can nevertheless be understood in full dynamical
detail.

A. The coupling problem

Taking data from [9], we can assume a soliton of about
6000 atoms of 7Li, having a total mass of ∼7 × 10−26 kg and
a length of ∼2 μm. It requires roughly 1.4 × 10−30 J to lift
this soliton vertically by its own length. If as in Ref. [9], we
allow the soliton to be in a magnetic field of ∼500 G, a single
atom that changes its state from |1, 1〉 to |1, 0〉 would change
the internal energy of the soltion by ∼5 × 10−26 J, which is
enough energy to lift the soliton ∼3000 times its own length
against gravity. With no less than 6000 atoms in the soliton,
it is clear that the soliton’s total spin can easily store vastly
abundant energy for active soliton motion.

It is also clearly possible to couple a vector soliton’s spin
to its collective motion. Examples using a spin-orbit coupling
[19] or a Rabi coupling [20] show how this can be done.
The “active particle” model presents the challenge, however,
of nondestructively moving a soliton over a potentially long
distance, against an external force, using an on-board energy
depot. Oscillations of the soliton as in Ref. [19], which for
large Zeeman frequency will have high frequency and small
amplitude, do not meet this challenge; neither does the limited
average motion of a spreading soliton shown in Ref. [20].
Indeed, the dynamical problem of coupling our vast internal
spin energy into steady motional work is not merely one
of selecting an arbitrary mechanism out of infinitely many
possibilities. On the contrary, it is not immediately clear that
any such mechanisms can even exist.

The very abundance of the internal energy is the root of the
problem. The internal spin energy is large because the Zee-
man frequency 10−26J/h̄ = 109 s−1 is about a million times
higher than the kHz frequencies that are typical of motional
collective modes in trapped condensates. There is no trivial
way to achieve the extreme downconversion of splitting one
quantum of energy at GHz frequency into a million kHz
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quanta which can be fed efficiently into collective motion
of the soliton, steadily over a long timescale. Instead most
couplings between soliton spin and soliton motion will merely
be adiabatically suppressed [21,22] in the regime of high
Zeeman frequency, and do essentially nothing. The fact that
high-frequency degrees of freedom may dress and renormal-
ize low-frequency sectors, but not steadily pump energy into
them, is after all a basic principle throughout modern physics
[23–25].

There do exist loopholes in this principle, however, and
one is to trade off length and timescales in a Chirikov res-
onance [26,27]. In this paper, we show how to implement
such a “Hamiltonian daemon” Chirikov resonance engine
using a Rabi coupling between the internal states |+〉 and
|−〉 of atoms in a vector bright soliton, by letting the
Rabi coupling depend periodically on the space coordinate
along which the soliton is to be lifted. This spatially pe-
riodic Rabi coupling will effectively act as a ladder, up
which the vector soliton can climb under its own active
power.

B. Paper outline

In Sec. II, we will define this spatially periodic Rabi
coupling [28] and show how it provides a Chirikov reso-
nance [26] to enable energy flow from the internal to the
mechanical energy of the soliton. We will then use the Gross-
Pitaevskii equation [29] to describe the evolution of the soliton
classically, showing numerical results for the motion of the
soliton and the time evolutions of its internal and motional
energies.

After thus confirming that the solitonic active particle
can indeed work, we pause in Sec. III to relate the one-
dimensional Gross-Pitaevskii classical field theory to the
two-degree-of-freedom Hamiltonian daemon system of [27].
This approximate mapping can be used to estimate parameter
ranges for different possible behaviors of the active soliton,
and to explain some nontrivial features of its (in general)
more complex dynamics. Our results in this section use the
collective coordinate variational approach [30], which is a
standard technique for the analytical treatment of solitons
[31–38].

Having seen how the ideal active soliton model succeeds
in incorporating the Chirikov engine in the condensate mean
field, in Sec. IV, we explore embedding the daemon mecha-
nism in the field theory in more complex ways. In particular,
we consider couplings which introduce multiple Chirikov
resonances, or broader ones. Since additional Chirikov reso-
nances turn out to allow soliton motions at different speeds,
we also examine the possible case of “negative” running
speed, in which instead of being lifted against gravity the
soliton runs down a potential slope at constant speed, using its
internal spin as a brake. Finally we analyze a range of cases in
which the Gross-Pitaevskii nonlinear Schrödinger equation is
no longer integrable because the scattering lengths of the two
atomic components are unequal. Even though the soliton is
then no longer a soliton in the narrowest sense, we find that the
active particle mechanism remains robust as long as a stable
solitary wave still exists. We close in Sec. V with a summary
of our results.

II. IDEAL ACTIVE SOLITON MODEL

A. Setup

For our examination, we assume a two-component Bose-
Einstein condensate which is confined to one spatial dimen-
sion and described by a two-component spinor mean field
�. The dynamics of such a spinor field �, where the atoms
have two internal states |+〉 and |−〉 and an equal negative
intercomponent and intracomponent scattering length, can be
calculated within the mean-field approximation using the di-
mensionless Gross-Pitaevskii equation (GPE) [13,29]

i�̇ = − 1
2� ′′ − (�†�)� + V � + M� + ��, (1)

where � = (�+(X, T )
�−(X, T )) is the dimensionless two-component

wave function, with X = x/x0 denoting the dimensionless
space coordinate, and T = t/t0 the dimensionless time, where
x0 and t0 are length and timescales that have been tuned,
as we describe below, to set the coefficient of the nonlinear
interaction term equal to one. V = V (X ) a position-dependent
external potential. Here and in the following we will de-
note (where possible) dimensionless quantities by uppercase
letters, and their counterpart with dimension by the cor-
responding lowercase letter. The matrices M and � are
defined by

M =
(

M+ 0
0 M−

)
, � =

(
0 �+

�− 0

)
. (2)

M can model different chemical potentials M±, which can
result from different magnetic energies or different trapping
strengths of the |±〉 species.

� provides a coupling between the two components. We
emphasize that � is time-independent: either we deal with
a literally time-independent coupling between bare energy
levels M± of metastable states, or else if the physical coupling
between the atomic states in an experiment is time-dependent,
then (1) represents the effective Hamiltonian in the “co-
rotating frame” of the coupling field phase, such that M±
are already the dressed energy levels and � are the effective
Rabi couplings. We do not assume that M+ − M− is small, or
effectively small because it will be dressed away; in contrast
to many studies of spinor condensates, we will find dramatic
effects on the soliton motion due to the internal energy differ-
ence M+ − M−.

In adopting this simple form of the dimensionless GPE
we have assumed that both one-dimensional interaction con-
stants are negative and equal, so that they can be set to one
simultaneously in Eq. (1). For some species of condensate
atoms, this is naturally true to a good approximation, but
if the three-dimensional scattering lengths are unequal then
adjustment can be made by tuning the transverse confinement
strengths for the different species differently. We will use
this dimensionless form of the Gross-Pitaevskii equation (1)
throughout Sec. II, but we pause briefly here to relate it to
physical units.

1. Physical units

For repulsively interacting condensates, one typically in-
troduces dimensionless variables based on the so-called
healing length which is proportional to the square root of
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the interaction constant times a typical density scale, but for
attractive interactions, this is awkward; while we can easily
take the absolute value of the interaction constant, there is no
ambient density scale because an attractively interacting con-
densate is unstable to breaking up into bright soliton droplets.
For the three-dimensional scattering length a, radial trapping
frequency ωρ , atom mass m, and total atom number N , how-
ever, we can always define a characteristic velocity

v0 = 2N

π
ωρa, (3)

and measure time, space and the density of the wave function
in units of

t0 = h̄

m

1

v2
0

, x0 = h̄

m

1

v0
, ψ0 =

√
m

h̄

v0

n
, (4)

to achieve a description in dimensionless variables. For the
experimental data of Ref. [9], for example, we obtain v0 ≈
3.6 mm/s, i.e., t0 ≈ 0.12 ms and x0 ≈ 0.43 μm.

2. Coupling terms

Without external potential and interspecies coupling, i.e.,
V = � = 0, equation (1) has solutions in form of vector bright
solitons. The fact that these hyperbolic secant solutions are
exact without V and � is not as important to us as the fact that
these soliton forms remain excellent approximate solutions in
the case where there are nonvanishing external and coupling
potentials [34]. Without loss of generality, we will choose in
the following:

M = 1

2
�

(
1 0
0 −1

)
, (5)

with the real parameter � describing the energy gap between
the two chemical potentials of the two components of the
condensate. We take � > 0 without loss of generality, by
defining the upper component of the condensate to be the one
with higher M.

To achieve an energy transfer from the internal to the
mechanical degrees of freedom, we choose the coupling

� = �0

(
0 1

2 exp(iKX )
1
2 exp(−iKX ) 0

)
, (6)

with the real, positive parameter K describing the spatial pe-
riod of the intercomponent coupling, of strength �0. As we
will see below, this spatial dependence in � will be able to
play a similar role to the time dependence in a typical Rabi
drive: if the soliton moves at the critical speed vc = v0K/�,
then we will have e±iKX ∼ e±i�T . This means that our two
condensate species will be able to interact resonantly, just
as if M+ − M− had been dressed to zero by a resonant Rabi
coupling, if and only if the soliton moves at a velocity close
to vc.

This resonant interaction at a critical soliton velocity will
allow the soliton to move as an active particle, drawing en-
ergy from its internal atomic state and allowing it to move
at a steady speed against an external force. In order to show
this active-particle behavior in our soliton, therefore, we will
finally specify the external potential

V (X ) = GX, (7)

FIG. 1. The expectation value x/x0 = X of the soliton plotted
over time t/t0 = T for the parameters given in the text (solid), and
for the uncoupled case (dashed). While the uncoupled case shows
ballistic deceleration under the external force G, with coupling the
velocity remains nearly constant in spite of the external force. The
inset shows the total density of the condensate in space at around
T = 1700.

with the real parameter G describing the strength of the exter-
nal force against which the soliton will move using its internal
energy source. In order to focus on an active soliton doing
work against an external force, we take G > 0 along with
K > 0. If both G and K are negative the soliton will simply
move actively in the opposite direction. If G and K have
opposite signs, then resonantly sustained motion at velocity vc

will instead involve the soliton increasing its internal energy
by harvesting energy from the external potential gradient;
the process is otherwise exactly analogous to the work-doing
behavior, so we will only address this scenario briefly in
Sec. IV B 2 below.

B. Numerical results

We solve (1) numerically, starting with a vector bright
soliton

�±(X, T = 0) = 1
2 A± sech

(
1
2 X

)
exp(1.2iX ) (8)

which has an almost vanishing second component (A2
− =

0.002 = 1 − A2
+) and an initial speed v = 1.2v0. It is im-

portant that this initial speed v is greater than the critical
speed vc = �

K v0, but any other initial speeds above vc will
produce qualitatively similar evolution, because the external
force G will decelerate the soliton until its speed falls to vc. We
take K = � = 1, �0 = π/(800 csch(π )), and G = 1/1600 as
system parameters; these precise values have no qualitative
significance for the evolution, but their orders of magnitude
do (again see Sec. III B). The behavior of the soliton can be
inferred from Fig. 1, where the expectation value of the space
coordinate

〈X 〉 = 〈x/x0〉 =
∫ ∞

−∞
dX �†X� (9)
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(a) (b)

(c) (d)

FIG. 2. Evolution of the different energy terms of the two-component mean-field system (black) and the collective coordinate model (gray,
see Sec. III), and the velocity v/v0. The evolution is the same as that depicted in Fig. 1. (a) The energy in the fuel term decreases linearly
during the active phase while the mechanical energy increases linearly, such that the sum of both is about constant. The change of the energy in
the coupling term (b) and in the nonlinear term (c) are two orders of magnitude below the former energy changes—negligible in comparison.
The velocity v/v0 (d) shows oscillations around a constant value during the active phase. Outside the active phase it decreases linearly.

is plotted over time T = t/t0 for the stated parameters and
initial fields. The coupled case is shown with a solid line; the
uncoupled case with the same parameters, except �0 = 0, is
shown as a dashed line. In the uncoupled case, the soliton
motion is simply ballistic, decelerating steadily under the
constant external force G. In the coupled case, in contrast, the
position of the soliton increases linearly in time, indicating a
nearly constant speed in spite of the same external force G.

In the uncoupled case the soliton gains potential energy, as
long as it is still moving in the positive direction, by losing
kinetic energy; in the coupled case the soliton maintains its
kinetic energy while increasing its potential energy linearly.
Since the energy of the total system is constant, this energy
can only originate from the internal Zeeman energy. The inset
in Fig. 1 shows the density �†� at T ≈ 1700 for about a
range of 40 units of X and 30 units of T . There are no
noticeable changes in the condensate density.

We used the split-step Fourier method with an adaptive er-
ror control for our numerical evolutions [39,40]. The method
has periodic boundary conditions, so that the linear potential
V = GX jumps abruptly at the “wraparound” spatial bound-
ary, but we used a large enough spatial grid to resolve the
soliton well while keeping the spatial period long enough
that the soliton never approaches the boundary in the whole
evolution. The resolution of the used spatial grid is about 5
grid points per unit of length. Since the soliton has a length of
about 10 x/x0 there are about 50 grid points on the soliton.

To demonstrate that the soliton indeed shows the dramatic
behavior of transferring energy from the internal degrees of
freedom into motional work, we directly examine the time
evolution of the different terms in the system’s energy. The
Gross-Pitaevskii equation (1) corresponds to the Hamiltonian

density

H = 1
2 (�†)′� ′ − 1

2 |�†�|2 + �†V � + �†(M + �)�.

(10)

Within this total energy we can identify the various ki-
netic, potential, internal (“fuel”), nonlinear, and Rabi coupling
terms:

Hkin = 1

2

∫ ∞

−∞
dX (�†)′� ′, (11)

Hpot =
∫ ∞

−∞
dX �†V �, (12)

Hfuel =
∫ ∞

−∞
dX �†M�, (13)

Hnl = −1

2

∫ ∞

−∞
dX |�†�|2, (14)

H� =
∫ ∞

−∞
dX �†��, (15)

and denote the corresponding physical energies as Ex = h̄ωHx

for ω = �/t0. We define further the total mechanical energy
of the soliton’s motional degree of freedom as

Emech = Ekin + Epot. (16)

Energies corresponding to (11)–(15) are plotted in Fig. 2
over time (black curves); the energies are from the same
numerical evolution that was shown in Fig. 1. It can be seen
in (a) that the total change in the fuel energy Efuel and in the
mechanical energy Emech is of order h̄ω, and that the sum of
both is approximately constant. (We have shifted the origin of
Emech for convenience.) The maximal changes in the coupling
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(a) (b) (c)

FIG. 3. The density for the first (second) component plotted in
black (gray), for the three different times T = 0 (a), 700 (b), and
1600 (c). It can be seen that the amplitude of the first component
decreases while the amplitude of the second increases which leads to
a lower fuel energy. The shape stays the same during the evolution.

energy E� (b) and the energy of the nonlinear term Enl (c) are
in contrast only of order 0.01h̄ω, insignificant compared to the
energy transfer between Epot and Efuel. What the couplings are
therefore doing is sustaining this steady energy transfer from
Efuel to Epot, rather than directly contributing their own energy
to the motion. The velocity of the soliton can be calculated as

v/v0 =
∫ ∞

−∞
dX �†� ′, (17)

and is shown in Fig. 2(d). During the time at which the energy
transfer happens the velocity stays about constant. Outside
this time the velocity decreases linearly, as one expects from
a particle in a linear potential.

C. Persistence of solitary wave form

The one-dimensional nonlinear Schrödinger equation with
V = � = 0 is integrable and the sech-form of our initial state
(8) is a bright soliton solution which maintains its spatial
profile exactly as it moves at arbitrary speed. With the addition
of our Rabi coupling term H� and the potential gradient, the
system is (presumably) no longer integrable. Our initial state
nonetheless evolves as a stable solitary wave, very close to its
initial form. We will therefore continue to refer to this moving
structure as “the soliton,” for the sake of brevity.

Figure 3 shows snapshots of the density ρ± = |�±|2 of
the first (second) component of the soliton in black (gray)
for the times T = 0 (a), 700 (b), and 1600 (c), taken from
the same numerical evolution that was shown in Fig. 1. As
mentioned above, the initial state has very small density ρ− in
the second component. It can be seen that during the process
the density ρ+ decreases while ρ− increases, which leads to
the decrease of the fuel energy Efuel; this is the energy which
lifts the soliton against the external force. It can also be seen
from Fig. 3 that both density profiles remain qualitatively
quite similar (though changing in relative size) over the whole
evolution, during which the soliton moves many times its own
width.

The general form of a bright soliton for our GPE with
V, � → 0 is

�bs
± (X, T ) = 1

2

√
N± sech(α±(X − Q))ei
± , (18)

(a) (b)

FIG. 4. Deviation over time between the numerically exact den-
sities and the soliton ansatz densities for (18) with instantaneous
best-fit parameters. (a) shows the error when α± are not fitted but
held at α± = 1/2 and (b) shows the error when α± are fitted as well.

where Q depends linearly on time, 
± depend on time and
space, N± ∈ [0, 1] (such that N+ + N− = 1) are constant pa-
rameters, and α± = 1

2 . From the evolution that we have just
seen in Fig. 3, it is clear that N± do not remain constant once
�,V 
= 0. The small but finite change in the nonlinear energy
Enl seen in Fig. 2(c) suggests that α± may not be exactly
constant, either. The question is how far the time-dependent
�± can still be closely approximated by some �bs

± (X, T ),
for some time-dependent set of parameters. We will find that
a close approximation is indeed possible within this bright
soliton family, allowing us to pursue a variational model in
Sec. III.

To show this, we fit the densities f± = |�bs
± |2 to the nu-

merically obtained densities, using N±, Q, and α± as tunable
fit parameters. As a measure for the deviation of the exactly
evolving solution from the soliton form, we define the error
δ = δ(T ) between the density ρ± = |�±(X, T )|2 and the fit-
ted f± = |�bs

± (X, T )|2 as

δ(T ) =
√∫ ∞

−∞
dX (|ρ+ − f+|2 + |ρ− − f−|2). (19)

We determine our time-dependent fit parameters as those
which minimize this error δ(T ) at each instant T .

Figure 4(b) shows δ plotted over time. The deviation be-
tween the exact and fitted-soliton densities remains small,
confirming that the densities keep close to the form (18).
Figure 4(a) shows that the error is not worsened much by
leaving out α± as fit parameters and simply keeping α± = 1

2 .
As shown in Fig. 5, the properly fitted α±(T ) do show some
understandable trends over longer times, as well as fluctua-
tions on shorter timescales. Substantial departures of α± from
1/2 only occur at the earliest and latest times, however, when
the corresponding ρ± is small.

The error involved in replacing α± with 1/2 does not seem,
therefore, to represent a significant distortion of the overall
�±. In Sec. III, we will accordingly pursue a time-dependent
variational description of our soliton with α± = 1/2; the
expected gain in accuracy from including α± as a varia-
tional parameter does not appear to be worth the increased
complexity.
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(a)

(b) (c)

FIG. 5. Width parameters α+ (α−) plotted in black (gray) over
time. The total evolution is shown in (a), while (b) and (c) are
enlargements at early and at intermediate times. In general, the +
component in the soliton slowly becomes narrower during the evolu-
tion, and the − component broadens after a quick early narrowing;
this occurs while the total atomic population also migrates from the
+ spin component to the −, but it is not what we would expect for
a vector bright soliton without � or G, since with equal scattering
lengths the width of a bright soliton depends only on the total number
N , not the distribution in spin. When the density of a component
is low, large variations in the corresponding width are visible (b).
Otherwise the widths show rapid oscillations with a small amplitude
(c).

III. VARIATIONAL APPROXIMATION FOR THE ACTIVE
BRIGHT SOLITON

A. Evolution of the parameters

Our active solitons remain bright vector solitons to a
good approximation, and it is well known that bright solitons
behave very much like particles [11,12]. This makes it an
obvious approach to try to describe the motion of our active
soliton more simply in terms of a few collective coordinates,
by means of a time-dependent variational approximation. This
variational approach is a standard technique for the treatment
of solitons [30–38].

We begin with the variational ansatz discussed in Sec. II
above:

�bs
± (X, T ) = 1

2

√
N± sech

(
1
2 (X − Q)

) · e−iP2T eiP(X−Q)ei
± ,

(20)

where now we allow the ansatz parameters
Q(T ), P(T ), N±(T ) and 
±(T ) to be time-dependent.
We then insert this ansatz into the Lagrangian for the
Gross-Pitaevskii equation, to produce a Lagrangian that
depends only on our ansatz parameters (and their time

derivatives):

L(Q, P, N±,
±)

=
∫ ∞

−∞
dX {Im(�̇†

bs�bs) − H(�bs, �
′
bs)}, (21)

with �bs = (�
bs
+

�bs
−

) from (20).
Noting that N+ + N− = 1 is exactly conserved under the

GPE, and that the canonically conjugate common global phase
of �± is a trivial cyclic variable, we can reduce the number of
our parameters by defining

� = 
+ − 
−, I = 1
2 (N+ − N−). (22)

This leaves us with two mechanical coordinates (Q, P) to be
the position and momentum of the motional degree of freedom
of the whole soliton, and (�, I ) as internal coordinates de-
scribing its total spin degree of freedom as an active particle’s
internal energy depot. In particular I is directly proportional
to the fuel energy Efuel = h̄ωI; I = 1/2 represents a fully
stocked energy depot while at I = −1/2 the depot is empty.

With these definitions the Euler-Lagrange equations of mo-
tion for our variational Lagrangian read

Q̇ = P, (23)

Ṗ = −G + K�K

√
1

4
− I2 sin(KQ − �), (24)

�̇ = � − �K
I√

1
4 − I2

cos(KQ − �), (25)

İ = −�K

√
1

4
− I2 sin(KQ − �), (26)

with the one additional definition, from the Fourier transform∫ ∞

−∞
dz

eikz

cosh2(z/2)
= 4πk

sinh πk
, (27)

of

�K = �0πK csch(πK ), (28)

whereby �K � �0 for all K . These equations of motion can
also be identified as the canonical equations of motion for the
Hamiltonian

H = 1

2
P2 + GQ + �I + �K

√
1

4
− I2 cos(KQ − �), (29)

if we assume (Q, P) and (�, I ) to be pairs of conjugate coor-
dinates. The several energy terms in Eq. (29) are therefore the
energies that were plotted in gray in Fig. 2 for comparison
with the Gross-Pitaevskii energies (11)–(13) and (15) that
were plotted in black. As we saw in Fig. 2(a), the global
evolution of the fuel energy Efuel and mechanical energy Emech

is well reproduced by the reduced variational model. Also the
variational parameter P(t ), shown as gray line in Fig. 2(d),
approximates the velocity of the soliton. We can therefore
seek to understand the behavior of the active bright soliton in
terms of this much simpler effective Hamiltonian (29), which
has only two degrees of freedom instead of the continuum of
the Gross-Pitaevskii order parameter fields.
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The initial state (8) for the GPE evolution that we showed
in Sec. II above corresponds to the initial parameters

Q(0) = 0, P(0) = 1.2,

�(0) = 0, I (0) = 0.498 (30)

in this reduced representation.

B. “Hamiltonian daemon”

The Hamiltonian (29) has in fact been studied at some
length already [5,27,41]; it has been labeled a “Hamilto-
nian daemon” in allusion to Maxwell’s demon and to small
autonomous Unix processes (daemons). Indeed, the present
paper was motivated largely as a deliberate attempt to embed
this Hamiltonian daemon into a Gross-Pitaevskii system. We
refer readers to Refs. [5,27,41] for a fuller discussion of the
Hamiltonian itself, but here we briefly review some of its
properties that are important for the behavior of the active
soliton.

1. The Chirikov resonance

First of all we can understand the Chirikov resonance that
allows secular energy transfer from high frequency into steady
motion. The reason why we need a Chirikov resonance is that
generically � has a rapid linear dependence on the dimension-
less time T , � ∼ �T with � large because it is the Zeeman
frequency in dimensionless form. This generically makes the
cos(KQ − �) term in the Hamiltonian (29) oscillate rapidly,
and thus time-average to zero so that the fuel and motional
degrees of freedom adiabatically decouple.

The Chirikov resonance occurs, however, if the soliton
moves at nearly the (dimensionless) speed Pc = �/K . At this
special speed, we have Q ∼ �T/K , so that cos(KQ − �)
no longer oscillates rapidly around zero but becomes nearly
constant instead. The interspecies coupling term, which is rep-
resented in the variational H as the �K

√
1
4 − I2 cos(KQ − �)

term, can therefore have a secular effect.
What is not generic for Chirikov resonances, but occurs

in this particular “daemon” case, is that the secular effect of
this interaction term which appears at the Chirikov resonance
P = Pc is to keep P close to Pc, so that the resonance actually
sustains itself, allowing secular energy transfer to continue
for a long time. If the (dimensionless) wave number K of
the interspecies coupling’s spatial periodicity is large enough,
K can effectively “gear down” a high frequency � to an
arbitrarily slow steady speed Pc = �/K .

2. Parameter regimes

As well as understanding how the active soliton can basi-
cally work, we can identify the parameter regimes in which
the soliton’s nontrivially driven motion represents a reason-
able form of active particle. First of all, we can see that the
soliton can only be active if

G < K�K/2, (31)

since otherwise Ṗ will always be negative according to (24),
and therefore cannot remain near the Chirikov resonance at
P = Pc for any long time. In effect K�K/2 represents the
largest force which the active particle’s “motor” can exert; an

external downward force stronger than this limit will prevent
upward motion, in the same way that a car with limited engine
torque cannot climb too steep a hill.

A second condition for an active particle is what we were
able to achieve in Sec. II: steady motion over a long time
because a mechanism is slowly transferring a large amount
of energy from fuel into work, while the energy of the mech-
anism itself remains comparatively small at all times. This
requires the regime

�K � �. (32)

Finally, for small �K , the Chirikov resonance is narrow and
can only sustain itself once P is quite close to Pc. The active
soliton must therefore somehow be given the initial kinetic
energy P2

c /2 before the depot energy �I can be exploited for
motion. To make this initial energy investment worthwhile, an
active soliton should be able to hold at least that much energy
in its depot, requiring

P2
c < 2� (33)

and hence

� < 2K2. (34)

Since any one of our four dimensionless parameters
G, �K , �, and K can effectively be set to one by rescaling
the dimensionless time T , the inequality hierarchy

2G

K
< �K � � < 2K2 (35)

fully defines the regime in which this daemon soliton can
reasonably considered as an active particle. As noted in
Refs. [5,27,41], the strong inequality which is the middle
condition in Eq. (35) implies a timescale hierarchy in the
evolution under (29) which allows adiabatic methods to be
applied, clarifying some otherwise rather complicated nonlin-
ear dynamics. For reference, parameters used in Sec. II satisfy
the hierarchy (35) with

1

800
<

π2

800
� 1 < 2. (36)

3. Performance limits

The total time Tc during which the soliton can remain active
before all of its fuel has been expended (I falls from +1/2 to
−1/2) can be estimated as � (maximum total fuel energy)
divided by power needed to sustain speed Pc = �/K against
external force G. This yields

Tc = K

G
, Xc = PcTc = �

G
. (37)

If we use the data from [9] to translate our parameters
from Sec. II into physical units, we find a critical velocity
Pcv0 ≈ 3.6 mm/s, active motion duration Tct0 ≈ 0.2 s, and
total height raised Xcx0 ≈ 0.7 mm. These appear not unrea-
sonable as experimental dimensions; they fall well short of
the potential maximum height to which Zeeman energy might
carry a bright vector soliton, but with soliton widths in mi-
crons, a million times the soliton width might require an
extravagantly large vacuum chamber.
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(a)

(b)

FIG. 6. (a) The relative change in the fuel energy and (b) in the
mechanical energy during the process plotted over the initial angle
KQ0 − �0. For a weak coupling �K , two regions can be identified
for the particle system (gray) and the field system (black). In the
one region, almost all energy of the fuel gets transferred to the
mechanical degrees of freedom of the soliton, in the other region,
much less energy gets transferred. This effect does not occur for a
stronger coupling (dashed black line, both cases), for which complete
energy transfer occurs for all initial angles.

4. Daemon “ignition”

Because the evolution of the Hamiltonian daemon is indeed
quite complicated, the accuracy of the collective coordinate
model in representing the active soliton can be limited in
some subtle ways. For example, in Fig. 6, we show two cases
with K = � = 1 and G = π2/1600 as in Sec. II, but with
either �K = π2/800 as in Sec. II or �K = π2/3200, four
times smaller than in Sec. II. Figure 6(a) shows the relative
change of the fuel energy δEfuel/(h̄ω) between the start of
the process, and after an evolution of time δT = 2300 for
different initial angle KQ0 − �0. Analogously Fig. 6(b) show
the relative change in the mechanical energy. The small-�K

cases are shown as solid lines, black for the field system and
gray for the variational system. The big-�K cases are shown as
dashed black lines. The field and variational calculation yield
only not notable deviations from each other in this case. While
the dashed big-�K solutions show the same behavior as could
be seen before (the energy is transferred from Hfuel to Hmech),
the solutions for the smaller �K do not show this behavior on
the whole range of initial values.

With smaller �K the Chirikov resonance is narrower, and
the system does not always get captured into the resonant
region of phase space [42]. Whether or not active motion
occurs depends in this small-�K case on the initial value of
the angle �0. This phenomenon of state-dependent “ignition”
of the active phase occurs qualitatively in both the reduced

variational model and the full Gross-Pitaevskii description,
but as Fig. 6 shows, the nonignition effect is different, when it
occurs, in the full theory and in the variational approximation.

When not all of the spin energy is successfully consumed
for motional work, the variational approximation predicts that
very little of it will be used in any way—the “motor” simply
fails to start. In these cases where the variational approxima-
tion predicts little change in spin energy, however, the full
GPE evolution shows some significant loss of Efuel. Closer
examination shows that what is occurring in these cases is that
correspondence between the field theory and the variational
model breaks down, because passing through the Chirikov
resonance makes the soliton partly break up; spin energy is
used to unbind part of the soliton, rather than to keep the
whole soliton moving against the external force. It is perhaps
counterintuitive that this happens for weaker �K coupling,
while the stronger coupling keeps the soliton together reliably,
as well as reliably using its spin energy as an active particle.
The reason for this is that the bigger coupling forces the
system to get caught in the Chirikov resonance. If the system
is not caught in the resonance, which can only happen for
the small-�K case, the effect of the Rabi coupling is rather
that it transfers a part of the soliton from the + component
to the − component of the condensate, while increasing the
momentum only of the transferred part, which will hence
leave the soliton.

This example shows that although our simple picture of
the vector bright soliton as an active particle certainly can
apply well, with the simple daemon model as an accurate
variational approximation, yet there can also be cases where
the soliton fails to remain robust under the spatially periodic
Rabi coupling and the external force. Interesting as it may be
to pursue a detailed investigation of exactly what happens in
the particular case of Fig. 6, we will leave this for future work;
we conclude the present paper by looking more broadly at how
our active particle model may break down, or survive, when
the condensate system is generalized in various ways.

IV. MORE GENERAL ACTIVE SOLITON MODELS

A. Other Rabi couplings

in Eq. (6), we introduced a Rabi coupling that was tailored
specifically to realize the Chirikov resonance of the Hamil-
tonian daemon for an atomic soliton. To consider engineered
Hamiltonians that do not involve Chirikov resonances at all
would give this paper an infinite scope, but we can consider a
wider range of qualitatively similar Chirikov resonances. In
particular, in this Sec., we modify our assumption that the
Rabi coupling is perfectly periodic in space with a single
positive wave number K . Instead, we will examine a case
with multiple simultaneous K → Kn; a case with negative K ,
in which the active soliton harvests internal energy from the
external force instead of working against it; and a case where
the periodicity of the Rabi coupling is somewhat disordered,
so that K has a finite statistical width.

All of these cases still have

� = �0

(
0 F (X )

F ∗(X ) 0

)
, (38)
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for some spatially varying function F = F (X ). Letting F̃ de-
note the Fourier transform of F , we can express our spatially
dependent Rabi coupling as

H� ≡
∫ ∞

−∞
dX �

†
bs��bs

= �0

2

√(
1

2

)2

−I2Re

(
ei�

∫ ∞

−∞
dX F (X )sech2

(
X −Q

2

))

= �0

√(
1

2

)2

− I2 Re

(
ei�

∫ ∞

−∞
dY

Y F̃ (Y )

sinh(πY )
e−iQY

)
,

(39)

again using the Fourier transform of sech2. Where our original
ansatz (6) made F̃ a delta function at Y = K , we now explore
some more general cases. We find that the mechanism of
energy transfer through the self-sustaining Chirikov resonance
of the Hamiltonian daemon does not only occur in our original
special case, but persists much more generally. Embedding the
Hamiltonian daemon in the spinor condensate mean field does
introduce generalizations and corrections to the most basic
daemon Hamiltonian, however.

1. A coupling with three isolated resonances

Since the complex exponential F = eiKX in our original
model explicitly broke time-reversal invariance, one might
well worry that the active soliton can only work when this
important discrete symmetry is broken by hand. If instead
we take F (X ) = 2 cos2(KX/2), however, we maintain time-
reversal invariance with the real Hamiltonian term

H� =
√

1

4
− I2(2�0 cos(�) + �K cos(KQ − �)

+ �K cos(KQ + �)). (40)

Our previous “K” Chirikov resonance is now joined by similar
“−K” and “K = 0” resonances: a term in H� is now time-
independent when Q̇ = P is close to −Pc = −�/K or close
to zero. The presence of additional well separated resonances
turns out to have little effect, however, because with �0 �
� each term in H� can only have significant effect when P
is close to its critical speed. The soliton cannot be close to
more than one critical speed simultaneously, because the three
are separated by �/K , and so effectively this time-reversal-
invariant model is nearly equivalent to our original model, as
long as the soliton speed is not close to either zero or −Pc.

Figure 7 shows numerical evolutions with this coupling
(40), but otherwise with all parameters and initial conditions
the same as in Sec. II. In the figure, both the full GPE field the-
ory (black) and the corresponding variational approximation
(gray) are shown. The behaviors of the fuel energy Efuel, the
mechanical energy Emech, and the velocity v are qualitatively
very much the same as for our original single K resonance:
energy is slowly drained from the fuel term and converted into
mechanical energy.

The new terms in the Hamiltonian introduce additional
Chirikov resonances; that is, these new terms would be res-
onant perturbations of the system at speeds zero or −Pc. As

(a) (b)

(c)

FIG. 7. Evolution of the fuel and mechanical energy [(a) and (b)]
and the velocity v/v0(c), for the case of multiple resonances. The
black (gray) lines correspond to the field (particle) system. While
there are rapid oscillations on top of the global evolution, the global
behavior is almost the same as for a single resonance.

long as the active soliton has P near Pc, the additional terms
are far from being resonant. Their effects on the motion of
the soliton near Pc are therefore not the dramatic qualita-
tive change of a resonant perturbation, but only “dressing”:
the nonresonant terms can be adiabatically eliminated and
replaced, in an adiabatic effective Hamiltonian with renormal-
ized terms.

Such an effect can be seen in Fig. 7, for example. When
the exact soliton velocity v/v0 from (17) is compared with
the variational parameter P(T ), we see that there is a small
linear downward trend in the exact velocity which is not
captured by the variational model. Such a downward trend
in the active particle speed, as its fuel I is depleted, can
be incorporated into the Hamiltonian daemon by adding a
quadratic term bI2 for some b > 0 to the daemon Hamiltonian
(29). Doing that effectively makes � → � + 2bI and thus
Pc− > Pc + (2b/K )I , decreasing as I decreases.

Within the full mean-field theory this effect can easily
arise, because the vector bright soliton distorts somewhat in
form during the active phase, as we have already seen in the
nontrivial behavior of the α± variational parameters shown in
Fig. 5. What evidently occurs with the additional couplings
of (40) is that the soliton slightly distorts in an I-dependent
way, such that the nonlinear and kinetic terms in the energy
contribute an effective bI2 energy term. The gradual decel-
eration that we see in the black curve in Fig. 7 is thus a
kind of higher-order effect of the more complicated active
soliton mechanism with multiple resonances, which involves
additional soliton distortion that the simple variational model
does not take into account.
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2. Working as a brake

We have just seen that for a more general H� the active
soliton’s speed may be generalized away from the single sharp
Pc of the simplest model. We can now study a more drastic
speed alternative for the active soliton while still using the
same three-resonance H� (40). With time-reversal symmetry
now restored, we can find a case in which the −K resonance
generates the major effect of holding the soliton’s speed nearly
steady as it moves with the external force instead of against
it. In other words the Chirikov mechanism which previously
worked as a motor now works as a brake. Since the internal
energy I is now raised instead of being depleted, we could also
consider this evolution as a microscopically described case of
energy harvesting by an active particle.

Initial conditions which lead to this motion are

�±(X, T = 0) = 1
2 A± sech

(
1
2 X

)
exp(−0.8iX )

with now the upper component very small instead of the lower
as in Eq. (8), A2

+ = 0.002 = 1 − A2
−, and the smaller negative

initial speed v/v0 = −0.8 instead of +1.2 as in Eq. (8).
These initial fields mean that I (T = 0) = −0.498, i.e.,

there is initially almost no energy in the fuel term, and the
soliton starts with the negative velocity −0.8v0, falling down
the linear potential. Due to the potential gradient the soliton
will linearly increase its momentum, until it reaches P ≈ −1.
It then becomes trapped into the −K resonance, locking its
momentum close to −Pc = �

−K = −1. The mechanical energy
which is lost as the soliton moves down the potential gradient
without correspondingly accelerating is transferred into the
internal depot of spin energy. This behavior can be seen in
Fig. 8, which can be directly compared to Fig. 7.

Much as in Fig. 7, a small but systematic discrepancy
between the variational approximation and the full field theory
can be seen in Fig. 8. The active soliton not only avoids
accelerating despite the external force, but actually decelerates
slightly (in the negative direction, i.e., becomes slightly less
negative). The same form of bI2 modification to (29) can
account for this residual deceleration, but now we will need
b < 0, so that Pc = (� + 2bI )/(−K ) decreases in absolute
value as I rises. Evidently the way in which soliton defor-
mation dresses the effective daemon Hamiltonian depends on
which Chirikov coupling is actually resonant. More detailed
investigations of how solitons deform in this kind of model
may be worth pursuing in future work.

3. Finite-width resonance

As a last example in our exploration of more general F (X )
coupling profiles, we return to the original case with only
one Chirikov resonance. We now suppose, however, that the
Fourier transform of F is not a sharp delta function at K , but
has a small finite width σ , because the Rabi drive does not
extend over all space, but instead has a Gaussian envelope
with a large width 1/σ :

F (x) = 1√
2π

exp(−iKX ) exp

(
−1

2
σ 2X 2

)
. (41)

(a) (b)

(c)

FIG. 8. Evolution of the fuel and mechanical energy [(a) and
(b)] and the velocity (c) for the case, where the velocity locks to a
negative value. The field (particle) system is plotted in black (gray).
Instead of getting accelerated the soliton keeps its negative velocity,
while the energy of the fuel term is increased.

Since this means that the active motion of the soliton can
only occur within the Gaussian envelope, we are interested
in σ small enough that 1/σ still allows room for a reasonable
amount of active motion. Below we will compare two cases:
σ = 0.001 and 0.002, for both of which 1/σ is on the order of
the total travel distances that we saw in Sec. II.

For such small σ the spatial modulation of F (X ) is slow
on the 1/K scale over which the Chirikov resonance motor
effect operates, and so we can anticipate behavior much like
what we have previously seen for the single-resonance model,
except with a �K that slowly changes as the soliton moves.
Quantitatively, we expect that the active motion can only per-
sist as long as the instantaneous coupling strength �K is above
the 2G/K threshold from (35), so that the maximum possi-
ble force from the Rabi coupling can overcome the external
force G.

To test these predictions and also continue our comparisons
between GPE evolution and the variational approximation
with two degrees of freedom, we should ideally define H�

using the integral in Eq. (39). Unfortunately this integral has
no convenient analytical form. We therefore instead take a
more transparent H� with the same Gaussian form as F (X )
itself, and allow for modification due to averaging over the
soliton width by using fitting parameters α and β:

H� = �K (Q)

√
1

4
− I2 cos(K0Q − �), (42)
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(a)

(b)

(c)

FIG. 9. Evolution of the fuel energy Efuel/(h̄ω) (a) and the veloc-
ity of the soliton (b) for the case of a finite resonance. The black
(gray) curves correspond to the field (particle) system, the solid
(dashed) curves to the narrow (wide) resonance width. The begin of
the evolution is the same as for a sharp resonance. The process stops
when the effective coupling strength �eff drops to the critical value
�crit (c) even though the fuel has not yet been drained completely.

where we define

�K (Q) = �0
α√

1 + 2βσ 2
exp

(
− βK2

1 + 2βσ 2

)

× exp

(
− σ 2Q2

2(1 + 2βσ 2)

)
, (43)

K0 = K

1 + 2βσ 2
. (44)

Best fits to the ideal H� from the (39) integral are for α ≈
0.969 and β ≈ 1.269.

Figure 9 shows in (a) and (b) the evolution of the fuel en-
ergy and velocity of the soliton according to both the GPE and
the variational approximation, for the two different resonance
widths σ = 0.002 (dashed) and σ = 0.001 (solid). All system
parameters and initial values are otherwise the same as for
the evolutions in Sec. II. The soliton thus begins at X = 0,
in the middle of the Rabi coupling’s Gaussian envelope, at
a speed slightly above the critical speed for active motion Pc.
Decelerating under the external force, its speed soon falls to Pc

and active motion begins. With these two particular resonance

widths the now Q-dependent coupling �K (Q) drops below the
critical value 2G/K0 before the active motion would otherwise
stop for lack of internal energy.

For σ = 0.002, this happens at about T ≈ 720, and the
active phase of motion indeed ceases then, with the fuel en-
ergy holding constant after this point, and velocity decreasing
linearly under the external force. For the narrower resonance
width σ = 0.001, the local coupling constant �K (Q) reaches
the critical value at T ≈ 1600, but the active phase ends
noticeably earlier, at T ≈ 1400, when �K (Q)

.= 2.8G/K0. It
must be remembered, however, that the condition �K > 2G/K
is the requirement for active motion at any possible I . The
force exerted by the Rabi coupling is also proportional to√

(1/4) − I2, so active motion for |I| > 0 in general requires
higher �K . For the spatially narrower Rabi drive envelope
with σ = 0.002, the too-small-�K threshold is crossed sooner,
when I is close to zero, while for the spatially wider case
σ = 0.001 the active motion continues until I is near −0.3.
At that point, the

√
(1/4) − I2 factor and the smaller �K (Q)

together leave the Rabi drive too weak to overcome the exter-
nal force, and active motion stops.

Overall our investigations of different forms of spatially
dependent Rabi coupling support the view that although the
Chirikov resonance mechanism of the active vector bright
soliton is somewhat complicated, it is not especially fragile.
The many possible perturbations and parameters of the larger
field theory model can impose many deformations and renor-
malizations of the simple Hamiltonian daemon model, which
can effect its behavior significantly. They do not destroy its
operation entirely, however; on the contrary, the basic active
particle behavior can robustly persist.

B. Different scattering lengths

The form (1) of the one-dimensional Gross-Pitaevskii
equation does not hold if the three-dimensional interspecies
scattering lengths a±±′ and radial trapping frequencies ωρ±,
which together determine the effective one-dimensional non-
linear coupling matrix, are not all equal for the two species.
While one coupling constant can be set equal to one by scal-
ing, in general, the other three are independent and our GPE
(1) must be generalized by replacing

(�†�)� →
(

(|�+|2 + A′|�−|2)�+
(A′|�+|2 + A|�−|2)�−

)
(45)

for some real constants A and A′. By modifying the internal
states of the atoms with external fields, the three-dimensional
scattering lengths can be controlled experimentally to a great
extent; by further making the potentials which confine the
gas to one dimension spin-dependent, the mean-field coupling
constants in one dimension can further be modified. It may not
be experimentally easy to achieve A = A′ = 1, however, and
so we ask what effects general A and A′ may have on the active
bright vector soliton.

1. Variational Hamiltonian

The main effect of general A and A′ is that the soliton
is no longer a soliton in the strict sense, since the general
two-component nonlinear Schrödinger equation is no longer
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integrable. Similar solitary wave solutions still exist for a
range of A and A′, however, and we will continue to refer to
these as “the soliton” for brevity. Their wave function profile
is no longer exactly a hyperbolic cosecant, and in general
the widths of the solitary wave are not the same for both
components �±. For simplicity, however, we will continue to
compare numerical GPE evolution with a variational approx-
imation based on the same ansatz (20) that we used before,
with hyperbolic cosecants of the same fixed width, i.e., with
constant α± = 1/2.

This simpler variational ansatz leaves most of our effective
variational Hamiltonian (29) unaffected by the new set of
scattering lengths, even though a more accurate ansatz would
include indirect effects due to the modification of the solitary
wave shapes. Even without taking those changes into account,
however, additional I dependencies appear in the variational
H through the nonlinear term in the Gross-Pitaevskii Hamil-
tonian density, in which we must replace |�†�|2 in Eq. (10)
with

1
2 |�†�|2 → 1

2 (|�∗
+�+|2 + A|�∗

−�−|2 + 2A′|�+|2|�−|2).

(46)

Using the integral∫ ∞

−∞
dz sech4(z) ≡

∫ ∞

−∞
d (tanh z) (1 − tanh2 z) = 4

3
, (47)

we see that we now have

H = 1

2
P2 + GQ + (�̃ + νI )I − �K

√
1

4
− I2 cos(KQ − �),

(48)

with

�̃ = � + A − 1

12
, ν = 2A′ − A − 1

12
. (49)

Our understanding of Hamiltonian (29) remains essentially
intact, therefore, if we introduce a new, I-dependent, critical
velocity

Pc(I ) = �̃ + νI

K
, (50)

which thus changes during the evolution.
The question is whether this straightforward generalization

of our Hamiltonian daemon model, or even a more sophisti-
cated generalization that takes into account the deformations
of the soliton, can actually approximate the GPE evolution
well, when we have general intercomponent interactions that
break the integrability of the nonlinear Schrödinger equation.
As an illustration of what can happen in a moderate departure
from the simplest case, we again repeat our evolution from the
initial state of Sec. II, and with all the same parameters, except
that now we use A = 2 and A′ = 0.5 instead of A = A′ = 1.

In Fig. 10, we see for this case that the active phase of
energy transfer indeed begins when the soliton has decelerated
from its high initial velocity to the critical velocity Pc(I )
predicted by the variational approximation for the initial fuel
level (I close to +1/2). The gradual increase of the active
soliton’s velocity is also accurately given by the variational
approximation, up until about half-way through the plotted

(a)

(b)

FIG. 10. Evolution of the fuel energy Efuel/(h̄ω) (a) and the
velocity of the soliton (b), for the case where the critical velocity
Pc(I ) changes during the evolution. The numerical GPE evolution
is plotted in black, the variational approximation in gray. The GPE
evolution can be understood quite well from the variational approxi-
mation; its error is initially negligible and although it later becomes
significant it does not become drastic.

(a)

(b) (c)

FIG. 11. (a) The fit parameters α+ (α−) in black (gray), com-
puted as in Fig. 5 for the case with unequal interaction constants
A = 2 and A′ = 0.5 that was shown in Fig. 10. (b) The deviation
between the density of the exactly evolving fields, and the soliton
form for fixed α±, is significantly larger for t/t0 > 1000 than the
error for optimally fitted α±, shown in (c).
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FIG. 12. Stability of the soliton and amount of energy transfer
for different scattering parameter A and A′. The black lines are
contours (from outer to inner) of 70%, 80%, 90%, and 95% atom
retention by the soliton, as defined in the text. The “soliton” is a
stable solitary wave for a wide range of A and A′. The gray scale
linearly indicates the amount of fuel energy that was transferred into
mechanical energy over the course of the evolution to T = 5000. The
energy transfer occurs over the whole range in which the soliton is
stable.

evolution. From this point on the variational approximation
becomes less accurate as the exactly evolving soliton accel-
erates more rapidly than the variational model predicts. The
variational approximation thus ultimately overestimates the
total duration of the active phase, because it underestimates
the active soliton’s power consumption at its higher final
speeds. The variational approximation does correctly predict
the final fuel level.

As Fig. 11 shows, the onset of discrepancy between the
variational model and the GPE evolution is clearly due to
increasing distortion of the soliton profile away from the fixed
equal widths that the simple variational model assumes. Fig-
ure 11(c) indicates that a more general hyperbolic secant form
with independently variable α± width parameters should still
describe the active soliton well, but the simple equal-width
ansatz breaks down. The video [43] shows the evolution of
the densities ρ±/|ψ0|2 for the parameters used in Figs. 10
and 11.

For nonintegrable cases like this particular case of A and
A′ it might therefore be worth pursuing a more general
variational approximation with α± as additional variational
parameters; we leave this exercise for future work, simply
noting that the active bright vector soliton indeed remains
qualitatively robust against even significant changes to its
nonlinear interaction strengths. Just how far this robustness
extends will be our final investigation in this paper.

2. Stability range of the active soliton

For more extreme deviations from A = A′ = 1, solitary
wave solutions to the vector nonlinear Schrödinger equation
may not only deform but even break up, as atoms escape from
the solitary wave. Insofar as a solitary wave does still persist,
even partially, it is then a related but independent question,

whether the solitary wave can move as an active particle
by consuming the Zeeman energy of its internal spin depot.
Solitary waves in different regimes have long been studied, so
our goal in this final portion of our paper is to relate the second
question to the first.

To do this we numerically evolved our same initial soliton
configuration, until the time T = 5000 after which any active
motion should be complete, under a range of different A and
A′ cases. In each case, we computed how much energy was
transferred from spin into motional energy, as well as what
fraction of the initial atoms remained in the soliton. We as-
sumed that some kind of active motion must be occurring if
any significant fraction of the spin energy is drained; to assess
how many atoms remain in the soliton, even if the soliton
is distorted, we fit the final mean-field density profile to a
hyperbolic secant with independent amplitudes, widths, and
centers for the two components. We then defined the fraction
of atoms remaining in the bright soliton at T = 5000—the
retention fraction—as the Gross-Pitaevskii norm of this fitted
hyperbolic secant profile, divided by the exact initial norm.
This procedure offers a reasonable measure of how well the
‘soliton’ holds together, as long as the norm which is lost from
the soliton tends to spread out in low-density noise that does
not significantly affect the best fit sech2 profile; it would not
be accurate if the soliton held together but deformed in shape
radically away from sech2, so that the sech2 fit represented
the surviving solitary wave poorly. Checking particular cases
seems to show, however, that this does not occur, and that the
sech2 fitting procedure does provide a good measure of soliton
survival.

In Fig. 12, we show the results in the plane of positive
A and A′, logarithmically. We indicate soliton survival with
black contours of atom retention fraction, and fuel energy
consumption with gray scale. The message of the Figure in
general is clear: the soliton can essentially remain active as
long as it can remain stable at all. The video [43] shows the
evolution of the densities ρ±/|ψ0|2 for the case with A = 5
and A′ = 0.5 where the soliton does not stay stable during the
evolution.

V. CONCLUSION

In this paper, we have used numerical evolution in Gross-
Pitaveskii mean-field theory to show that the internal energy
of a vector bright soliton in a two-component self-attractive
one-dimensional Bose-Einstein condensate can be used to
lift the soliton against an external force. The internal energy
of the soliton is realized by different chemical potentials for
the two components of the Bose-Einstein condensate. The
energy transfer from the internal energy to the potential energy
is induced by an off-resonant Rabi coupling whose strength
varies periodically in space.

This one-dimensional field theory can be approximated at
least reasonably well with a variational ansatz of two degrees
of freedom. The active-particle behavior of the soliton can
be understood from the much simpler Hamiltonian of the
variational approximation, which reveals that the spatially pe-
riodic Rabi coupling effectively implements the Hamiltonian
daemon realization of a combustion engine analog, based on a
Chirikov resonance. This basic mechanism has been shown to

043317-13



TIMO EICHMANN AND JAMES R. ANGLIN PHYSICAL REVIEW A 104, 043317 (2021)

be affected nontrivially by the complications that are possible
in the realistic physical representation of the active particle as
an atomic bright vector soliton.

The mechanism has nonetheless been shown to be quali-
tatively robust in a wide range of conditions. Atomic bright
solitons are certainly a highly artificial dynamical system, but
they are more complicated than minimal Hamiltonian models:
they are complicated enough to be experimentally realizable.
Our study can thus be considered as a toy model for the project

of extending microscopic understanding of active particles
beyond toy models and into real systems.
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