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The SU(2) symmetric Fermi-Hubbard model (FHM) plays an essential role in strongly correlated fermionic
many-body systems. In the one particle per site and strongly interacting limit U /t > 1, it is effectively described
by the Heisenberg Hamiltonian. In this limit, enlarging the spin and extending the typical SU(2) symmetry to
SU(N) has been predicted to give exotic phases of matter in the ground state, with a complicated dependence on
N. This raises the question of what—if any—are the finite-temperature signatures of these phases, especially in
the currently experimentally relevant regime near or above the superexchange energy. We explore this question
for thermodynamic observables by numerically calculating the thermodynamics of the SU(N) FHM in the
two-dimensional square lattice near densities of one particle per site, using determinant quantum Monte Carlo
and numerical linked cluster expansion. Interestingly, we find that for temperatures above the superexchange
energy, where the correlation length is short, the energy, number of on-site pairs, and kinetic energy are universal
functions of N. Although the physics in the regime studied is well beyond what can be captured by low-order
high-temperature series, we show that an analytic description of the scaling is possible in terms of only one- and

two-site calculations.

DOI: 10.1103/PhysRevA.104.043316

I. INTRODUCTION

The Fermi-Hubbard model (FHM), in its original spin-
1/2, SU(2) symmetric form [1-4], plays a central role in
the understanding of strongly correlated fermionic many-body
systems. This is in part because it is one of the simplest models
that captures essential features of real materials, and in part
because it exhibits a variety of canonical correlated phases of
matter. In the two-dimensional (2D) square lattice, it displays
a metal-to-insulator crossover as well as magnetic order, and
it is widely studied in the context of d-wave superconductivity
[5-9].

Its generalization, the SU(N) FHM, features larger spins
and enhanced symmetry, and it provides insight into important
strongly correlated systems. First, it is a simple limit of multi-
orbital models such as those used to describe transition metal
oxides [10-12], graphene’s SU(4) spin-valley symmetry [13],
and twisted-bilayer graphene [14-19]. Second, the SU(N)
FHM is predicted to display a variety of interesting and exotic
phases even in very special limits, such as the conventional
N =2 FHM, the N =3 FHM [20-29], the N = 4 FHM at
quarter filling [30,31], even values of N at half-filling [32-40],
special N — oo limits [41-45], one-dimensional (1D) chains
[46-52], and the Heisenberg limit for N = 3,4, 5 [11,28,53—
61]. This richness is well illustrated by numerical studies
of the Heisenberg limit, which describes the situation where
the average number of particles per site is (n) = 1 and the
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interactions dominate the kinetic energy (U >> t, with no-
tation discussed below). Already in this simple limit and
additionally in the simple 2D square lattice, the model is
predicted to exhibit several phases of matter with novel and
difficult-to-explain properties depending on the value of N.
The dependence of the ground state order with N does not
follow a simple pattern. This raises the question of whether
and how this complicated N dependence manifests in the
finite-temperature properties.

Although the SU(N) FHM is a crude approximation to
real materials, it has been realized to high precision by load-
ing alkaline earth-like atoms (AEAs) into an optical lattice
(OL). Fermionic AEAs (such as '>Yb and *’Sr) feature an
almost perfect decoupling of the nuclear spin / from the
electronic structure in the ground state, which gives rise to
SU(N = 2I + 1) symmetric interactions with deviations pre-
dicted to be of order O(107%) [62-66]. For that reason, by
selectively populating nuclear spin projection states my of
AEAs and loading them into an OL, experiments can engineer
the SU(N) FHM with N tunable, from 2, 3, ..., 10.

In recent years, experiments with '"*Yb in OLs have
probed the SU(N) FHM’s interesting physics: the Mott insu-
lator state for SU(6) in three dimensions [67], the equation of
state for SU(3) and SU(6) in three dimensions [68], nearest-
neighbor antiferromagnetic (AFM) correlations in an SU(4)
system with a dimerized OL [69], nearest-neighbor SU(6)
AFM correlations in OLs with uniform tunneling matrix el-
ements in one, two, and three dimensions [70], and recently
a flavor-selective Mott insulator for SU(3) [71]. Furthermore,
employing quantum gas microscopy [72—78] to discriminate
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finite temperature analogs of the variety of proposed ground
states [32,33,53-58] via direct observation of long-ranged
correlations [70,79-81] is expected to reveal a wealth of
physics. All of these experimental efforts make an understand-
ing of the 2D square lattice thermodynamics urgent.

In contrast with most previous work that focused on the
Heisenberg limit, in this work we study the SU(N) FHM at
finite temperature and for a range of interaction parameters,
including far from the Heisenberg limit, a regime that is both
interesting and experimentally important. We calculate and
analyze thermodynamic properties of the model as a function
of N, the interaction strength U, and the temperature 7. We
numerically explore the evolution of the energy, number of on-
site pairs [82], and kinetic energy, as well as their derivatives
in the 2D square lattice SU(N) FHM at 1/N filling, i.e., one
particle per site on average.

Some of the quantities we compute, such as the number
of on-site pairs are immediately measurable in experiment,
while others such as the kinetic energy and total energy are
of fundamental importance and may also become accessi-
ble. For example, Ref. [83] experimentally determined the
energies of a Bose-Hubbard model. In that work the kinetic
energy was measured by analyzing time-of-flight images and
the interaction energy was measured by site-resolved high-
resolution spectroscopy. These techniques can be also used
for the FHM. Additionally, in a quantum gas microscope
the number of on-site pairs can be spatially resolved by
generalizing the technique used in Ref. [84] to AEAs. This
would require employing an optical (rather than magnetic)
Stern-Gerlach technique to split the different spin flavors into
different layers, followed by detection by single-site fluores-
cence. Additionally, access to total density fluctuations in a
bilayer quantum gas microscope, as done in Refs. [85,86],
provides a route to realize thermometry without the need to
comparison with numerical simulations.

We also present some selected results as a function of
chemical potential u. Results are obtained using the deter-
minant quantum Monte Carlo (DQMC) and numerical linked
cluster expansion (NLCE) methods. Here and throughout we
set Boltzmann’s constant to kg = 1.

Although the ground state has a complicated N depen-
dence, we find that for temperatures above the superexchange
energy T > J = 4t*/U, the energy, the number of on-site
pairs, and the kinetic energy depend on N in a particularly
simple way, obeying a simple, analytic dependence on N.

Even though a simple scaling at very high temperatures
would be unsurprising—since a low-order high-temperature
series expansion (HTSE) would be expected to be accurate
and to produce analytic expressions that plausibly would
show simple N dependence—such expansions are insuffi-
cient to explain our findings. The HTSE is accurate only for
T 2 4t, while the universal scaling persists to temperatures
T 2 4t2/U that are much lower when U > t. At such tem-
peratures the HTSE not only is inaccurate but diverges.

Despite the failure of the HTSE to fully explain the ob-
servations, a simple explanation is possible by recognizing
that correlations are short-ranged in this temperature regime.
We show that in this limit, the second-order NLCE accurately
reproduces the results and the N scaling relation. Furthermore,
under controlled approximations in the J < T <« U regime

one can analytically evaluate the pertinent contributions based
on the NLCE, and with this explain the observed universal
scaling with N to zeroth order in 8J. This demonstrates the
utility of the NLCE framework for analytic calculations, be-
yond its typical application in numerical calculations. These
observations show that the one- and two-site correlations con-
trol the physics deep in this regime.

The remainder of this paper is organized as follows: Sec. 11
presents the SU(N) Hubbard Hamiltonian, defines the observ-
ables we consider, and presents details of the numerical and
analytical methods used. Section III presents the main results,
and Sec. IV concludes.

II. MODEL AND METHODS
A. The SU(N) Hubbard Hamiltonian and observables

The SU(N) FHM is defined by the grand canonical Hamil-
tonian

H=—t Z (ci'gcja +H.c.)+ % Z NigNiz — ,uZnig,
(i.)),0 i,o#T i,o

(1)

where ¢/ (c,) is the creation (annihilation) operator

for a fermion with spin flavor 0 =1,2,...,N on site

i=1,2,...,Nyina 2D square lattice, N; denotes the number

of lattice sites, n;, = c;; ¢;, is the number operator for flavor

o, t is the nearest-neighbor hopping amplitude, U is the inter-

action strength, and u is the chemical potential that controls
the fermion density.

We are interested in thermodynamic quantities such as the

number of on-site pairs per site

p=z ¥ B menn)}, @

i o#T

the kinetic energy per site

K= ]%< —t Z (c;cja + cjgcw)>, 3)
’ (i.j).o

the energy per site E = (H/N;+ un) (where n =
(1/Ny) >, . nis), and the entropy S. We present these
observables and the derivatives dE /dT, dK/dT, and
UdD/dT as functions of T/t for different values of the
interaction strength U/t either as a function of chemical
potential /¢ or at fixed density (n) = (1/Ny) )", (nic) = 1.
We also show the compressibility k = d(n)/du as a function
of p for various T'/t, U/t, and N. These observables provide
valuable knowledge about the physics: the number of on-site
pairs is a useful measure of the Mott insulating nature of
the system, the kinetic energy of its spatial coherence, and
the entropy and specific heat provide information about the
temperature scales at which various degrees of freedom cease
to fluctuate.

B. Numerical methods

To calculate the thermodynamic observables, we employ
two numerical techniques, DQMC [87,88] and NLCE [89,90],
which have complementary strengths, and compare in some
cases with low-order analytic HTSE and the noninteracting
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limit. The DQMC and NLCE are often the numerical methods
of choice for the SU(2) FHM in the finite-temperature regime
studied in ultracold matter [91-95], and we use our extensions
of these methods to SU(N) systems [70]. Generally speaking,
the DQMC will perform best at weak to intermediate inter-
actions, while the NLCE performs best at strong interactions;
we present both methods where both are viable.

1. Determinant quantum Monte Carlo (DQMC)

Averages of the thermal equilibrium observables are evalu-
ated with DQMC on 6 x 6 lattices by introducing N(N — 1)/2
auxiliary Hubbard-Stratonovich fields, one for each interac-
tion term [96]. In this method, the inverse temperature 8 is
discretized in steps of At with a Trotter step At = 0.05/¢
for U/t = 4,8 and At = 0.04/¢ for U/t = 12. In order to
obtain accurate results, we obtain DQMC data for 40-60
different random seeds for 7'/t < 4 and for 2-10 different
random seeds for 7'/t > 4. For each Monte Carlo trajectory
we perform 2000 warm-up sweeps and 8000 sweeps for mea-
surements [97]. In addition, the number of global moves per
sweep to mitigate possible ergodicity issues [98] is set to two
for U/t = 4, 8 and to four for U/t = 12. These global moves
update, at a given lattice site, all the imaginary time slices
that couple two spin flavors. DQMC results presented in the
paper are obtained by computing the weighted average and
weighted standard error of the mean of the results obtained
by using different random seeds. We use the inverse squared
error of each measurement as their weight. Results obtained
using a uniform weight for all measurements yield consistent
results but with larger error bars (~2-4 times larger). Esti-
mates of systematic errors are obtained for N = 6 atU/t = 12
(Trotter) and N = 6 at U/t = 4 (finite-size), where they are
expected to be worst. We estimate the Trotter error by compar-
ing the results obtained with At = 0.04/f and At = 0.05/¢.
Their difference is below 4% for all observables of interest at
T/t = 0.5. This discretization error is even smaller at higher
temperatures and for the other two values of U/t considered.
Finite-size errors are estimated by comparing results for dif-
ferent thermodynamic quantities in 4 x 4 and 6 x 6 lattices.
At T/t = 0.5 their differences are <6.5% for U/t =4 and
<5.7% for U/t = 12.

2. Calculation of specific heat and entropy in DOMC

For DQMC data we evaluate the specific heat and entropy
in two ways. In the first approach, we numerically differenti-
ate the energy to obtain the specific heat (see [99] for details
on the differentiation procedure), and we compute the entropy
by integrating dS = dQ/T = C/T dT, with C = dE /dT the
specific heat. Integrating by parts, S can be rewritten in terms
of the energy E,

ET) /00 —E(T/) dT’ 4)
T

S(T)ZSoo‘l‘T— T2
where S, is the entropy at fixed density in the limit when
T — oo (see Appendix A for more details).

The DQMC starts becoming unreliable at 7 below the
superexchange scale J. In this regime the statistical noise in-
creases due to the sign problem, severely limiting calculations.
In addition to presenting the DQMC calculations directly, we

also show results obtained from fitting and from differentiat-
ing this smooth fit function, which can reduce the noise at the
cost of potentially biasing the data. For the energy, we fit to
the simple functional form [100,101],

M
E(T)=E©0)+ ) ce ™, (5)
k=1

with fitting parameters ¢, A, and E(0). The number of pa-
rameters ci, M, is chosen to be around 6-12 (slightly less
than one-third of the data points to be fit), which is similar
to Refs. [100,101]. We smooth the 10 lowest temperature data
points using a moving average with a three-point window fit-
ted with a local first-order polynomial (Savitzky-Golay filter).
Then the data are fit with Eq. (5), by choosing the fitting
parameters that minimize

1 Ny Mo 2
g% = ET)—EP+|Se—Y —1 ).
NpH(;[(n) n]+[s kZIkAD
(6)

where N, is the number of data points, and E, is the DQMC
energy at 7,,. The first term ensures a good fit of the data, while
the second term regularizes the fit and ensures that S — 0
as T — 0 by enforcing the constraint Soo = [, % dT’ =

P % [102]. A similar procedure is used to obtain fits
for the number of on-site pairs and the kinetic energy: Each
data set is fit using the same form as Eq. (5), subject to the
constraint that the derivative of their sum obeys the specific
heat sum rule.

Results obtained from fitting remove the noise providing
smooth guides to the eye. By construction they also satisfy
important physical features such as sum rules. However, fit-
ting necessarily biases the results and should be interpreted
with caution. Care is especially warranted in the high-noise
regimes (mainly occurring in the derivative data at the lowest
temperatures presented) where the fits are used to extrapolate
the data. Nevertheless, the fits suggest interesting features and
trends that may help guide future low-temperature calcula-
tions and experiments.

3. Numerical linked cluster expansion (NLCE)

Thermodynamic observables are computed using a fifth-
order site expansion NLCE. We briefly derive and present this
algorithm, which is reviewed in Ref. [90]. Extensive proper-
ties in a lattice are evaluated by performing a weighted sum of
their value in all possible clusters ¢ embeddable in the lattice;
specifically,

P(L)/Ns =Y L(c)Wp(c), (7)

cel
where P(L) is the property evaluated on the entire lattice £, N
is the number of lattice sites, L(c) is the number of ways that

the cluster ¢ can be embedded in the lattice (up to translation
invariance), and Wp(c) is defined as

Wp(c) = P(c) = ) _ Wp(s). ®)

sCc
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FIG. 1. Density’s, number of on-site pairs’, compressibility’s, and determinantal sign’s dependence on chemical potential. Panels (a)—
(e) compare observables for N = 2,3,4 for U/t =8 at T/t = 0.5 as functions of the chemical potential (u — wo)/t, where p(up) = 1.
(a) Density; there is a clear softening of the Mott plateau as N increases. (b) Number of on-site pairs. (c) Compressibility. (d) Derivative of the
number of on-site pairs with respect to the density as a function of density. (e) Average sign. (f) Density (solid) and average sign (dashed) vs
(n — o)/t for different values of 7'/t for N = 6 at U/t = 12. Shaded regions correspond to error bars.

Equation (7) follows directly from the definition of the Wp(c).
Equation (7) is an infinite sum over all clusters, and the key
idea of the NLCE is to truncate this sum to clusters of small
size (different variants use different measures of size) and
evaluate properties on each cluster using exact diagonaliza-
tion (ED). Here we truncate the sum over clusters based on
the number of sites, performing calculations up to five site
clusters, which shows good convergence (see Appendix B).

The Hilbert space dimension increases rapidly with N, lim-
iting the size of clusters that can be included in the expansion,
and we use multiple methods to reduce the computational
cost in order to reach five-site clusters for SU(6). The most
straightforward is to account for the SU(N) symmetry, in
particular its abelian symmetries (the N conserved flavor num-
bers) and the flavor permutation symmetry. Additionally, for
N = 6, we truncate the Hilbert space in the Fock basis using
two criteria: (1) we include only basis states with a number of
particles below a cutoff value (chosen to be six, which is one
larger than the number of sites in the largest cluster) and (2)
we include only basis states whose interactions energy is less
than a cutoff value (chosen to be 3U). These choices provide
highly accurate (several decimal places) results over the tem-
perature and density ranges of interest in this paper, though at
high temperatures or densities they can break down. Appendix
C provides details of these truncations and the calculations’
convergence [103].

The NLCE is much more accurate than an exact diagonal-
ization (ED) that uses the same number of (or even more)
sites. At all temperatures considered, the five-site NLCE
calculations are dramatically more accurate than 3 x 2 ED
calculations in either periodic or open boundary conditions
to quite low temperatures. In fact, at least for temperatures

where the NLCE is convergent and the density (n) = 1 case
that is our main focus, even a two-site NLCE calculation out-
performs the 3 x 2 ED, despite requiring enormously fewer
computational resources. We note that this is, to our knowl-
edge, the first application of NLCE to the SU(N) FHM. The
convergence with expansion order and comparisons with ED
are discussed in Appendix B.

The NLCE self-diagnoses its accuracy, with converged
results expected when adjacent orders give nearly the same
answer. Results in the main text are presented for the highest
order computed and the NLCE data is cutoff at tempera-
tures where the three highest consecutive orders deviate more
than 2%.

4. Low-order high-temperature series expansions (HTSEs)

It is useful to compare computed observables against sim-
ple analytic zeroth- and second-order high-temperature series
in ¢t /T [104]. The region of validity of the HTSE to any order
is T 2 t, yielding unphysical results for 7 < ¢.

III. RESULTS

This section presents our main results, the calculation of
several thermodynamic observables, and analysis of features
observed in them, especially their striking universal N depen-
dence. Specifically, we calculate the number of on-site pairs
D, the kinetic energy K, the energy E, the entropy S, the
specific heat C, and the contributions to it from the interac-
tion and kinetic energies UdD/dT, and dK/dT , respectively,
all defined previously. Mostly we focus results at a density
(n) = 1, but some results are also presented as a function of
chemical potential /¢, which causes the density to vary.
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This section is organized as follows: Sec. III A presents the
w/t dependence of (n), D, the compressibility k = 9(n)/du,
and the determinantal sign. The following subsections present
the U/t, T/t, and N dependence of D (Sec. IIIB), K
(Sec. IITC), and E (Sec. III D). Section II1 E presents the scal-
ing collapse demonstrating the universal N dependence of E,
D, and K. Section IIIF presents the temperature derivatives.
Finally Sec. I G presents the U/t, T /t, and N dependence
of S. Results in Secs. III B to ITII G are all at unit density.

A. Density, number of on-site pairs, compressibility, and
determinantal sign dependence on chemical potential u /¢

Figures 1(a) and 1(b) show the dependence of density
p = (n) and number of on-site pairs D on the chemical po-
tential. These are particularly important quantities because
typical experiments on ultracold atoms use smooth traps, and
the u dependence of the observables is related to their spatial
dependence by the local density approximation [105]. These
are also among the most straightforward observables to mea-
sure and have been explored experimentally as a function of
U/t,N, n/t,and T/t in Refs. [67,68].

The density as a function of chemical potential shows
a Mott plateau—a region of u over which the density is
nearly constant—when the temperature is 7 < U, as shown
in Fig. 1(a), signaling the incompressible and insulating nature
of the system. At fixed temperature, the Mott region becomes
less sharply defined as N increases. This is expected, as in-
creasing N allows for more density fluctuations at a given
energy and thus a more compressible system at a fixed tem-
perature [as corroborated by Fig. 1(c)]. This behavior is also
observed for U/t = 12 at the same temperature (not shown
here as to not overcrowd Fig. 1). The general trend is already
seen in the second-order HTSE [104] and was observed ex-
perimentally in Ref. [68].

Although the Mott plateau softens with increasing N, ap-
pearing only as a subtle shoulder for N =4 at U/t = 8§ and
T/t =0.5, if one plots dD/dp as a function of p, there is
a quite sharp and clear signature of the Mott plateau for all
cases, as shown in Fig. 1(d).

We also show the average determinantal sign, which char-
acterizes the sign problem, one of the fundamental limitations
to quantum Monte Carlo calculations of interacting fermions
[106—108]. For the type of Hubbard-Stratonovich decomposi-
tion used in the current study for DQMC, we find the average
sign decreases (i.e., the sign problem worsens) overall as N
increases and as the temperature is lowered [see Figs. 1(e) and
1(f)]. On top of this, the sign problem is worse for the metallic
phase than the Mott insulating phase at a fixed temperature.
Figure 2(a) shows that at fixed 7 /¢, increasing U/t worsens
the sign problem in the metal, but improves it in the insula-
tor in the currently studied temperature regime. The N = 2
case is free of the sign problem at half-filling, and therefore
(sign) = 1 when (n) = 1 for all values of U/z.

Finally, the U/t dependence of « for different N is dis-
played in Fig. 2(b). As the U/t increases, the system becomes
more incompressible where (n) = 1, highlighting the insulat-
ing nature of the system. Our results are in agreement with
qualitative trends identified in previous dynamical mean-field
theory (DMFT) results [109].

(sign)

(1t — o)/t

FIG. 2. Determinantal signs’ and compressibility’s dependence
on interaction strength. (a) Average sign and (b) compressibility
vs (1 — 1o)/t, where p(uo) =1 for U/t = 8 (solid markers) and
U/t = 12 (open markers) for N = 2,3, 4 at T/t = 0.5.

B. Number of on-site pairs at unit density:
Dependence on U/t, T [t, and N

The number of on-site pairs D decreases as temperature
is lowered, almost always followed by an increase at the
lowest temperatures. These features show clear trends with
U/t and N as shown in Fig. 3. The trends with U/t are that,
as the temperature is lowered, (1) D is suppressed from its
high-temperature value at a temperature scale T ~ U, and (2)
D increases at a much lower temperature that decreases with
increasing U /t. Also, as expected, overall larger U/t leads to
smaller D, most strongly in the temperature window between
the two features discussed previously. The trends with N are
also clear: (1) as N increases, D increases, (2) the temperature
at which the low-T increase of D occurs is roughly indepen-
dent from N except for U/t = 8, where is higher for larger
N, and (3) the increase of D as the temperature is decreased
through the lower temperature feature is larger for larger N.
For sufficiently large U /¢, the dependence on N is weaker, as
shown in Fig. 3(a). These features will be explained below.

Although the temperatures are not extremely low,
T 2 0.1t, the qualitative features are not captured with a low-
order HTSE, as shown in Fig. 3(a), which diverges from the
true results at 7'/t ~ 3 or larger. Furthermore, for the temper-
ature regions where NLCE and DQMC are well converged,
both methods are in good agreement, supporting the validity
and convergence of the different approaches.
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FIG. 3. Number of on-site pairs D versus temperature. (a) Each panel compares D for N = 2, 3, 4, 6 for a fixed U/t at (n) = 1. (b) Each
panel compares D for U/t =4, 8, 12, 15.3, 20, 40 for a fixed N. Solid markers are DQMC, open markers are NLCE, dashed lines are the
zeroth-order HTSE, and solid lines are the fits of Eq. (5) to the DQMC data down to the lowest 7, point. Thinner dash-dotted lines come from
the fit in the extrapolated regime 7' < min(7,), where {7, } is the data set of temperatures where DQMC results are obtained.

The 7, N, and U dependence of D can be qualita-
tively understood by considering the two-site, two-particle
(TSTP) system, which was employed to understand simi-
lar features in the N = 2 anisotropic lattice calculations of
Ref. [110]. We begin by describing the T dependence. For
T > U, eigenstates with energy ~U and a large fraction
of double occupancies are occupied. As the temperature is
lowered below U, the eigenstates dominated by one-particle-
per-site configurations have the largest Boltzmann weight and
have small admixture of doublons, thus explaining the high-
temperature decrease of D upon cooling. The more interesting
low-temperature increase of D is explained by considering
the physics in this sector dominated by one-particle-per-site
configurations. In this sector, these low-energy eigenstates are
approximately “SU(2) singlets” on the two sites [x(|o, T) —
|t,0)) with o # ] or “SU(2) triplets” [x(|o, T) + |7, 0))
where 7 and o may be equal]. The “singlet” states include
an admixture o(¢/U)* of doublons, which allows for some
delocalization, lowering the kinetic energy and therefore low-
ering the energy of singlet states relative to the triplet ones,
which have no admixture of doublons. Therefore, as the tem-
perature is lowered below the energy scale splitting the singlet
and triplet configurations, the system populates the singlet
states and the number of double occupancies increases until it
saturates. This low-temperature population of SU(2) singlets
also leads to the antiferromagnetic correlations observed in
Ref. [70].

The dependence of D on N can also be understood in this
picture, by considering the number of available ways to form
an on-site pair. Since the number of possible configurations of
m particles on a single site is (Z ), the number of on-site pairs

is enhanced for N > 2 for all values of the interaction strength
and temperature due to thermal fluctuations and quantum fluc-
tuations (tunneling) [111].

This argument provides an understanding of the overall
trends of D with T and N, but the U = 4¢t, N = 2 curve is
worth further consideration as the sole curve that does not
show the low-temperature increase. The reason for this is
not obvious: that a low-temperature rise would be smaller
for small N is explained above, but that it actually turns
from a rise to a decrease is not. We note that this is likely
a special feature of not only N = 2 and small U/¢, but also
2D systems, as when the system is perturbed away from 2D a
low-temperature rise in D appears [110]. As such, it is natural
to conjecture it is related to Fermi surface nesting (see Fig. 4),
which is most important at small U/t, and which is perfect
only for N = 2.

C. Kinetic energy at unit density: Dependence on
U/t,T/[t,and N

The kinetic energy K shows features at similar energy
scales as D, as shown in Fig. 5. At high temperatures, the
kinetic energy vanishes, and decreases as the temperature is
lowered, in close agreement with the noninteracting calcu-
lations (described momentarily) until 7 ~ U. At T < U the
kinetic energy becomes smaller in magnitude than the nonin-
teracting limit by an amount that increases with U. Finally, at
the lower temperature scale on which D rises again, the kinetic
energy drops significantly, signaling the same tunneling pro-
cesses that create doublons, explained at the end of Sec. III B.
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FIG. 4. Fermi surface for N = 2, 3,4, 6 in the U = 0 2D square
lattice at (n) = 1.

The noninteracting limit’s behavior is straightforward to
understand: for N =2 and (n) = 1, the Fermi surface is a
perfect square (Fig. 4), and as N is increased this shrinks
and becomes circular. Thus the kinetic energy decreases as
N increases. Figure 5 shows the noninteracting limit results

Ult=8 1

T/t

FIG. 5. Kinetic energy vs temperature. Each panel compares K
for N =2,3,4,6 for a fixed U/t at (n) = 1. Solid markers are
DQMC, open markers are NLCE, dotted lines correspond to the
noninteracting limit, and solid lines are the fits of Eq. (5) to the
DQMC data down to the lowest 7,, point. Thinner dash-dotted lines
come from the fit in the extrapolated regime 7 < min(7,,), where {7,,}
is the data set of temperatures where DQMC results are obtained.

_0:5W

E/t
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FIG. 6. Energy vs temperature. Each panel compares E for N =
2,3,4, 6 for a fixed U/t at (n) = 1. Solid markers are DQMC, open
markers are NLCE, solid lines are the fits of Eq. (5) to the DQMC
data down to the lowest 7, point. Thinner dash-dotted lines come
from the fit in the extrapolated regime 7' < min(7,), where {7} is the
data set of temperatures where DQMC results are obtained. Vertical
regions in black indicate the temperature window where the different
N curves intersect.

(dotted line)
K 1 / G;dzk (9)
C @) Jgz a1
where the integral is over the Brillouin zone and

€r = —2t(cosk, +cosk,) is the noninteracting dis-
persion (setting the lattice constant to unity). The
chemical potential p is determined numerically to give
(n) = 1/Q2n)? [, d*k/ (P + 1) = 1.

D. Total energy at unit density: Dependence on U /t, T /t, and N

The total energy E = UD + K (Fig. 6) shows features sim-
ply related to D and K. However, a new and surprising feature
appears in E: the curves for different N cross at a temperature
and energy (T*, E*) with t < T* < U. Figure 7 shows that
T* first decreases then increases as a function of U /¢, while
E* first increases, then decreases. In Sec. IIIE we will see
that this crossing is a consequence of an even more dramatic
phenomena—a universal collapse upon rescaling over a broad
temperature range.

The existence and qualitative trends of the crossing can
be understood again by the system with two sites and two
particles (TSTP) and can be quite accurately described by
the second-order NLCE, whose only inputs are the one- and
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FIG. 7. Interaction dependence of the energy crossing. Temper-
ature (red circles) and energy (blue squares) where the curves for
different N cross in Fig. 6. Error bars correspond to the width of the
crossings. Dashed lines correspond to the second-order NLCE.

two-site exact diagonalization calculations (a point we will
revisit in Sec. IITE).

Within the TSTP, the crossing occurs when E* = 0, indi-
cating that for all N’s, their kinetic and interaction energies
cancel each other at the same 7* (see Appendix D for details).
When we include higher particle numbers in the two-site
problem, there is a small contribution to the energy from
eigenstates that present multiple double occupancies and/or
higher-than-double occupancies. Their contribution accounts
for a constant positive shift in the energy for all N’s, implying
that the crossing occurs at E* > 0. The second-order NLCE is
a linear combination of the one- and two-site results. The one-
site result contributes another constant positive shift for all N’s
to E. Together, the second-order NLCE clearly reproduces the
trends displayed in Fig. 7, where we present E* and T* as a
function of the interaction strength.

E. Universal N dependence of energy, number of
on-site pairs, and kinetic energy

In this section, we show that the crossing point of E vs T
for all N in Fig. 6 is actually a consequence of a much stronger
universal scaling relation that determines the N dependence of
all the observables studied here to temperatures well below the
crossing temperature (though not arbitrarily low), down to a
temperature comparable to the superexchange energy 4¢%/U.
We find that the energy satisfies

E(T,N) = E(T, 00) + (1/N)E\(T) (10)

for some E;(T) independent of N over a broad range of
temperature. This is shown in Fig. 8 by a universal collapse
of appropriately constructed quantity £, and we will discuss
the features of this collapse more momentarily. First, to un-
derstand E’s construction, note that Eq. (10) is equivalent to

E(T,N)=E(T,N) — (1/N)E\(T) (1)
being independent of N, since the right-hand side is simply
E(T, o0). Figure 8 plots this E, taking

E(T,N,)—E(T,N.
E\(T) = (T,N) —E(T,N,)
(1/Ny) = (1/N2)

12)
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FIG. 8. Universal dependence of energy on N. E vs temperature
for several N at fixed U/t = 4,8, 12 at (n) = 1. Solid lines corre-
spond to numerical data: DQMC for U/t = 4, 8, 12 and NLCE for
U/t = 40. Shaded regions correspond to error bars obtained by error
propagation in Eq. (11). Dashed lines correspond to second-order
HTSE calculations, and dotted lines correspond to second-order
NLCE. Solid vertical lines indicate the temperature where the dif-
ferent N curves intersect, and dotted vertical lines indicate the
superexchange energy J.

for Ny = 2 and N, = 3. When Eq. (10) is satisfied, the E{(T")
obtained would be the same for all choices of N; and N»;
we choose Ny =2 and N, = 3 as they are the least noisy
data sets and span the largest range of temperatures, but the
overall collapse is observed independent of this choice. The
analysis of scaling is inspired by similar scalings discovered
in the spectra of strongly correlated materials in Ref. [112].
We observe that Eq. (10) has the form of a first-order Taylor
expansion of E(T, N) in 1/N; from this point of view, the re-
markable aspect of the data collapse is that (in an appropriate
temperature window) it accurately describes the physics even
when 1/N is not small (e.g., for N = 2).

Figure 8 shows that E is independent of N at temperatures
T2J= 472 /U for all U studied here, and therefore E(T', N)
has the simple N dependence given by Eq. (10). Below T" ~ J,
E no longer collapses, signaling a more complicated N depen-
dence. One consequence of the universal scaling is that the
thermodynamics in this temperature regime can be obtained
for any N from the results for N = 2 and 3 (or any two N).
This is convenient for several reasons: the Hilbert space of
SU(2) is more manageable for numerical calculations, and
because numerical methods such as DQMC are free of the
sign problem at (n) = 1 for SU(2).

One natural attempt to explain the observed scaling would
be the HTSE, since this is expected to be accurate at
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FIG. 9. Universal dependence of number of on-site pairs and kinetic energy on N. (a) D and (b) K vs temperature for several N at fixed
U/t =4,8,12 at (n) = 1. Solid lines correspond to numerical data: DQMC for U/t = 4, 8, 12 and NLCE for U/t = 40. Shaded regions
correspond to error bars obtained by error propagation in analogs of Eq. (11). Dashed lines correspond to second-order HTSE calculations,
and dotted lines correspond to second-order NLCE. Dotted vertical lines indicate the superexchange energy J.

high temperatures; however, although E calculated with the
second-order HTSE collapses, it deviates strongly from the
data at T < 5¢ (Fig. 8), so it cannot explain the collapse to
the lowest temperatures observed (0.17 to ¢, depending on
the value of U). In contrast, as Fig. 8 shows, the second-
order NLCE’s E not only collapses, but accurately reproduces
the numerical results for all temperatures where the collapse
occurs, thus providing a simple and effectively complete cal-
culational tool to obtain the scaling, albeit not an analytic
one. That the second-order NLCE reproduces the data in the
scaling regime allows us to infer characteristics of the physics.
The first thing to notice is that the second-order NLCE can
capture one- and two-site nearest-neighbor correlations, but
no longer-ranged correlations. Thus, one-site physics and
nearest-neighbor correlations suffice to capture the physics in
the regime where collapse occurs. This provides interesting
insight into the physics and explains why the collapse occurs
at T 2 J: this is the characteristic energy scale for correlations
in the (n) = 1 system (at least when U /¢ is large) and thus
longer range correlations develop only at temperatures below
J. Note that this also lets us understand why the collapse is
not captured by the second-order HTSE: this misses two-site
correlations that are O(Bt)* or higher. Such nonperturbative
effects are strong in the regime 4¢>/U < T < t and not easily
captured at any order of the HTSE, which diverges for T < ¢.

By examining the second-order NLCE and simplifying
it by taking advantage of the range of temperatures being
considered, we can also arrive at an analytic explanation of
the scaling phenomena. Although NLCE is typically used as
a numerical method, at low-enough order and in simplified
limits, it may provide simple analytic expressions. Indeed, in

the present case, we show in Appendix D that the energy in the
second-order NLCE in the temperature range 4t>/U < T <
U is given, to zeroth order in 8J, by

1

E(T,U,N)~ —J + NJ.
We note the additional condition that T <« U not previously
noted; indeed, there are small deviations of the data from
collapsing in the T ~ U regime. Finally, when T > U the
collapse is again recovered, since K — 0 and D « 1/N in that
regime (see [111]). In summary, the parametrically accurate
collapse for the two separate regimes 4t>/U < T <« U and
T > U is interpolated to a quite accurate collapse, though not
parametrically so, for all T >> 4¢>/U,, as seen in the data.

Although we only analytically show the scaling of Eq. (10)
to leading orderinJJ/T and T'/U (i.e.,deepinthe / <« T K U
regime), numerics seems to indicate the collapse holds beyond
this. Explaining this is an open problem. Despite lacking a
simple analytic formula, the second-order NLCE reproduces
all of the behavior, offering a simple predictive theory for the
thermodynamics in the T 2 J regime.

The observables D and K show a similar universal N
dependence, satistfying analogs of Eq. (10), as demonstrated
in Figs. 9(a) and 9(b) by showing the collapse of D and K
defined analogously to E. These are also reproduced by the
second-order NLCE and its analytic simplifications in the
temperature window of interest. The U/t = 4 results for D
exhibit a window around 7" = ¢ where the second-order NLCE
weakly breaks the collapse (<4%), but is then recovered
at lower temperatures around 7/t = 0.2, where the DQMC
data collapse too. Why the U/t =4 results collapse even

13)
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FIG. 10. Specific heat vs temperature. (a) Each panel compares C for N =2, 3,4, 6 for a fixed U/t. (b) Each panel compares C for
U/t =4,8,12,15.3,20, 40 for a fixed N. Solid markers are DQMC, open markers are NLCE, dotted lines correspond to the noninteracting
limit, dashed lines are the zeroth-order HTSE, and solid lines come from the fits of Eq. (5) to the DQMC data in Fig. 6 down to the lowest 7,
point. Thinner dash-dotted lines come from the fit in the extrapolated regime 7' < min(7,,), where {7, } is the data set of temperatures where
DQMC results are obtained. Dotted vertical lines indicate the superexchange energy J.

for T < 4¢2/U remains an open question and merits further
exploration.

F. Temperature derivatives at unit density: C = dE /dT,
UdD/dT,and dK/dT

We now present the derivatives of the energy E, interaction
energy P = UD, and the kinetic energy K. The specific heat
(dE/dT) as a function of temperature is a valuable ther-
modynamic observable since its peaks indicate temperatures
below which the entropy is significantly reduced as degrees of
freedom reorganize and cease to fluctuate.

The specific heat as a function of temperature [see
Fig. 10(a)] presents a two-peak structure for N = 2; for other
N a high-temperature peak is present in all cases, and in
most an upturn occurs at lower temperatures, necessitating
a second peak at lower temperatures beyond the range of
our calculations since C — 0 as T — 0. At least at large
U/t, the origin of the high-temperature peak is associated
with freezing of the charge fluctuations as the temperature is
lowered, while the low-temperature peak is associated with
the onset of spin correlations, as has been shown for N = 2
[100,110] and will be evident from our results on dP/dT
and dK/dT. For strong interactions, the high-temperature
peak is closely in agreement with the results of the zeroth-
order HTSE and is roughly independent of N, with just small
changes of amplitude at small U/¢. The upturn of C as T'/t is
lowered towards a presumable low-temperature peak (though
not directly accessible in the data for N > 3) depends on N
and U/t. The upturn seems to grow with N, and it generally

decreases with U /t, although at the lowest temperatures, there
may be a complicated nonmonotonic dependence. The extent
to which the trends of the upturn are either a reflection of the
temperature at which the low-T peak occurs or result from
changes in the amplitude of the low-T peak cannot be assessed
with the current data and is an interesting question for future
theory and experiment.

The final feature of the specific heat that we analyze is
motivated by the finding in Ref. [100] that the specific heat
versus temperature curves cross around 7/t ~ 1.6 for all
U/t € [1, 10] for N = 2. Figure 10(b) shows that this remains
true for other values of N, with nearly the same value of
the crossing temperature. However, we note that this crossing
only occurs for U/t < 10, and fails for U = 15.3¢ and larger.
The physical significance of this crossing is unclear. Several
references [100,113-117] have seen this crossing in two di-
mensions (in square, honeycomb, and asymmetric [ty # 7]
Hubbard models) at (C*, T*) ~ (0.34, 1.6¢) but all are at rel-
atively small U/t. For small U/t Ref. [114] shows that the
presence of such high-T' crossing arises if one approximates
two parameters as small: 1/d (where d is the dimension) and
the integral over the deviation of the density of states from a
constant value [112].

Examining the contributions dP/dT and dK/dT to the
specific heat helps disentangle the contributions to the specific
heat of the charge and spin degrees of freedom. In Fig. 11(a)
the dP/dT data for U/t > 8 exhibit a high-T charge peak and
a negative dip at lower 7'/t for all N. For such interactions,
the high-7 peak in the specific heat comes from dP/dT.
For U/t =4 and N =2 there is a low-T peak in dP/dT,
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FIG. 11. Contributions to the specific heat vs temperature. Each panel compares (a) dP/dT and (b) dK/dT for N =2, 3,4, 6 for a fixed
U/t. Solid markers are DQMC, open markers are NLCE, and solid lines come from the fits of Eq. (5) to the DQMC data in Figs. 3(a) and 5
down to the lowest 7,, point. Thinner dash-dotted lines come from the fit in the extrapolated regime 7' < min(7,), where {7,} is the data set of
temperatures where DQMC results are obtained. Dotted vertical lines indicate the superexchange energy J.

which gives rise to the low-7 peak in the specific heat. For
U/t =4 and N > 2, the fits suggest the existence of a dip and
then a peak as temperature is lowered; however, drawing firm
conclusions here requires further studies.

In Fig. 11(b) the dK/dT data for all values of the inter-
action strength are positive and exhibit a low-T peak or a
low-T upturn which implies the existence of a peak since
dK/dT — 0 as T — 0. The magnitude of the upturn or
peak increases with N. For U/t > 8 the low-T peak (or
upturn) in the specific heat arises from the spin degree of
freedom, seen in dK/dT [Fig. 11(b)]. Together dP/dT and
dK/dT give Fig. 10(a). These results complement the ones
presented in Refs. [100,110], which demonstrate that for
N =2, at small U/t the low-T peak arises from dP/dT
as opposed to dK/dT in the large U/t limit. The results
presented here imply the same conclusion for all N stud-
ied in this work: at large U/¢ the low-T peak arises from
dK/dT and the high-T peak from dP/dT, while at small
U/t the low-T peak comes from dP/dT and the high-T peak
from dK/dT.

G. Entropy at unit density: Dependence on U /¢, T /t, and N

Figure 12(a) shows the N dependence of the entropy per
site as a function of T for each U/t studied. For all values
of the interaction strength we observe that for temperatures
above the superexchange energy, at fixed entropy, the system
with larger N is at a lower temperature. These results are
in agreement with [104,118], highlighting that gases adia-
batically loaded into an optical lattice in this regime will
have a significantly lower temperature as N is increased. For

U/t =4 this cooling seems to occur for all values of 7 /¢
and N. However, for U/t > 8, the curves roughly collapse
below T < 4¢%/U, at least for N > 2, suggesting that for 2D
square lattices, the dramatic benefits in cooling to the superex-
change energy scale will be less effective when cooling well
below this scale. We note that this doesn’t rule out the cooling
with increasing N persisting to arbitrarily low temperatures
in other geometries, for example, as has been shown in 1D
chains [50].

Figure 12(b) shows the same entropy per site’s U de-
pendence as a function of T for each N studied. For each
N there is a crossing at finite temperature for all U/t. The
location of this crossing occurs at higher entropy and 7 for
larger N. The existence of a crossing in the entropy curves for
different U/t for N = 2 follows from the presence of a cross-
ing in the specific heat [100,113-117], given that C(T,U) =
T[oS(T,U)/0T]. Our results demonstrate that such behavior
is still present for N > 2.

IV. CONCLUSIONS

We have explored the evolution of thermodynamic observ-
ables of the SU(N) Fermi-Hubbard model as a function of
temperature 7, interaction strength U/z, and the number of
flavors N at (n) = 1. DQMC and NLCE provide accurate
results over a wide range of temperatures, including temper-
atures roughly an order of magnitude below the tunneling
t, with the exact value depending on N and U/t. Neither
method is able to access arbitrarily low temperatures, but the
obtained results are far beyond what is accessible to low-order
HTSE methods or ED, which have serious inaccuracies even
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FIG. 12. Entropy per site vs temperature. (a) Each panel compares S/N; for N = 2, 3, 4, 6 for a fixed U/¢. (b) Each panel compares S/N;
forU/t =4, 8,12, 15.3, 20, 40 for a fixed N. Solid markers are DQMC, open markers are NLCE, and solid lines come from the fits of Eq. (5)
to the DQMC data in Fig. 6 down to the lowest 7,, point. Thinner dash-dotted lines come from the fit in the extrapolated regime 7" < min(7,),
where {7} is the data set of temperatures where DQMC results are obtained. Dotted vertical lines indicate the superexchange energy J and
solid vertical lines indicate the temperature where the different U/t curves intersect.

at T 2 5t. The DQMC and NLCE agree where their regimes
of convergence overlap, further boosting confidence in the
accuracy of the numerics. Some results were also presented in
Fig. 1 for the dependence of (n), D, and average determinantal
sign as a function of w/¢t, as well as quantities derived from
these.

A striking finding is the existence of a simple scaling law
with N for T 2 J for E, D, and K. We show that this ob-
served scaling can be reproduced by the second-order NLCE,
which takes as input only one- and two-site correlations and
information about the lattice geometry, and in the appropriate
regime this provides analytic expressions for the observed
results. Furthermore, we show that this regime is well beyond
the second-order HTSE. Although the numerics cannot pro-
vide accurate results to arbitrarily low temperature, accurate
results for E, K, and D are attained for all N studied to
temperatures where strong correlations are present. For ex-
ample, the temperatures reached for all N are slightly lower
than recent experiments on the 2D SU(2) FHM [76] that
observed correlations that spanned the entire (~15-site wide)
system. Short-ranged correlations in the SU(6) FHM have
been observed in Ref. [70], and longer-ranged correlations
will be an interesting subject for future work. For example,
Ref. [119] found a unifying pattern for all N in the Heisenberg
limit at high temperatures: spin correlations are organized
in shells of equal Manhattan distance and for N = 3, they
evolve from a two sublattice structure to a three-sublattice
structure as temperature is lowered. The thermodynamic re-
sults provided here provide a foundation for studying such
phenomena.

Furthermore, the exploration of the specific heat and its
contributions provided additional information about the N
dependence of the degrees of freedom that fluctuate in the
temperature regime studied, and the specialness of the N = 2
case, possibly due to the perfect nesting. Our results show
that the behavior of C, UdD/dT, and dK/dT are all qual-
itatively similar for all N, with only the location and height
of peaks shifting. The high-temperature peaks (at T o< U)
are roughly independent of N, while the low-temperature be-
havior shows a dependence on N. The details of the latter
are difficult to resolve with current numerical capabilities
and point to interesting future numerical and experimental
directions.

Finally, the results for the entropy have important impli-
cation for the observed dramatic cooling of SU(N) FHM
systems as N is increased at fixed entropy [50,67,104,118],
which has been designated Pomeranchuk cooling. This has
been important for achieving the lowest temperatures in
Fermi-Hubbard models by using SU(6) gases [70]. Although
this effect was shown theoretically at T 2> ¢ using a HTSE
[104] and experimentally [67,70] and theoretically in 1D
down to much lower temperatures [50], our results here indi-
cate that as one reaches very low temperatures, the cooling as
N increases becomes less pronounced in 2D square lattices. In
particular, Fig. 12(a) suggests that when in the regime with T
well below the superexchange energy 4¢>/U, the temperature
may be nearly independent of N at fixed entropy. However,
this conclusion is reached in a regime where the noise in
the numerical results is large and systematic effects may not
be fully under control, so further work will be important to
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settle this question. Moreover, this is a lattice- and parameter-
dependent phenomenon, as it is known in 1D chains that
the cooling with increasing N persists to arbitrarily low
temperatures [50].
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APPENDIX A: CHEMICAL POTENTIAL AND ENTROPY
AT FIXED DENSITY WHEN T — o0

In order to compute the entropy using the results from
DQMC at fixed density (n) using Eq. (4), we need to know
a priori what is the entropy when 7" — oo. This depends on
the chemical potential at T — oo, which we can analytically
determine from the condition that (n) is fixed. As T/t — o0,
the zeroth-order HTSE captures the behavior of (n) and it can
be used with the condition (n) = p to determine the chemical
potential. When T' > U, the density is p = % Zn n(]:l])eﬂ"",
defining Z = 3", (¥)eP#". Then

_ dinZ

= Al
P = aw (AD
= In[(1 + eP*)¥ A2
d(ﬁu){n[( + "7} (A2)
efr
= N1 et (A3)
Solving for S, we obtain
_ 14

BU(N. p) = In (N_p>. (A4)

Using this result in the zeroth-order HTSE for S gives the
T — oo entropy per site Soo (N, p):

(N o\ o
SN, ) =1n [; (n>(N—p> }_pln(N—p)’
_ N\ _ _r
_N1n<N—p> pln(N_p>. (A6)

APPENDIX B: CONVERGENCE OF NLCE AS NUMBER OF
SITES INCREASES AND COMPARISON WITH ED

We investigate the convergence of the NLCE with ex-
pansion order, and we demonstrate that it is significantly
more accurate than ED, even when the ED is performed on
larger clusters (and therefore requires more computational
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FIG. 13. Convergence of NLCE with expansion order five and
comparison with ED. Energy vs T/t at (n) =1 for (a) U =0 (b)
U = 15.3t for SU(2) and SU(3). The ED is evaluated in a 3 x 2
lattice for both open and periodic boundary conditions. (a) The
NLCE converges to the analytic result (the solid line) to much lower
T/t than either of the ED results. (b) The NLCE curves converge to
each other at much lower temperatures than the ED curves collapse
on each other or on the NLCE results, signaling that the NLCE
converges to significantly lower temperatures than the ED.

resources) than the NLCE. We focus on two cases: U/t =0
which offers an analytic solution for comparison [Fig. 13(a)]
and U/t = 15.3 [Fig. 13(b)], both for (n) = 1. Figure 13(a)
shows that the six-site (3 x 2) ED calculations for U = 0,
whether with open-boundary or periodic boundary conditions,
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has noticeable deviations from the exact analytic result at tem-
peratures T/t < 20. Even the very low-order two-site NLCE
converges accurately to much lower temperature, 7'/t < 3. In-
creasing the order of the NLCE calculation leads to results that
converge down to still lower temperature. Note that the NLCE
calculation is self-diagnosing: even without appealing to the
analytic result, the NLCE demonstrates its accuracy when
adjacent NLCE orders agree with each other. For example,
when the order four and order five results closely agree with
each other, then they also agree with the analytic result. This
is consistent with earlier findings in other models [90,120]. It
is worth mentioning that ED results may still provide valu-
able information: at low-7 the NLCE fails dramatically, and
while the ED may not be quantitatively accurate, it may still
reproduce qualitative features.

Now we show similar results for U/t = 15.3 where no
analytic result is available. The self-diagnosis of the NLCE
demonstrates the convergence of two-site NLCE to T ~ 0.4¢,
and lower temperatures upon increasing the order. Again, the
NLCE converges down to a much lower temperature than
the ED, which shows significant deviations due to finite-size
effects already at T'/t = 2. These results show that even nu-
merically inexpensive NLCE calculations (two or three sites)
accurately converge to much lower temperatures than the
much more expensive six-site ED.

APPENDIX C: BASIS TRUNCATION IN THE NLCE

The Hilbert space dimension for the SU(N) system im-
poses a severe limit on ED and NLCE if implemented naively,
and this difficulty increases dramatically with N: the Hilbert
space dimension is 2"V, where N; is the number of lattice
sites, reaching a nearly intractable dimension of 2?* already
for SU(6) at four sites. Accounting for the SU(N) symmetries
ameliorates this considerably, but the basic difficulty remains.

To alleviate these problems for N = 6 where the difficulties
are worst, we employ a basis truncation scheme for the ED
used in the NLCE; this truncation was first introduced for
ED in Ref. [70], and it can provide accurate results with
negligible truncation error in the physical regime we consider,
(ny <1, U/t 21, and T/U not too large. To understand
this scheme, note that eigenstates with significant weight on
flavor-number basis states with large interaction energy will
be highly suppressed in the thermal average by the Boltzmann
factor for that eigenstate. Thus we restrict the basis states to
those with interaction energy less than or equal to pU for a
constant p that we choose to obtain sufficient accuracy while
remaining computationally feasible. In addition, by a similar
logic, we restrict the maximum number of particles in the
cluster. In the main text, we choose p = 3 and a maximum
particle number of six (one more particle than the maximum
number of sites used in the NLCE), and the truncation error
is negligible at low-T but increases as T increases (see details
below).

Figure 14 illustrates the accuracy of NLCE with maximum
particle number restriction, and also the new numerical issues
the truncation introduces, by comparing results for maximum
number of particles equal to six, eight, and 10 and the unre-
stricted result for SU(3) at U/t = 15.3 and (n) = 1. Results
are plotted to temperatures a bit past where the truncations

5 LS L L L T T
NLCE order, max. # of particles
o 26 4.8
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o 210 o 56
3,6 x 58
3H 3,8 o 510 |
3,10 — 5,No truncation
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FIG. 14. Convergence of NLCE with restriction of maximum
number of particles. Energy vs 7/t plot at U = 15.3¢ for SU(3).
Different curves are different NLCE orders from two to five, and
restriction of maximum number of particles to six, eight, and ten, as
indicated in the legend. The divergence of NLCE at low temperature
is due to the finite order of the expansion, while the divergence at
high temperature is due to particle number truncation.

are accurate so that the effects of this restriction are visi-
ble. The feature apparent from the truncation is that as the
temperature is increased, the results with particle number re-
striction deviate from the correct answer. This is expected: as
the temperature is increased, the Boltzmann weight on basis
states with more particles increases. A less obvious feature
is that the temperature above which the restriction fails to be
accurate actually decreases as the NLCE order increases. This
is because the NLCE relies on cancellation of finite-size errors
when combining results from many clusters to obtain accurate
results, and the number of clusters used increases with NLCE
order, and thus so does the required level of cancellation. The
truncation of maximum number of particles interferes with the
exact cancellation and is magnified by the NLCE procedure
by an amount that grows with the number of contributing
clusters. Thus, there is a finite window over which the NLCE
results are highly converged: the particle number truncation
constrains the results to being accurate below some tempera-
ture, while the finite-size clusters used in the NLCE constraint
the results to being accurate above some temperature. For the
SU(3) results (Fig. 14) this window is roughly from 7'/t = 0.2
to 1 for maximum number of particles of six- and five-site
NLCE, as seen through comparison to the results without
the restriction. We also observe that the NLCE self-diagnoses
its failure due to this restriction similar to how it diagnosed
the failure due to the finite number of clusters used: when
results with different particle number truncations agree, the
calculation is accurately converged.

Figure 15 illustrates the effects of the interaction-energy-
based basis truncation on top of maximum particle number
restriction to six by comparing the results for p =3 and
p = 4 truncations to the nontruncated result for SU(3) at
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FIG. 15. Convergence of NLCE with Hilbert space truncation.
Energy vs T/t plotat U = 15.3¢ for SU(3) [top] and SU(6) [bottom].
The total number of particles in the cluster was restricted to six or less
and basis states with interaction energy UD greater than pU were
discarded. Different curves are different NLCE orders from two to
five, and truncations p = 3 and 4, as indicated in the legend. The
divergence of NLCE at low temperature is due to the finite order of
the expansion, while the divergence at high temperature is due to the
basis truncation.

U/t = 15.3. The additional effects are negligible for NLCE
orders four and five. This is not surprising since for a five-site
cluster a particle number restriction of six already discards
most states with highly occupied sites (doublons and higher)
and a further restriction of basis states with interaction energy
<3U serves mainly to discard triplon and and higher states
which have very small Boltzmann weights in the region of
interest. Thus, this additional truncation significantly reduces
computational time, while introducing negligible additional
numerical errors. The self-diagnosis of the NLCE is apparent
here as well, which we use to analyze the N = 6 results, where
results without truncation are unavailable [Fig. 15 (bottom)].
When adjacent orders and different truncations agree, the
NLCE is converged. We see the same trends for N = 6 as for
N =3, and a similar region of convergence for the five-site
NLCE. The results in the main text thus use p = 3 and particle
number restricted to six in the results for N = 6. Naturally,
the value of U affects the region of convergence significantly.
The size of the temperature region of convergence increases
with U. For U < 8¢, there is barely any region of convergence
for these choices of the truncation parameters, and hence we

cannot get converged results for the SU(6) system from the
fifth-order NLCE with our truncation.

APPENDIX D: SECOND-ORDER NLCE CALCULATION
FORJ « T « U: ENERGY CROSSING AND
1/N DEPENDENCE

In this section we focus on two things: explaining the
existence of an energy crossing (as seen in Fig. 6) and demon-
strating the 1/N scaling observed in the limitJ < T < U. As
mentioned in the main text, the second-order NLCE captures
such behavior, but this does not admit a general analytic
formula. However, analytic formulas can be obtained in the
J KT KU regime.

The second-order NLCE in the square lattice is E =
4E@_3ED, where EW™ is the energy per site in an x-site
system. First we demonstrate that for J <« T <« U the one-site
problem does not contribute to the energy, then we calculate
the energy in the relevant particle sectors in the two-site
problem, and finally we present results for their linear com-
bination, i.e., the second-order NLCE.

1. One-site problem

In the one-site problem, the partition function is given by

Y (N
Z(l) = Z( )eﬂGO('l)’ (Dl)
n=0 n
where €y(n) = U (5) — un. The density p is
N
1 N —pepn
oV =) = ﬁ2"<n)e peom) (D2)
n=0

while the energy E(V is

N
1 n\ (N\ _pen
EY = (H +un) = Z_(1)§ U(2><n)e feotm —(D3)

n=0

Because T <« U, we can obtain an analytical approximate
expression for the chemical potential uo(7', U, N) that fixes
the density to p = 1 by only considering the zero-, one-, and
two-particle sectors. This expression is exact for N = 2, but is
only true to leading order in 7 /U for N > 2, since it truncates
eigenstates with triplons and higher occupancies. The solution
for g is given by

U 1 2
TUIN)=—+-Thh| ——|, D4
o )= +5 “[N(N_l)] (D4)
and the energy in this limit is

Ue—BU/2

- =~0.
2+ /2L

Therefore we have shown that in the SU > 1 limit the
second-order NLCE in the square lattice is determined by the
two-site result, E = 4E@,

ED = (D5)

2. Two-site problem

The Hilbert space of the two-site problem is 4", and analyt-
ically diagonalizing such matrix—even if exploiting particle
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number conservation for each spin component and spin per-
mutation symmetry—is not possible. However, not all particle
sectors need to be considered since BU > 1 and (n) = 1.
Under these two conditions, and to leading order in BJ, we
can use the chemical potential from Eq. (D4) in the two-site
calculation. This ensures that at (n) = 1 only the two-site
two-particle sector (TSTP) contributes, since all other sectors
are ocePU, and therefore negligible.

In the TSTP, there are N states where two particles of
the same flavor sit on sites 1 and 2. Since these are Pauli
blocked from hopping, and there is no U contribution, they
constitute N independent one dimensional subspaces of en-
ergy € = 0, giving rise to a contribution N in the partition
function. Furthermore, there are (g] ) choices where the flavors
of the two particles are different. Since the hopping conserves
flavor, these form independent four-dimensional subspaces
with levels identical to the usual N = 2 spectrum in the one
spin-up and one spin-down sector. Therefore, in the TSTP the
partition function Z® and energy per site E® are given by

Z® =N+ (Z)zz, (D6)
1 /N
@ _ _

E = 2(2>E2, D7)

4
7, =) exp(—Bey), (D8)

| njl
Ey=— ) enexp(—pen). (D9)

n=1

where €, are the eigenvalues of the two-particle sector with
different spin component, i.e., o # 7. These eigenvalues are
€ ={0,U,U/2+ /16> + U?}.

First, an energy crossing for different values of N as a
function of T/t at a fixed U/t in the TSTP occurs when
Eq. (D7) is equal to zero, i.e., E, =0, to demand the N-
independence of the energy. The temperature at which the
crossing occurs is the solution to the following transcendental

equation:
2
0=Ue " + 2 +/1+ (4_t> o BI+/1+G )
2 U

4t

U : y 7
+=l1- 1+(U) e PU=VIF@E?T (D10)

2

That this equation has solutions demonstrates the existence
of a crossing point, and it qualitatively explains the trends of
T*/t with U/t, although it deviates quantitatively from the
results in Fig. 7.

Now we demonstrate the 1/N scaling for / K T K U,
where the second-order NLCE shows unconditionally that the
collapse occurs in this regime. We present results for E, but
analogous results can be obtained for D and K. The energy in
the TSTP is given by Eq. (D7),

E(z)(T U,N)= l (1;1) Zi:l €x exp(—pBé€,)
0 INH () X exp(—pen)

Since U > t, the €, have simple expressions €, = {0, U, U +
J, —J}. Because BU > 1, E® is given to leading order by

(D11)

1))

EXT,U Ny~ -—2
2N+ (5)A +ef)

— - (D12)

Finally, since in the J < T <« U limit E =4E®, the

second-order NLCE to zeroth order in 8J < 1 is
1

E(T,U,N)%—J—f-ﬁ]. (D13)

This demonstrates that the scaling (10) holds in the regime
42/U <« T < U, whent/U < 1 to zeroth order in BJ.
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