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Propagation of phase-imprinted solitons from superfluid core to Mott-insulator shell
and superfluid shell
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We study phase-imprinted solitons of ultracold bosons in an optical lattice with a harmonic trap exhibiting su-
perfluid (SF) and Mott-insulator shell structures. An earlier study [K. V. Krutitsky, J. Larson, and M. Lewenstein,
Phys. Rev. A 82, 033618 (2010)] reported three types of phase-imprinted solitons in the Bose-Hubbard model:
in-phase soliton, out-of-phase soliton, and wavelet. In this paper, we uncover the dynamical phase diagram of
these phase-imprinted solitons. We also reveal another type of phase-imprinted soliton, the hybrid soliton. In a
harmonically trapped system, solitonic excitations created at the SF core cannot penetrate the outer SF shell. This
repulsion at the surface of the outer SF shell can be counteracted by imposing a repulsive potential at the center
of the trap. These results can be interpreted as a kind of impedance matching of excitations in Bose-Einstein
condensates in terms of the effective chemical potentials or local particle numbers in the shell, and analogous
results can be observed in sound waves created by a local single-shot pulse potential.
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I. INTRODUCTION

Ultracold atomic gases provide an ideal platform for study-
ing many-body phenomena, where quantum fluctuations play
a crucial role. In particular, optical lattices enable us to realize
the Bose-Hubbard (BH) model, which exhibits a fundamental
quantum phase transition known as the superfluid (SF)-Mott-
insulator (MI) transition [1,2]. In the SF state, each atom is
delocalized over all lattice sites and a many-body state is well
described by a macroscopic wave function with long-range
phase coherence. In contrast, individual atoms are localized at
each site in the MI state, due to the strong repulsive interac-
tion, compared with the hopping of atoms [3]. In the presence
of a harmonic trap, these states can coexist, forming a shell
structure, where the SF and MI regions emerge alternately
[4–6]. The controllability of the system parameters is an ad-
vantage of ultracold atoms that makes the system a perfect
playground for studying the matter-wave nature as well as
nonlinear phenomena, such as solitons [7,8].

Solitons are solitary waves that are robust and persistent
and emerge in many aspects of nature. In the case of weakly
interacting Bose condensates in one dimension, the Gross-
Pitaevskii (GP) equation [9–11] describing the system has
a stable soliton solution. In the case of an attractive inter-
action, the GP equation has bright-soliton solutions [12,13],
while in the repulsive case the dark-soliton solution exists
[7,14]. In atomic superfluids, dark solitons are character-
ized by a localized density dip and a phase kink in the
complex order parameter. Dark solitons have been experi-
mentally observed in Bose-Einstein condensates (BECs) with
the phase-imprinting method [15–17], density-engineering
method [18], and merging of two coherent condensates [19].
Bright and dark solitons in one-dimensional Bose gases

have been theoretically investigated widely and intensively
[20–25].

The features of stationary standing solitons have been
studied in homogeneous lattice systems near MI lobes [25].
Three types of stationary standing soliton, characterized by a
peak, a dip, and a dip pair bonding with respect to the mean
particle occupation number, can be created in the SF state.
The phase imprinting method is useful for creating solitons
and has been implemented in experiments in ultracold atoms
[16]. This method can create a dynamical excitation (not a
stationary standing soliton), where a peak and dip with respect
to the mean particle occupation number move in opposite
directions [25]. An earlier study [25] reported three different
types of phase imprinted solitons, which can be classified by
the structures of the local condensate particle number and the
local total particle number. The creation of these three types
of excitations in the condensate depends on system parame-
ters such as the chemical potential, interaction strength, and
hopping parameter.

There remain several unsolved questions regarding the
properties of solitons in optical lattices. First, in uniform sys-
tems, the three types of solitons have been found using only
a few combinations of system parameters [25]. The classes of
phase imprinted solitons have therefore not been exhaustively
explored and a phase diagram for the structure of solitons
has not been determined. Second, controlling the structure
of phase-imprinted solitons and transport excitations in an
inhomogeneous background is not well understood but will be
important in the context of recent developments in atomtron-
ics [26]. Since the local chemical potential effectively changes
in a harmonically trapped system, an experimental setup may
provide the SF-MI-SF shell structure, which enables us to
study excitations propagating in an SF-MI-SF heterojunction.
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In this paper, we study the dynamics of phase-imprinted
solitons in the BH model using the time-dependent Gutzwiller
approximation.

We first investigate the structure of phase-imprinted soli-
tons in the uniform BH model and determine the dynamical
phase diagram. In addition to the three types of phase im-
printed solitons [25], we find a type of phase imprinted soliton
that was not reported in the earlier paper [25].

We also investigate the dynamics of phase imprinted
solitons in an SF-MI-SF heterojunction. We create phase-
imprinted solitons in the SF core at the center of a harmonic
trap and trace the subsequent dynamics of the solitonic exci-
tations, which propagate toward the outer MI and SF shells.
We find that the excitations propagate and permeate the MI
regions. However, these excitations cannot percolate into the
outer SF shell and are reflected by its surface. In the pres-
ence of an additional repulsive potential at the center of the
trap, creating a double-well trap, we can realize an SF-MI-SF
heterojunction where the same type of solitons can propagate
in the SF core and outer SF shell. This is the only case that
we found in which the excitation created in the SF core can
percolate into the outer SF shell.

II. MODEL

The system of an ultracold Bose gas in an optical lattice is
well described by the BH Hamiltonian [2,3]:

Ĥ = −J
∑
〈l,m〉

b̂†
l b̂m +

∑
l

(εl − μ)n̂l + U

2

∑
l

n̂l (n̂l − 1),

(1)
where U is the atom-atom interaction strength, J is the hop-
ping coefficient, μ is the chemical potential, εl is the on-site
energy that includes the effect of the external potential, n̂l ≡
b̂†

l b̂l is the number operator at site l , and b̂l and b̂†
l are annihila-

tion and creation operators that obey the bosonic commutation
relation [b̂l , b̂†

m] = δl,m. We consider a one-dimensional opti-
cal lattice system containing L sites.

To investigate the time evolution in the one-dimensional
BH model, we use the Gutzwiller approximation. In the
Gutzwiller ansatz, the state |�〉 given by the BH model is
represented as

|�〉 =
∏

l

∞∑
n=0

f (l )
n |n〉l , (2)

where |n〉l is the local Fock state. The equation of motion
for the coefficient f (l )

n (t ) can be derived from the stationary
condition of the effective action

S =
∫

dt
〈
�

∣∣∣ ih̄
d

dt
− Ĥ

∣∣∣�〉
. (3)

Using the Gutzwiller variational state |�〉 in Eq. (3) and
imposing the stationary condition on S with respect to the
variation of the Gutzwiller coefficient f (i)

n , we find

ih̄
df (l )

n

dt
= − J

∑
〈m〉l

(
�m

√
n f (l )

n−1 + �∗
m

√
n + 1 f (l )

n+1

)

+
[U

2
n(n − 1) − μl n

]
f (l )
n , (4)

where 〈m〉l denotes the nearest-neighbor sites for the site l .
Here, �l ≡ 〈�|b̂l |�〉 is the superfluid order parameter. Within
the Gutzwiller approximation described by Eq. (2), �l is given
by

�l =
∞∑

n=0

f (l )∗
n

√
n + 1 f (l )

n+1. (5)

We define the effective chemical potential as μl = μ − εl .
To investigate the characteristic features of the solitons, we

calculate the evolution of the local particle number

nl ≡ 〈�|n̂l |�〉 =
∞∑

n=0

n| f (l )
n |2, (6)

and local condensate number ncl = |�l |2. The nonlocal con-
densate number is given by ñl = nl − ncl .

Strictly speaking, the Gutzwiller approximation fails in
one dimension except for very weak interactions U/J � 1.
Nevertheless, this approximation has been widely used to
study the dynamical properties of the one-dimensional BH
model [27–29], since it is very useful for illustrating the
basic physics. We also note that Ref. [25] starts with the
three-dimensional BH model and assumes that the Gutzwiller
coefficient fn and order parameter � depend only on one
spatial dimension. This assumption leads to an equation of
motion that is essentially the same as Eq. (4) (see Appendix).
Therefore, our analysis using the Gutzwiller approximation
will be useful in determining the dynamical properties of the
three-dimensional model, which is more realistic in describing
the experimental situation.

Dark and grey solitons are experimentally created by the
phase-imprinting method [15,16]. In this method, we apply a
laser beam to half of the system for a short time timp, which
induces a spatial shift in the phase of the order parameter,
creating the solitons. In the BH model, the effect of the phase-
imprinting laser beam can be included in the on-site energy
term

∑
l εl n̂l . Within the Gutzwiller approximation, if the

imprinting potential is applied for a very short time compared
to the other characteristic time scales, we can simply include
the effect of the imprinting potential using

f (l )
n (timp) = f (l )

n (t = 0)e−iφl n, φl = εl timp

h̄
. (7)

We choose a hyperbolic tangent imprinting potential as used
in Ref. [25]:

φl = εl timp

h̄
= �φ

2

[
1 + tanh

(
l − l0

0.45limp

)]
. (8)

Here, l0 is the center of the system, limp is the width character-
izing the potential variation, and �φ represents the amplitude
of the imprinting potential [25]. In our simulation, we first
obtain the ground state and then prepare the initial phase-
imprinted state using the Gutzwiller coefficients with Eqs. (7)
and (8).

III. DYNAMICAL PHASE DIAGRAM

In this section, we discuss the dynamical phase diagram of
phase-imprinted solitons in the uniform BH model.
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(a) in-phase soliton

local particle number

local condensate number

(b) out-of-phase soliton (d) wavelet(c) hybrid soliton

FIG. 1. Schematics of phase imprinted solitons: (a) in-phase soli-
ton, (b) out-of-phase soliton, (c) hybrid soliton, and (d) wavelet.
The red and blue lines represent the structures of the local particle
number and local condensate number in these solitons, respectively.
The propagation speeds of the dip and peak structures are depicted
by the length of the arrows, where the speed of the peak structure is
faster than that of the dip structure. We note that although the local
particle and condensate numbers are functions of the discrete site
index l , we depict them as continuous quantities for clarity.

In Ref. [25], two types of modes, the on-site mode and off-
site mode, are reported for the stationary soliton in an optical
lattice system [25]. In the on-site mode, a phase kink is placed
at the lattice site. In the off-site mode, a phase kink is placed
between two nearest sites. In this paper, we focus on the on-
site mode soliton because the lifetime of on-site mode solitons
is longer than that of off-site mode solitons [25].

As for the dynamical properties, three types of soliton
dynamics have been reported in one-dimensional uniform
systems [25]. However, they have been studied using only a
few combinations of system parameters. We here exhaustively
investigate the class of soliton dynamics by systematically
changing the system parameters in the J/U–μ/U plane and
determine the dynamical phase diagram of phase-imprinted
solitons in the uniform BH model.

We simulate the soliton dynamics created by the phase-
imprinting method in a one-dimensional uniform system
within the time-dependent Gutzwiller approximation. We cal-
culate the propagation of the local particle number and local
condensate number, which enables us to classify the dynamics
of the solitons.

We find four types of dynamics, as shown in Fig. 1: (a)
in-phase soliton, (b) out-of-phase soliton, (c) hybrid soliton,
and (d) wavelet. Of these, types (a), (b), and (d) have already
been reported in Ref. [25], while (c), which we call the hybrid
soliton, is a different type of soliton dynamics.

In all types of soliton dynamics, the local particle number
has a peak and a dip, which propagate in opposite directions.
The peak propagates faster than the dip. The four types of
soliton dynamics are characterized by the structure of the
local condensate number. In the in-phase soliton [Fig. 1(a)],
the condensate peak and dip are situated at the peak and
dip in the local particle number. In the out-of-phase soliton
[Fig. 1(b)], the condensate peak and dip emerge at the dip and
peak, respectively, of the local particle number. In the wavelet
[Fig. 1(d)], although the local particle number exhibits a peak
and dip structure, we cannot find any peak or dip solitary
structure in the local condensate number, where the small
wavelet oscillation emerges.

The hybrid soliton [Fig. 1(c)] exhibits two dips in the local
condensate number, which emerge and propagate in opposite
directions, while the local particle number has a peak and
dip. We show the dynamics of the local particle number and
the local condensate number in Fig. 2 with J/U = 0.020
and μ/U = 1.0.

FIG. 2. Time evolution of the local particle number (a) and the
local condensate number (b) characteristic of the hybrid soliton. We
used J/U = 0.020 and μ/U = 1.0. The local particle number has
a dip and a peak which propagate in opposite directions. The local
condensate number, on the other hand, has two dips, which propagate
in opposite directions.

Figure 3 shows a dynamical phase diagram for the four
types of phase-imprinted soliton.

The in-phase soliton region is widely distributed in the
phase diagram. The out-of-phase soliton, hybrid soliton, and
wavelet emerge close to the MI lobes, where J/U is small. The

FIG. 3. Dynamical phase diagram of the phase-imprinted soli-
tons: in-phase solitons (red squares), out-of-phase soliton (blue cir-
cles), hybrid solitons (white circles), and wavelets (green triangles).
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hybrid soliton region encompasses areas where the chemical
potential μ/U is close to an integer value. The wavelet (d)
is situated in the narrow regions between the in-phase soliton
and out-of-phase soliton regions.

The out-of-phase solitons can be interpreted as dark soli-
tons of holes [25]. This type of soliton appears in the “hole
area” in the phase diagram (see Fig. 2 of Ref. [25]), where
the superfluidity has a hole character. We note that the hybrid
soliton is situated in the narrow region near the phase bound-
ary between the hole area and particle area. We can interpret
the hybrid soliton as simultaneously excited particle and hole
solitons propagating in opposite directions.

We also note that in obtaining the dynamical phase dia-
gram, we identified different types of solitons by examining
the spatial profiles of particle number and condensate number.
However, there are no apparent criteria that can determine the
phase boundaries analytically. In fact, two different types of
soliton dynamics (for example, in-phase soliton and wavelet)
emerge simultaneously near the phase boundary. Similar phe-
nomena, i.e., the emergence of two different dynamics, have
also been found in Ref. [25]. In the region where the in-
phase or out-of-phase soliton and the wavelet coexist, we can
distinguish between the in-phase or out-of-phase soliton and
the wavelet by comparing their speeds. When the propagation
speeds of the peak and dip are faster than the spreading speed
of the wavelet, we identified this as the in-phase or out-of-
phase soliton. However, near the phase boundary, the two
speeds are comparable and it is hard to make a clear distinc-
tion. It is therefore necessary to employ other approaches to
determine a more precise phase boundary in the dynamical
phase diagram.

Finally, we discuss the possibility of the experimental
observation of the four types of solitons. As proposed in
Ref. [25], the four types of solitons discussed in this sec-
tion could be observed via the time-of-flight method [30],
which measures the momentum distribution P(k). Within
the Gutzwiller approximation, the momentum distribution is
given by [25]

P(k) = |W (k)|2
[∑

l

(〈n〉l − |�l |2) +
∣∣∣∣∣
∑

l

�l e
−ikl

∣∣∣∣∣
2]

, (9)

where W (k) is the Fourier transform of the Wannier function.
Within the mean-field approximation, the condensates com-
ponent dominantly contributes to the momentum distribution.
Therefore, we may expect that the characteristic features of
solitons show up in the momentum distribution reflecting the
characteristic features in the condensate order parameter �l .

IV. EXCITATION TRANSPORT FROM SF CORE TO MI
AND SF SHELLS

We study the transport of the solitonic excitation in a het-
erojunction of the SF-MI-SF state in this section. In particular,
a Bose gas in an optical lattice confined in a harmonic trap
provides the shell structure of the SF and MI states. We create
a phase-imprinted soliton at the SF core and study the dynam-
ics of an excitation propagating to the outer MI shell and outer
SF shell. We consider a one-dimensional optical lattice system
containing L sites combined with a harmonic trap potential,

and we choose the on-site energy εl to be

εl = V0(l − l0)2, (10)

where V0 is the curvature of the confining harmonic potential.
In the presence of a harmonic trap, the system exhibits a
shell-structure of the SF and MI regions, which are placed
alternately.

We calculate the dynamics of the solitons created by
the phase-imprinting method within the time-dependent
Gutzwiller approximation. Initially, we calculate the ground
state by an imaginary time relaxation in a presence of a
harmonic trap. We then apply the imprinting potential using
Eqs. (7) and (8), which creates a soliton at the center of
the SF core. To investigate the dynamics of the solitons, we
calculate the propagation of the local particle number and the
condensate. We use V0/U = 5.0 × 10−4 and J/U = 0.070.
The chemical potential is chosen to be μ/U = 0.75 for the in-
phase soliton, μ/U = 1.2 for the out-of-phase soliton, μ/U =
1.0 for the hybrid soliton, and μ/U = 1.4 for the wavelet
(see Fig. 1). The local condensate order parameter �l has
a very small value at all the sites in the Mott region within
our Gutzwiller approximation. In the present paper, we regard
the MI region as ncl < 0.05, where ncl = |�l |2 is the local
condensate particle number.

We simulate the propagation of all the types of solitons
shown in Fig. 1 using the parameters given above. In the
SF core, we can observe the characteristic structures of the
solitons at the beginning of propagation. However, we find
that the results of the transport of the out-of-phase soliton,
hybrid soliton, and wavelet to the outer MI and SF shells are
qualitatively the same as that of the in-phase soliton. This is
due to the effect of a harmonic trap. The effective chemical
potential monotonically decreases from the center of the trap
to the outer region, and the in-phase soliton regions emerges
in the SF phase at the upper side of the MI region, as shown
in Fig. 3. As a result, we find that even if we create an
out-of-phase soliton, hybrid soliton, and wavelet, we end up
injecting an in-phase soliton to the MI region, because all the
types of phase-excitations turn into an in-phase soliton before
the excitation reaches the outer MI shell. In the following, we
thus show results of an in-phase soliton created in the SF core.

In Fig. 4, we plot the time evolution of (a) the local particle
number nl , (b) local condensate particle number ncl , (c)
difference of the local particle number from the initial state,
and (d) that of the local condensate particle number. In the SF
core region, the positions of the dips and peaks of the local
condensate particle number are the same as those of the local
particle number (see Fig. 4). The solitons collide with the
surface of the MI shell and the condensates propagate in the
MI shell. The excitations then reach the boundary between
the MI shell and outer SF shell. The excitations do not pene-
trate into the outer SF region and are reflected by its surface.
Then, the oscillation at the surface of the SF shell emerges.
This can be seen more clearly in the case where the peak (not
the dip) of the soliton collides with the outer MI shell.

To understand the dynamics of the condensate in more
detail, we derive the equation of motion for the con-
densate particle number ncl = |�l |2 within the Gutzwiller
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FIG. 4. Time evolution of the local particle number (a) and lo-
cal condensate particle number (b). The differences of the local
particle number (c) and local condensate particle number (d) from
the initial state. We used J/U = 0.070, μ/U = 0.750, and V0/U =
5.0 × 10−4.

approximation. Using Eq. (4) and Eq. (5), we obtain

dncl

dt
= IJl + IUl , (11)

where

IJl = J

ih̄

∑
〈m〉l

(�l�
∗
m − �∗

l �m), (12)

IUl = U

ih̄

∑
n

n
√

n + 1
(

f (l )∗
n f (l )

n+1�
∗
l − f (l )

n f (l )∗
n+1�l

)
. (13)

The first term in Eq. (11) represents the particle current arising
from hopping, which conserves the total condensate particle
number. The second term results from the conversion from the
condensate to the noncondensate and vice versa. In the weakly
interacting, deep superfluid state, the Gutzwiller coefficient
f (l )
n has a weak n dependence, and thus the contribution of

the second term becomes very small. In this limit, the first
term reduces to the usual expression for the supercurrent for
the discrete GP equation. In contrast, near the Mott lobe, the
contribution of the second term becomes relatively large, as
shown in Fig. 5. In this regime, the conversion between the
condensate and noncondensate components plays a crucial
role in the condensate dynamics.

It is important to note that the r.h.s of Eq. (11) vanishes
when �l = 0, and thus it should not be able to excite the
condensate dynamics in the MI region within the Gutzwiller
approximation. Nevertheless, we observe permeation of the
condensate due to the soliton propagation. This is because in
the MI region of the MI-SF pseudo-hetero-junction system,
the local condensate number does not completely vanish, but
there remains a small amount of the condensate.

FIG. 5. Comparison of the contributions from IJl (a) and IUl

(b) in Eq. (11). The parameters are the same as in Fig. 4.

V. OUT-OF-PHASE SOLITON INJECTION TO MI SHELL

Figure 6 schematically displays (a) how the chemical po-
tential changes effectively in the dynamical phase diagram
and (b) the configurations of the local particle number in the
presence of only a harmonic trap. In the previous section,
where a harmonic trap potential is applied, the effective chem-
ical potential decreases monotonically as a function of the
distance from the center of the trap [represented by the black
arrow in (a) of Fig. 6]. As a result, we cannot inject the various
types of solitons into the outer MI and SF shells, where all
the excitation turns into an in-phase soliton before reaching
the surface of the MI shell, and hence the in-phase soliton is
always injected. In the harmonic trap case, the local particle
number in the SF core is larger than that in the SF shell, and
the MI shell has a commensurate filling [see Fig. 6].

An out-of-phase soliton can be injected into the outer MI
shell by inducing a nonmonotonic external potential, such as
an external potential peaking at the center of the harmonic
trap, where the effective chemical potential behaves as the
red arrow in Fig. 6(a). In this section, we apply an additional
Gaussian potential

VG = Ae−B(l−l0 )2
, (14)

where we used the coefficients A = 0.3, B = 0.01, J/U =
0.075, and μ/U = 0.5 in the following calculations. The
width of the SF core is narrowed due to the presence of the
repulsive potential that is applied to the center of the harmonic
trap. In order to broaden the width of the SF core, we set a
value V0/U = 2.5 × 10−4, which realizes a gradual curvature
of the harmonic trap. By applying the additional Gaussian po-
tential, the local particle number in the SF core and SF shell is
less than the commensurate filling n = 1 [see Fig. 6(c)]. With
these parameters, we numerically verified that an out-of-phase
soliton is created at the center of the trap and the structure of
the out-of-phase soliton is maintained until the soliton collides
with the surface of the MI shell (n = 1).

In Figs. 7(a) and 7(b), we plot the local particle number
and condensate particle number as a function of the site and
time. We can clearly observe that the out-of-phase soliton
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MI SF MI SFSF

double well trap

local particle number

n=1
Mott-insulator

in-phase soliton

out-of-phase soliton

Harmonic trap

Double well trap

wavelet

(c)(a)

MI SF MI SFSF

local particle number

n=1

harmonic trap

(b)

FIG. 6. Difference between the harmonic trap system and the double well trap system. (a) Schematics of the change of the effective
chemical potential in the dynamical phase diagram close to the Mott lobe. The starting points of the two arrows represent the center of the trap.
Structures of the local particle number for the harmonic trap system (b) and double well trap system (c). The red and blue lines represent the
configurations of the local particle number and external potential, respectively.

propagates to the outer MI shell while keeping its charac-
teristic features [Fig. 7(c) and 7(d)]. In this situation, the
condensate permeates the MI regions and the excitation then
also permeates the exterior SF regions. This contrasts with
the case of only the harmonic trap, where the excitations are
reflected at the surface of the exterior SF shell.

An additional repulsive Gaussian potential with the har-
monic trap provides a result where the excitation permeates
into the outer SF shell. This contrasts with the case with only
the harmonic trap, where the excitation cannot permeate into
the outer SF shell. This difference can be attributed to a match
between the effective chemical potential at the SF core and
that of the outer SF shell. We confirm this fact by using a
system with a simple model of a staircase potential, where
the MI shell and SF shell are displayed alternatively and the
chemical potential is constant within each shell. We find that
not only the out-of-phase soliton but also the other types of
solitons can be injected into the outer SF shell in the case
where the chemical potential or local particle number in two
SF shells match. We, therefore, conclude that an impedance
match between the effective chemical potential or local parti-
cle number between the SF core and outer SF shell is a crucial

FIG. 7. The same plots as in Fig. 4 but for the condition where
an additional Gaussian potential is introduced. We used J/U = 0.075
and μ/U = 0.5.

factor for excitation injection into the outer SF shell, which is
very similar to impedance matching between two BECs in the
context of the transmission of the Bogoliubov excitation [31].

Finally, we briefly report on sound propagation, i.e., the
propagation of the density fluctuation created by applying the
local single-shot pulse potential at the SF core. Immediately
after the pulse is imposed, two dips in the local particle num-
ber propagate in opposite directions with the same speed. We
find that the properties of the excitation injection are the same
as the soliton cases. In the harmonic trap case, the excitation
cannot be injected into the outer SF shell, and is repelled at the
surface of the SF shell after the excitation permeates through
the MI shell. On the other hand, the excitation can be injected
into the outer SF shell when an additional external potential
peaking at the center of the harmonic trap is introduced. This
is analogous to impedance matching between two BECs in
the context of the transmission of the Bogoliubov excitation
[31]. These results indicate that if we experimentally study the
impedance matching of excitations between the SF core and
outer SF shell, we can choose whichever of the two setups is
more convenient: the phase-imprinting method or local single-
shot pulse potential.

VI. CONCLUSION

We have investigated the properties of phase-imprinted
solitons of ultracold bosons in an optical lattice using the
time-dependent Gutzwiller approximation. Three types of
phase-imprinted solitons in the BH model have been reported
in an earlier paper [25], namely, the in-phase soliton, out-
of-phase soliton, and wavelet. In this paper, we determined
the dynamical phase diagram and found a type of soliton in
addition to the three solitons reported in Ref. [25]. We call this
soliton the hybrid soliton. It has a single peak and single dip in
the local particle number but two dips in the local condensate
particle number.

Although four types of phase-imprinted solitons can be
created at the center of the harmonic trap in an optical lat-
tice system, the shape of all the solitons deforms into an
in-phase soliton before reaching the outer MI shell, and an
in-phase soliton is always injected to the outer MI shell. This
is because the effective chemical potential monotonically de-
creases further from the center of the harmonic trap, and the
upper side of the MI lobe always faces the in-phase soliton
region in the dynamical phase diagram. After the solitons col-
lide with the surface of the MI shell, the condensate permeates
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into the outer MI shell. However, the excitations cannot pene-
trate into the outer SF region and are reflected by its surface. In
the presence of an additional repulsive potential peaking at the
center of the harmonic trap, the effective chemical potential
varies nonmonotonically from the center of the trap and we
can inject excitations into the outer SF shell. These properties
can be observed for phase-imprinted solitons as well as for the
sound wave induced by the local single-shot pulse potential,
which can be related to impedance matching of excitations
in BECs in terms of the effective chemical potential or local
particle number in the shell. We hope that the present study
on the heterojunction of SF-MI-SF states will be useful for
the development of atomtronics analogous to the Josephson
junction in superconductivity, which plays a crucial role in
the development of superconducting qubits.
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APPENDIX: REDUCTION TO THE EFFECTIVE
ONE-DIMENSIONAL GUTZWILLER EQUATION

In this Appendix, we briefly show how the d-dimensional
BH model reduces to the one-dimensional Gutzwiller equa-
tion. We start with the d-dimensional BH Hamiltonian

Ĥ = −
∑

i

d∑
α=1

Jα (b̂†
i b̂i+eα

+ H.c.) +
∑

i

(εi − μ)n̂i

+ U

2

∑
i

n̂i(n̂i − 1), (A1)

where eα is a unit vector in the direction α and Jα is the
anisotropic hopping coefficient that depends on α. In general,
the Gutzwiller ansatz is written as

|�〉 =
∏

i

∑
n

f (i)
n . (A2)

The equation of motion for the Gutzwiller coefficient directly
derived from the 3D BH Hamiltonian is given by

ih̄
df (i)

n

dt
= −(

�̄i
√

n f (i)
n−1 + �̄∗

i

√
n + 1 f (i)

n+1

)
+

[
U

2
n(n − 1) + (εi − μ)n

]
f (i)
n , (A3)

where �̄i = ∑d
α=1 Jα (�i+eα

+ �i−eα
). Here we assume that

the external trap potential is applied in one direction α = 1
and thus the on-site energy εi depends only on i1. We also
assume that the Gutzwiller coefficient f (i)

n depends only on
one spatial dimension α = 1 and hence the order parameter
depends only on the direction α = 1. Denoting i1 = l , �̄α

i is
rewritten as

�̄i =
{

J1(�l+1 + �l−1) α = 1,

2Jα�l α 	= 1.
(A4)

We thus obtain

ih̄
df (l )

n

dt
= −J

[
(�l+1 + �l−1)

√
n f (l )

n−1

+ (�∗
l+1 + �∗

l−1)
√

n + 1 f (l )
n+1

]
− 2J ′(�l

√
n f (l )

n−1 + �∗
l

√
n + 1 f (l )

n+1

)
+

[
U

2
n(n − 1) + (εl − μ)n

]
f (l )
n , (A5)

where we have denoted J = J1 and defined J ′ ≡ ∑d
α 	=1 Jα .

Reduction to the effective one-dimensional Gutzwiller equa-
tion (4) corresponds to the case where the second term of
Eq. (A5) is neglected. It is well known that for the uniform
BH model, the role of the second term in Eq. (A5) in the
equilibrium phase diagram is to replace the hopping coeffi-
cient as J → ∑

α Jα . On the other hand, this term will not
have a significant effect on the dynamics accompanying the
spatial variation in the direction α = 1. For instance, this term
does not create any distributions in the equation of motion
[see Eq. (11)] for the local condensate particle number ncl .
We thus expect that our analysis using the one-dimensional
Gutzwiller equation (4) well captures the essential physics
related to soliton propagation for realistic three-dimensional
systems. In fact, our results for the uniform BH model are
consistent with the results obtained in Ref. [25], which used
Eq. (A5).
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