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Finite-range effects in the unitary Fermi polaron
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Quantum Monte Carlo techniques are employed to study the properties of polarons in an ultracold Fermi gas,
at T = 0, and in the unitary regime using both a zero-range model and a square-well potential. For a fixed density,
the potential range is varied and results are extrapolated and compared against a zero-range model. A discussion
regarding the choice of an interacting potential with a finite range is presented. We compute the polaron effective
mass, the polaron binding energy, and the effective coupling between them. The latter is obtained using the
Landau-Pomeranchuk’s weakly interacting quasiparticle model. The contact parameter is estimated by fitting
the pair distribution function of atoms in different spin states.
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I. INTRODUCTION

One of the most paradigmatic and appealing problems in
physics is related to impurities interacting with a strongly
correlated many-body environment, not only because of its
complexity, but also because it serves as a testbed of fun-
damental ideas such as the Landau-Fermi theory [1]. The
concept of the polaron as a quasiparticle, first devised by
Landau and Pekar [2], offers an alternative to explain sev-
eral properties of materials in terms of collective excitations.
Impurity particles interacting with a medium can form po-
larons which behave like a single particle with renormalized
properties such as energy and mass [3–5]. Transport prop-
erties in materials are understood in terms of quasiparticles,
for instance, the colossal magnetoresistance [6], transport in
organic materials [7,8], or the Kondo effect due to pinned
magnetic impurities [9].

The realization and control of quasiparticles is attainable
with current state-of-the-art experiments in ultracold quantum
gases. Depending on the statistics of the host bath, polarons
can be either Bose or Fermi polarons. The latter can be
formed by a spin-down impurity immersed in a polarized
Fermi sea made of N↑ spin-up particles. This is the simplest
system for studying strongly correlated imbalanced mixtures
of fermions. The Fermi polaron problem has attracted much
interest from the theoretical and experimental point of view
[10–22], in particular for its direct analogy with other systems
in the context of solid-state [23,24] and nuclear [25] physics.

Active research in polaronic physics in ultracold quantum
gases is possible due to the high versatility in controlling
the strength of interactions via Feshbach’s resonances [26].
In the low-energy regime, the natural length scale is the s-
wave scattering length between particles of opposite spins and
the Pauli principle exclusion restricts the direct interaction
between particles in the Fermi sea. In the ultradilute regime,
the range of the interatomic potential of a strongly interacting

Fermi gas is of the order of an effective radius (as defined by
the low-energy expansion of the s-wave scattering amplitude)
and is much smaller than the interparticle distance kF ∼ n−1/3.
As a result, the only remaining length scale is the density, and
the low-energy scattering of atoms in different spin states is
unable to probe details of the interatomic interaction. In this
regime, the properties of the system are said to be universal.
Likewise, finite-range effects on the Bose polaron problem
have also been investigated recently [27–29].

A physical situation where properties of interest do not
depend on the details of the interatomic potential allows for
the use of simple effective potentials. An example is given
by the square-well potentials in numerous theoretical studies
[30–38]. However, it is still necessary to extrapolate R0 → 0,
or to choose an R0 small enough with respect to the interparti-
cle distance, to enable the proper estimation of the properties
of the system. Nevertheless, the simplest approach is to use
a model where the zero range is strictly enforced. Within the
Wigner-Bethe-Peierls model, a zero-range model can be used
where a contact potential is replaced by a condition in the
many-body wave function [39].

In this work, we consider the strongly interacting uni-
tary Fermi gas where the scattering length |a| → ∞ and we
consider the extremely imbalanced case, namely, the Fermi
polaron, also called the N + 1 system. By using fixed-node
diffusion Monte Carlo, we study the ground-state properties
of both the N + 1 and N + M problem, with M the number
of impurities, as a function of the range of the potential. A
stringent evaluation of how an attractive short-range square-
well potential might impact the results is made by considering
the zero-range model. Results for the binding energy, effective
mass, and the coupling of polarons in a unitary ultracold Fermi
gas are obtained. The contact parameter of the gas is found
through the pair distribution function of unlike spin particles.
The zero-range limit of this interaction is compared with the
zero-range model.
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II. SYSTEM AND METHOD

The excitation spectrum of a “slow” Fermi polaron p �
h̄kF (with h̄kF the Fermi momentum) that behaves as a free
quasiparticle of effective mass m∗ is given by

�E = p2

2m∗ − 3

5
EF↑A, (1)

where 3EF↑/5 is the full polarized free Fermi gas energy
EF↑ = h̄2k2

F /2m of atoms with mass m, A is a universal pa-
rameter when the interatomic potential range tends to zero,
and kF = (6π2n↑)1/3, where n↑ is the bath density. At the
unitary limit, the polaron binding energy −3EF↑A/5 is pro-
portional to the bath energy because the atomic density is the
only relevant length scale in the system.

Beyond the single impurity regime, a partial polarized
normal gas is characterized by a concentration x = N↓/N↑ of
down spins N↓ with respect to up spins N↑, and the system
ground-state energy is given by the Landau-Pomeranchuk
model [34,40],

E

N↑
= 3

5
EF↑

(
1 − Ax + m

m∗ x5/3 + Fx2
)
, (2)

where F accounts for interactions between polarons. The
equation of state with F = 0 was used to describe the sys-
tem in small concentrations of impurities, in good agreement
with the polaron properties estimated with F 	= 0 [33,34]. In
addition, the tail of the momentum distribution of a single
spin component interacting Fermi gas nσ (k) is related to the
universal contact parameter [41] C via

C = lim
k→∞

k4nσ (k). (3)

This parameter is a measure of short-range correlations
among atoms in different spin states for a given concentration
[41–44],

g(x, kF r → 0) = C

16π2n↑n↓

1

r2
. (4)

In a homogeneous case, the density of a single impurity com-
ponent and the bath scales as n↓ = 1/� (with � the volume)
and n↑ = k3

F /6π2, respectively, and the contact reduces to

g(kF r → 0) = 3

8

C
kF

1

(kF r)2
, (5)

where the dimensionless contact per unit volume, C/N↑kF , is
related to C through C/N↑kF = 6π2C/k4

F .

A. Trial wave functions

The structure of the wave function to treat a normal ultra-
cold Fermi gas follows the general form given by

�(R) =
N↑∏
i

N↓∏
i′

f (rii′ )�ϕ, (6)

where R is the configuration of the atoms, R =
{r1, r2, . . . , rN↑ , r1′ , r2′ , . . . , rN↓}, the unprimed (primed)
index depicts the up spins (down spins) of N↑ (N↓) particles,
f (rii′ ) is a model-dependent Jastrow factor that depends
on the relative distance rii′ = |ri − ri′ | that correlates the

minority with the majority up-spin atoms, � is a Slater
determinant of plane-wave orbitals describing the up-spin
atoms, and ϕ describes the minority atoms wave function.
The latter can be either a single plane wave for a single
impurity or a Slater determinant of plane waves for different
concentrations x of down-spin impurities. In both � and ϕ,
atoms are described by plane waves with wave vectors given
by k = 2π

L (n2
x + n2

y + n2
z )1/2, where nx, ny, and nz are integer

numbers and L = �1/3 is the side of the simulation cell.
The specific functional form of the wave functions will be
discussed in the following.

B. Short-range square-well potential

From the theoretical point of view, the unitary regime al-
lows us to change the real interatomic potential by an effective
potential which is simple and captures the most important
features of low-energy scattering. For finite-range potentials,
then the limit of zero range can be taken. The Hamiltonian of
the system with N = N↑ + N↓ atoms can be written as

H = − h̄2

2m

[ N↑∑
i

∇2
i +

N↓∑
i′

∇2
i′

]
+

∑
i,i′

V (rii′ ), (7)

where V is the interacting potential between unlike-spin pairs
that depends on the relative distance rii′ . For the single po-
laron, of course, N↓ = 1 and we do not have the primed
sums but only a single term that corresponds to the impurity,
immersed in the gas at a chosen momentum state.

At low energy, the details of a short-range interaction are
not relevant, allowing for the use of different effective po-
tentials. A customary potential employed in many quantum
Monte Carlo simulations [30–38] is the spherical square-well
potential,

V (r) =
{−V0, r < R0

0, r � R0,
(8)

where R0 is the potential range and V0 its strength. The unitary
regime is obtained by imposing V0 = (π/2R0)2. This is the
condition for the appearance of a first bound state in the
potential well, causing the scattering length to go to infinite.

Since the atomic scattering is not able to probe internal
structures in the investigation of ultracold atomic gases, the
parameter A of Eq. (2) exhibits a universal linear dependence
in the product of the effective range multiplied by the Fermi
momentum [45,46] for small effective ranges R0,

A(R0kF ) = A + ηR0kF + O(R0kF )2, (9)

where A and η are parameters to be estimated.
The Jastrow factor in the wave function of Eq. (6) for

relative distances smaller than the range R0 is a zero-energy
solution for the two-body Schrödinger equation in the square-
well potential, whereas for distances greater than R0, the
function used obeys the boundary condition for short dis-
tances in the limit of the range equal to zero, i.e., f (r) ∝ 1/r
and

f (r) =
{

A sin(k0r)
r , r < R0

B cosh(λr)
r , R0 � r � D.

(10a)

(10b)
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FIG. 1. (a) The polaron excitation spectrum for the zero-range model. The solid line is a fit performed in the range 0 � (k/kF )2 � 0.6.
(b) The difference of energies between the system with the impurity and the fully polarized system as a function of the square-well potential
range R0kF . The line is a fit to the estimated values considering the range 0 � R0kF � 0.2.

The multiplicative constant A is chosen such that f (r) is con-
tinuous at r = R0 and k0 = √

mV0/h̄. The parameter D � L/2
is the healing distance, which is optimized to obtain the lowest
variational energy. Coefficient B and parameter λ are chosen
in order that f (r = D) = 1 and f ′(r = D) = 0.

There are other choices in the literature for the Jastrow fac-
tor for Fermi gases interacting with the square-well potential
[30,31,37]. However, the chosen form introduces, in a simple
way, the most important features of the wave function for this
potential.

C. Zero-range model

The zero-range limit can be taken by only considering the
low-energy scattering length. This is done by replacing the
actual atomic interatomic potential with the Wigner-Bethe-
Peierls contact condition in the N-body wave function. Within
this approach, the Jastrow factor of Eq. (6) has the same func-
tional form in the whole range of up-down spin separations,

f (r) = N cosh(λr)

r
. (11)

Here, the function f (r) at r = D is normalized by the constant
N . The functional form adopted here for f (r) is similar to
the one in Eq. (10b), but does not involve a potential range.
Moreover, since we are interested in the Fermi gas with in-
finite scattering length, the contact interaction is taken into
account by the Wigner-Bethe-Peierls boundary condition by
imposing �(ri j′ → 0) = 1

ri j′
for particles of different spins.

The Hamiltonian for wave function � is identical to the one
for the ideal gas H = − h̄2

2m

∑N
i ∇2

i , where the sum considers
both spin states [47].

III. RESULTS AND DISCUSSION

The polaron binding energy can be straightforwardly com-
puted by considering the zero-range model. From the total

energy of the impurity-bath system computed with the down-
spin particle in the zero momentum state, we subtract the
polarized Fermi gas energy of N↑ particles. Thereby, that
difference provides us with an estimated value of −3EF↑A/5
and this allows an estimation of the universal parameter A =
0.97861(57). An alternative way to estimate this quantity is
done by using the excitation spectrum �E in Eq. (1) ob-
tained by considering the impurity in different momenta states
p = h̄k. The results as a function of (k/kF )2 are fitted to a
straight line and its value at k = 0 is used to estimate A; see
Fig. 1(a). The obtained value gives A = 0.9758(70) which is
in excellent agreement with its direct calculation in terms of
the impurity chemical potential. The fitted line also allows
the estimation of the effective mass m∗/m = 1.1101(18). The
excitation spectrum of the quasiparticle model in Eq. (1) is
used to fit in the range 0 � (k/kF )2 � 0.6. Note that the exci-
tation spectrum as a function of (k/kF )2 does not considerably
deviate from a linear behavior in the whole range depicted in
Fig. 1(a).

For simulations using the square-well potential, the total
energy of a system with a single impurity as a function of the
potential range subtracted from the full polarized free Fermi
gas energy is shown in Fig. 1(b). A linear fit to the results and
the extrapolation R0 → 0 gives the estimation of 0.97916(55)
for A. Additionally, for each of the ranges considered, simula-
tions with the impurity in different momenta states were also
performed. Similarly as before, we can estimate the parameter
A and the effective mass m∗/m as a function of the potential
range (see Fig. 2). Linear fits that were extrapolated to R0 → 0
give A = 0.9785(11) and m∗/m = 1.1085(15), values that are
in excellent agreement with the results for the zero-range
model, also displayed in Fig. 2. The trend of these estimated
quantities using the effective potential converges to the values
obtained with the zero-range model, as expected.

Results for the parameter A displayed in Fig. 2(b) scale
linearly to its value at R0kF → 0. This is strong evidence
that the universal linear relation of parameter A as a function
of the range of an effective potential in Eq. (9) is verified.
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FIG. 2. (a) Effective mass of polaron as a function of the po-
tential range. (b) Values of parameter A extrapolated to k = 0. The
zero-range model results are included for the purposes of compari-
son with the square-well potential and are depicted by black filled
squares (�). Results from the literature given by Lobo et al. [33]
and Pilati et al. [34] are shown by empty squares (�) and the plus
(+), respectively. Empty triangles (�) represent the analytical results
obtained with the Chevy ansatz [48,49]. Diagrammatic results of
Vlietinck et al. [50] are represented by times (×) and experimental
results are presented by empty circles (◦) [51] and asterisk (∗) [52].

Extrapolated results for A in the range 0 � R0kF � 0.2 are
fitted to Eq. (9) up to first order in R0kF and extrapolating
to R0 → 0. This gives the result A = 0.97916(55), which
is in excellent agreement with the value obtained from the
zero-range model. These results show that the linear behavior
between A and R0kF is indeed fulfilled and therefore there is
always a dependence on the range even if R0kF � 1.

The fitted curve slope η = −0.233(14) in Eq. (9) [see, also,
Fig. 2(b)] for the N + 1 system differs considerably from the
value obtained for an unpolarized system determined with
diffusion Monte Carlo (DMC) by Schonenberg and Conduit
[37], η = 0.087(1), or by Carlson et al. [53], η = 0.11(3),

FIG. 3. Pair distribution function of unlike spins in the impurity-
bath system as a function of the distance. The impurity is chosen
initially at rest (k/kF = 0). Both variational Monte Carlo (VMC) and
DMC results are extrapolated as customary for nonpure estimators.
The solid line is the best fit of the function g(rkF ) = a/(rkF )2 in the
range 0 � rkF � 0.4. The inset shows the function g(rkF )(rkF )2.

using auxiliary field Monte Carlo. These results show that
in the calculations, here the potential range plays a less sig-
nificant role for the unpolarized system than for the polaron
problem. Both experimental and theoretical results from the
literature are also presented in Fig. 2. In general the agreement
is quantitatively good. The closest value to our result of m∗/m
obtained using DMC in the literature [33,34] is reported in the
more recent one.

The pair distribution function between a down-spin atom
and the polarized up-spin Fermi gas as a function of the rela-
tive distance estimated using the zero-range model is shown in
Fig. 3. The normalization is such that g(rkF → ∞) → 1 and
the extrapolated results, g(rkF ) = 2gDMC − gVMC, are repre-
sented by the red squares. The contact parameter per unit
volume is estimated by fitting (rkF )2g(rkF ) to a straight line in
the range 0 � rkF � 0.4 [36,47,54,55], as shown in the inset
of Fig. 3. This figure also shows a fit of g(rkF ) to a/r2 and
the fits follow the expected behavior g(rkF ) ∝ 1

(rkF )2 shown
by Eq. (5).

From the pair distribution function, the estimated result
using the zero-range model, C/kF = 3.0363(21), is depicted
in Fig. 4 by a black square. In the same figure, the contact
parameter per unit volume as a function of the range of the
square-well potential is also presented. The solid line is a fit of
C/kF to the function C/kF (R0kF ) = C0 + C1(R0kF ). The fitted
parameters are C0 = 3.0727(92) and C1 = −0.719(99). The
result C/kF = 4.74 from Ref. [56] affected by a variational
bias is larger than ours. Regarding experimental values, a
recent result obtained via rf spectroscopy indicates a contact
parameter of C/kF = 4.0 ± 0.5 for a highly spin-unbalanced
Fermi gas [17]. To verify the importance of the size effects,
particularly in the estimation of C, a simulation with N↑ = 57
atoms in the bath was done. We obtained C/kF = 3.0294(16)
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FIG. 4. Contact parameter per unit of volume as a function of
the potential range for one down-spin impurity in the bath of N↑
particles. The black square stands for the zero-range model result.
The yellow region shows the dispersion of the square-well results
depicted by red dots with respect to the fitted results. The inset shows
results for the unpolarized Fermi gas in the normal state.

giving an indication that results for both N↑ = 33 and N↑ =
57 are within the thermodynamics limit.

For completeness, the contact parameter per unit volume
as a function of the potential range for the unpolarized gas
with N↑ = N↓ = 33 particles is shown in the inset, which also
displays the estimated value using the zero-range model. This
value, C/NkF = 1.7118(10), obtained for the Fermi gas in the
normal state is significantly lower than the one obtained in
the superfluid state [47,54]. The same trend is observed in the
literature for both experimental and theoretical results [42],
indicating, thus, an abrupt drop in the value of the contact
parameter for the unpolarized system when the Fermi gas goes
from the superfluid to the normal phase.

Energies of the Fermi gas as a function of impurity concen-
trations x = N↓/N↑ are presented in Fig. 5. The extrapolated
value obtained with a square-well potential range of R0kF =
0.03 is in excellent agreement with the one obtained by the
zero-range model. Results in the range 0 � x < 0.5 were fit-
ted to Eq. (2) considering previously estimated values of A and
m∗/m. The dashed line in Fig. 5 depicts the curve of Eq. (2)
with the term x2 neglected (F = 0) for the zero-range model.
A comparison of this curve and the fitted one shows that as
the concentration x increases to values above approximately
0.2, effects of the Pauli blocking due to the formation of a
Fermi sea of the minority down-spin particles start to add to
the polarons’ density mediated interactions.

Simulations are performed for different concentrations of
impurities keeping size effects under control. In particular,
we have checked the equation of state for a Fermi sea of
N↑ = 33 and N↑ = 57 atoms. These results follow the trend
shown by simulations made with N↑ = 33 particles, as we can
see in Fig. 5. It is also interesting to mention that there is no
appreciable impact in the results regarding whether or not the
number of minority atoms corresponds to a closed shell.

FIG. 5. Energy as a function of N↓/N↑. Results for the zero-range
model are depicted by filled symbols, black squares for N↑ = 33,
red diamonds for N↑ = 57, and blue circles for filled shells. Empty
symbols are the results for the square-well potential for the ranges:
R0kF = 0.03(�); 0.12(◦); 0.30(�); 0.60(�). The lines are the fits
of Eq. (2) and the black dashed line is the zero-range equation of state
with F = 0. Inset: the coupling between the polarons in the Landau-
Pomeranchuk quasiparticles model as a function of the range for the
square-well potential (•) and the zero-range model (�). Monte Carlo
result of Pilati and Giorgini (�) [34] and the analytical result of Mora
and Chevy (�) [40]. The empty purple circles represent F = A2/5
and the green diamonds are values obtained by explicitly considering
energy differences between systems with 2 and 1 impurities (see
text).

The strength of the interaction between the quasiparticles is
accounted for by the parameter F , which is obtained by fitting
the energy for different impurity concentrations [see Eq. (2)].
Values of F are estimated both for the zero-range model and
at different ranges of the potential, as displayed in the inset of
Fig. 5. Alternatively, the parameter F can also be estimated by
subtracting the energy of the system with M impurities and the
energies of the systems with each single impurity immersed in
the bath. In particular, for two impurities, we have

Fx2 = E (N↓ = 2; k = {0, 2π/L})

− [E (N↓ = 1; k = 0) + E (N↓ = 1; k = 2π/L)].

(12)

These results are also shown for the zero-range model and for
the square-well potential as a function of the range for the
concentration of impurities x = 2/33. Both estimations of F
agree with each other.

The result obtained via the zero-range model F = 0.22(8)
is in agreement with the one by Pilati and Giorgini [34],
F = 0.14, which also uses quantum Monte Carlo (QMC)
calculations for closed-shell cases and fit the equation of state
in the range of impurity concentration from 0 to 1. A better
nominal agreement, F = 0.20, occurs when a diagrammatic
method is employed, as reported by Mora and Chevy [40]. A
relation for the dominant polaron interactions in terms of a
single polaron parameter in terms of the universal parameters
A was investigated in Ref. [40]. For the normal state of the
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Fermi gas, this relation reads F = A2/5. In the inset of Fig. 5,
values of A are those we computed for the zero-range model
and for the square-well potential as a function of its range.

All data results obtained in this work are explicitly given in
the Supplemental Material [57].

IV. CONCLUSIONS

Properties of a unitary Fermi polaron were studied using
the zero-range model where a contact potential is replaced by
the Wigner-Bethe-Peierls boundary condition in the N-body
wave function. In addition, these properties were estimated
using a square-well potential as a function of its range.

Simulations were performed to study finite-size effects and
the results show that our results are free from these effects.
Estimations of properties such as the polaron binding energy,
effective mass, contact, and the role of different concentra-
tions were found to depend on the range of the potential.
Consistency in the results was exhaustively tested in particular
by comparing estimations made with the zero-range model
with those of a square-well potential as a function of its
range. Although it is possible to argue that results obtained
with a short-range potential using a small enough range give
results within statistical uncertainties that might be equivalent
to those obtained using the zero-range model, our estimates
show that calculations made with a finite range are not as
accurate as they could be. Moreover, difficulties in the sim-
ulations using very small ranges in effective potentials make
it more convenient to use the zero-range model in simulations
of ultracold gases in a unitary regime.

In summary, we have observed that using an effective
potential with finite range can impact the estimation of the
ground-state properties of Fermi polarons. Nevertheless,
estimated properties obtained by extrapolating the range
of the square-well potential to the zero-range limit show
agreement with the zero-range model. Our work shows that
finite-range effects may be sizable, for instance, in a polaron
with long-range interaction such as dipolar, Rydberg, or ionic
polarons [58–60].
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APPENDIX: VARIATIONAL AND DIFFUSION
MONTE CARLO METHOD

The variational Monte Carlo (VMC) estimates the varia-
tional energy by sampling configurations from the probability

density associated to the model wave function, given by
Eq. (6), using the Metropolis et al. [61] algorithm. The best
set of variational parameters is obtained by minimizing the
variational energy. The random displacement of the particles
is adjusted so that the acceptance of new configurations is
approximately 50%.

Configurations drawn in a VMC calculation are used in a
diffusion Monte Carlo (DMC) calculation; the Schrödinger’s
equation in imaginary time τ = it/h̄,

−∂ψ (R; τ )

∂τ
= (H − E0)ψ (R; τ ), (A1)

is a diffusion equation. A guess of the true energy E0 is
inserted in Eq. (A1) to control the wave-function norm. In
practice, the variational energy can be a good starting choice
for E0, which is periodically updated. Typically, Eq. (A1) is
solved for the lowest-energy state compatible with the given
nodal structure of Eq. (6) by defining a propagator at a small
time step �τ such that the evolution in imaginary time is
accomplished by successive applications of this propagator
[62,63]. The way to employ this idea is to write a propagation
equation,

�(R)ψ (R; τ + �τ )

=
∫

dR′ �(R)

�(R′)
G(R, R′; �τ )�(R′)ψ (R′; τ ), (A2)

where the model wave function is used as a guide func-
tion and G(R, R′; �τ ) is a Green’s function. It is possible
to show that the lowest-energy state can be projected out
from the model wave function asymptotically in the imaginary
time τ [63,64] under the assumptions made using the above
methodology. Within the limit of large imaginary time, the
energy of the system is calculated using the mixed estimator
defined as

E = 〈�|H |ψ〉
〈�|ψ〉 . (A3)

The time step in Eq. (A2) must be small enough to avoid
bias in the calculation of the energy and other properties,
typically �τ � 10−4 5

3 E−1
F↑ [47]. The computational cells are

constructed with N↑ = 33 and 57 up-spin atoms in the bath.
Periodic boundary conditions are enforced in the simulations.
Typically, the DMC calculations are conducted so that the
system is evolved until τ 3

5 EF↑ = 3.0 before starting to accu-
mulate quantities of interest. Quantities that do not commute
with the Hamiltonian are estimated through the mixed estima-
tors, Qmix = 2QDMC − QVMC.

As discussed in a previous work [65] for the unpolarized
Fermi gas, the use of the zero-range boundary condition in
the wave function can insert divergences in the energy cal-
culations. To solve the divergences problems, we perform an
additional move when sampling the particles’ configurations.
Essentially, after the random movement of all the atoms in
the gas, we promote the positions exchange of the closest
pair of particles with different spins. The configuration with
the exchanged pair is considered in the calculation with its
respective probability.
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