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Spin-polarized fermions with p-wave interactions
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We have created quantum degenerate Fermi gases of 6Li atoms at unprecedented high densities exceeding 1/λ̄3

(where λ is the wavelength of resonant light). In this regime, new optical properties are predicted. Spin-polarized
Fermi gases are usually regarded as noninteracting due to the weakness of p-wave interactions. Here we study
the properties of “p-wave matter,” where elastic and inelastic p-wave collisions determine the dynamics of the
system. We characterize thermalization, evaporative cooling, and inelastic two-body and three-body collisions.
P-wave dipolar relaxation creates a metastable mixture of the lowest and highest hyperfine states.
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I. INTRODUCTION

Single component Fermi systems are of fundamental
interest. Even for weak interactions, they will show the Kohn-
Luttinger instability [1] at very low temperatures and form
Cooper pairs. Since s-wave interactions are not allowed in
a single-component system, pairing and superfluidity can be
unconventional. The A1 superfluid phase of liquid helium-3
is an example of a single-component Cooper pair condensate
[2], although the spin-polarization at high magnetic fields is at
most in the percent range [3]. Triplet pairing may also occur in
the superconductivity of strontium ruthenate [4]. For ultracold
atomic gases, the de Broglie wavelength is much longer than
the range of the van der Waals interactions, and therefore
interactions in single component Fermi gases are very weak
at low temperatures.

Here we explore to what extent we can enhance p-wave in-
teractions by increasing the density of the gas until three-body
recombination becomes too strong. We reach densities larger
than 1015 cm−3 with lifetimes of more than a second. At these
densities, the Fermi energy is 50 times larger than the single-
photon recoil energy, and light scattering should be Pauli
blocked [5–7]. At densities larger than λ̄−3, the index of re-
fraction should show strong dipolar corrections [8], resulting
in shifts of the resonance larger than the natural linewidth [9].

In this paper, we focus on the characterization of p-wave
collisions in this new high-density regime. An understanding
of p-wave collisions is of general interest for ultracold atom
science, molecular calculations and also for the most precise
atomic clocks using strontium and ytterbium [10] in optical
lattices where weak p-wave interactions cause shifts of the
clock frequency [11]. Due to the weakness of p-wave interac-
tions, the typical thermalization times of spin-polarized Fermi
gases are on the order of tens of seconds, even at temperatures
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much higher than the degeneracy temperature [12]. Here we
observe thermalization in ≈100 ms.

Our motivation has been to initiate a broader study to what
extent high density can push single-component fermions into
a new interesting system for few- and many-body physics
without involving the usually lossy Feshbach resonances. For
6Li, the atom studied here, a partial success was accom-
plished. The ratio of good to bad collisions was much better
than near a recently studied Feshbach resonance [13]. This al-
lowed to perform p-wave evaporative cooling which achieved
modest efficiency, being limited by nonresonant three-body
losses.

The scaling behavior of p-wave collisions is very different
from s-wave collisions which dominate in most ultracold gas
experiments. For s-wave collisions, the elastic cross section
and the three-body recombination rate are constant near zero
temperature, whereas for p-wave scattering, they both scale
as T 2 or k4 with the relative momentum h̄k of the colliding
atoms. In the zero-range limit (i.e., when the effective range
is negligible), the p-wave cross section σp is characterized by
the p-wave scattering volume Vp as σp(k) = 24πV 2

p k4 [14].
For sufficiently small Vp, the three-body loss rate coefficient
L3 has the form L3 = C(h̄/m)k4V 8/3

p with a dimensionless
scaling constant C [15,16]. Evaporative cooling requires a
favorable ratio of elastic to inelastic collision. For a Fermi
gas with a temperature T = TF , the elastic collision rate �el

is proportional to V 2
p k8 and three-body loss rate to V 8/3

p k10,
implying a ratio of good-to bad collisions which scales as
1/(CV 2/3

p k2). This suggest that a favorable regime is at low
density and weak p-wave interactions, i.e., far away from
any p-wave Feshbach resonances. The existence of other loss
mechanism (e.g., vacuum-limited trapping time) leads to a
favorable regime at intermediate densities. Figure 1 shows
that for the system studied here, 6Li at low magnetic fields,
there is a favorable window around TF = 150 μK, where the
ratio of good to bad collisions peaks around 150, much better
than achievable near a p-wave Feshbach resonance [13] (see
Appendix A for a detailed comparison).
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FIG. 1. The ratio of good (elastic) to bad (inelastic) collisions,
and the elastic collision rate for 6Li atoms near zero field, far away
from the p-wave Feshbach resonance. The solid line shows the ratio
for an harmonically trapped cloud with T = TF assuming a vacuum
lifetime of 60 seconds. The dashed line is the elastic collision rate.
In this work, we have explored the shaded region.

We note that the k4 scaling makes p-wave evaporation
different from evaporative cooling with single component
dipolar gases (as observed in Ref. [17]), where higher partial
waves are not suppressed at low temperatures, and the elastic
cross section is constant even at T = 0, whereas the p-wave
cross section freezes out proportional to T 2.

II. SAMPLE PREPARATION

The ultracold lithium clouds are prepared in the follow-
ing way. After laser cooling of 23Na and 6Li in a double
species MOT and optical pumping of the Li (Na) atoms
to the stretched state |F = 3/2, mF = +3/2〉 (|2,+2〉), the
atoms are captured in a plugged quadrupole magnetic trap
[18] and sympathetically cooled through forced microwave
evaporation of the Na atoms [19]. During the last part of
the evaporation, a single-beam 1064-nm optical dipole trap
(ODT) with a variable spot size is turned on. The spot size is
controlled by a variable-aperture iris shutter, which is initially
set to a small open diameter, producing an optical trap with
large volume and shallow depth. This keeps the densities
low (∼1012 cm−3) and avoids inelastic collisions. Finally, the
quadrupole field is turned off, and the remaining Na atoms
are expelled using a pulse of resonant light. The Li atoms
are then transferred to the collisionally stable lowest Zeeman
state |1/2, 1/2〉 ≡ |1〉 using an RF Landau-Zener sweep. Sub-
sequently, the iris is opened to its full aperture in 0.5 sec, thus
reducing the (1/e2) ODT spot size radius from approximately
29 to 8 μm and compressing the cloud to densities up to
1015 cm−3. In order to reduce three-body losses during the
iris opening, the 1064 nm laser power is reduced to 30% of
its maximum power. The variable spot size ODT is critical
to bridge three orders magnitude in density between initial
evaporative cooling and the experiment.

Finally, the ODT power is ramped up to the maximum
power of 6.2 W. The cloud is held in this tight and deep
trap for 30 ms to ensure thermal equilibrium. A characteristic
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FIG. 2. Three-body loss for spin-polarized fermions. Different
temperatures are realized by reducing the trap laser power. The
three-body loss coefficient L3 scales quadratically with tempera-
ture. The black line is a parabolic fit through the origin, resulting
in L3 = (3.55 ± 0.22) × 10−23 × T 2. Error bars show the statistical
one standard deviation uncertainties of the fit parameter L3 used to
describe the atom number decay. The inset shows the decay curve at
T = 310 μK and its fit to Eq. (1).

sample contains ∼5.3 × 106 Li atoms at 300 μK temperature
and T/TF = 0.75, where TF is the Fermi temperature. The
corresponding density is n = 1.3 × 1015 cm−3. The trapping
frequencies are (ωrx, ωry, ωz ) = (91.5, 102, 2) kHz, which
are measured by exciting dipole or breathing oscillations.
Since p-wave interactions are weak, the possibility of im-
purity populations of 6Li in other hyperfine states or of Na
is a possible concern because they can undergo much faster
s-wave collisions. However, these impurities should be rapidly
purged from the sample via fast s-wave inelastic collisions.
With absorption imaging, we set an upper bound of 0.01% for
Na or for Li in the upper hyperfine state |F = 3/2〉 and in state
|1/2,−1/2〉 ≡ |2〉.

III. THREE-BODY LOSS MEASUREMENTS

For 6Li atoms in the lowest hyperfine state, there are
no inelastic two-body collisions. Three-body collisions for
fermions are suppressed by k4 for three identical fermions and
by k2 for fermions in two states [20]. So far, 6Li three-body re-
combination has been studied only near a Feshbach resonance
which can enhance three-body loss coefficient by six orders of
magnitude [16], and in a spin mixture with s-wave interactions
[21]. Due to the high densities achieved here, we are sensitive
to background p-wave losses (i.e., at a field of 1 G, far away
from the 1-1 Feshbach resonance located at 159 G).

We observe three-body decay by monitoring the decrease
in the number of trapped atoms (Fig. 2). The rate of change of
the number of trapped atoms N is given by

Ṅ = L1N − L3 〈n2〉 N, (1)

where the density independent losses, parametrized by
L1 are almost negligible with 1/L1 = 31.1 ± 1.3 sec. The
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FIG. 3. Observation of cross-dimensional thermalization. Nor-
malized temperature difference �T/Tave between the radial and axial
directions as a function of hold time after creating a sample with
anisotropic energy distribution. The dashed line is an exponential
fit �T/Tave = A exp(−�tht ) + c. The temperature difference has a
small (5%) offset in all measurements the reason for which we have
not tracked down (possibly due to anisotropic heating/cooling or
nonsudden switch-off of potentials to initiate ballistic expansion).
Inset shows the average temperature, demonstrating that there is no
heating during the measurement. Error bars represent the standard
deviation of the data averaged over three measurements.

actual analysis accounts for changes in temperature and cloud
size as a function of hold time, and the anharmonic trapping
potential (see Appendix B). The results in Fig. 2 confirm
the quadratic scaling of L3 with temperature according to a
Wigner threshold law [20], as already observed near a p-
wave Feshbach resonance [16]. At 100 μK temperature, we
obtain L3 = (3.55 ± 0.22) × 10−31 cm6/sec, which is among
the smallest three-body rate coefficients observed for ultracold
atoms, illustrating the high stability of spin-polarized Fermi
gases. Thermal gases of sodium and rubidium, for exam-
ple, have rate coefficients between 10−29 and 10−28 cm6/sec
[22–24].

Using the data in Fig. 2, we obtain a dimensionless scaling
constant value of C = (3.0 ± 0.6) × 104, compared to the
value of C = 2 × 106 reported in Ref. [16] near the Feshbach
resonance. While bosons show a universal character of three-
body losses (i.e., the loss coefficient is independent of the
details of the interatomic potential [25]), the different C coeffi-
cient values demonstrate for the first time the lack of universal
character in recombination of three ultracold fermions, as has
been hypothesized in Ref. [15].

IV. THERMALIZATION MEASUREMENTS

Elastic collision rates are observed by creating a nonequi-
librium state and monitoring the collisional relaxation back to
equilibrium [12,26]. In order to avoid systematic errors due to
three-body losses, heating, and trap anharmonicities, the atom
number is lowered to three different values around 10% of
its maximum value. An anisotropic temperature (with up to

FIG. 4. Determination of the background p-wave scattering
length. Thermalization rates �th were measured for a range of atom
numbers and temperatures and are shown as a function of the mean
density times T 5/2, which is the scaling with density and temperature
given by Eq. (2). A linear fit weighing the data with inverse of
variances (vertical error bars) gives the p-wave background scatter-
ing length |Vp| = (39+1.3

−1.6 a0)3. The dashed lines represent the 95%
confidence interval of the fit. We note that the only fit parameter is
the slope, representing Vp.

35% temperature difference between the radial and axial di-
rections) is created by spilling atoms out of the trap in the axial
direction by decreasing the trap laser power, and adding a
magnetic field gradient along the axial direction. We note that
the more common parametric excitation technique has limited
effectiveness for our cloud (possibly due to Pauli blocking of
the parametric heating process). The magnetic gradient is then
turned off and the ODT power is nonadiabatically ramped
back up to the full power. Thermal relaxation by p-wave
collisions is observed by monitoring the time evolution of the
temperature difference between axial and radial directions.

A typical thermalization measurement is shown in Fig. 3.
The thermalization rate �th is obtained from an exponential
fit to the decay curve of the temperature difference. The
thermalization rate is proportional to the elastic collision rate
(�th = �el/α), where α is the average number of elastic colli-
sions necessary for the cross-dimensional thermalization. An
analytical calculation of the energy exchange in a Boltzmann
gas gives α = 64/15 for p-wave collisions [27] which agrees
with a value α = 4.1 obtained from Monte Carlo simulations
[12]. Using the thermally averaged p-wave elastic collision
rate, we obtain an expression for the thermalization rate (see
Appendix C)

�th = 1152

α

√
2π

V 2
p μ3/2

h̄4 nmean(kBT )5/2, (2)

where μ is the reduced mass of two 6Li atoms, and nmean the
average atomic density.

Figure 4 shows the measured thermalization rates as a
function of nmeanT 5/2. A linear fit determines the back-
ground p-wave scattering volume of state |1〉 to be |Vp| =
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(39+1.3
−1.6 a0)3, where a0 is the Bohr radius. This value is in

reasonable agreement with theoretically calculated values of
(−35.3a0)3 [28] and (−36a0)3 [29], and is the first experimen-
tal measurement of a background scattering volume [30]. This
measurement was done at a magnetic field of 1 G, far away
from the 1-1 Feshbach resonance located at 159 G. However,
there may still be a small contribution from the wings of
the resonance which decreases the scattering volume at low
fields by �B/(B − Bres) or 25%, assuming a resonance width
of �B = 40 G [31]. This corrects the background scattering
volume to (42a0)3.

V. EVAPORATIVE COOLING

As shown in Fig. 1, for a range of temperatures and den-
sities, the measured elastic collision rates are much higher
than the inelastic loss rates, allowing for evaporative cooling,
using the following procedure. After sample preparation, the
optical trap is ramped down to a fifth of its original power,
where the ratio of good to bad collisions is around 70, and
the ratio of the trap depth to temperature is η = 7. The trap
depth is then reduced by a magnetic force applied in the axial
direction which is ramped up to various values during 1.5
second. This “tilt evaporation” maintains the confinement and
is superior compared to simply reducing the laser beam power
[32]. A square root time dependence of the ramp is used to
follow the decreasing elastic collision rate. After turn-off of
the magnetic field gradient, the optical trap is restored to its
full value, and a time-of-flight absorption image measures the
velocity distribution [Fig. 5(a)]. By performing the analysis
always with atoms released from the original trap, we avoid
systematic effects in comparing different trapping potentials,
e.g., anharmonicities.

We monitor the results of evaporation by determining the
final temperature from a Gaussian fit to the wings of the
time-of-flight distribution, and the Fermi temperature from the
measured number of atoms N and trap frequencies (accord-
ing to kBTF = h̄(ωrxωryωz6N )1/3 [33]). Figure 5(b) shows a
decrease in temperature and T/TF as the final trap depth is
lowered (by increasing the magnetic force). The calculated
ratio of good to bad collisions decreases from 70 to 23. The
increase in degeneracy is rather modest, since a ratio of good
to bad collisions of around 50 will allow evaporative cooling
only with modest efficiency. For this ratio, the γ parameter
(increase in the logarithm of the phase space density over
logarithm of atom loss) is at best around 1 [34], where the
experimental value is γ = 0.94.

The clouds after evaporation are not fully equilibrated: The
Fermi-Dirac profile calculated with the fitted values for T and
TF do not match well with the observed profiles [Fig. 5(c)].
The deeper the evaporation progresses, the larger is the dis-
agreement. We ascribe the lower population for low velocities
to the strong velocity dependence of p-wave collisions (see
Appendix D). Equilibrium in the cloud is quickly established
when we use a diabaic Landau-Zener sweep to admix 10%
spin impurities (atoms in state |2〉) right after the evaporation
ramp which undergo s-wave collisions with the atoms in state
|1〉 [Fig. 5(d)].

We have observed nonequilibrium distributions also after
cross-sectional thermalization (as measured in Fig. 3) show-

FIG. 5. Evaporative cooling using p-wave collisions. (a) Time-
of-flight absorption image (average of 4 shots) of degenerate atoms
at T/TF = 0.42. Temperature is determined from a Gaussian fit to the
wings of the cloud, and Fermi energy is calculated using measured
number of atoms and trapping frequencies [33]. (b) Evolution of
T/TF for different final trap depths and therefore different final num-
bers of atoms. [(c) and (d)] Comparison of the azimuthally averaged
radial cloud profiles, before (c) and after (d) introducing a second
spin component of state |1/2, −1/2〉 ≡ |2〉 which undergoes s-wave
collisions with state |1〉. Red lines show the Fermi-Dirac profile
set by the atom number, temperature and trapping frequencies. The
cloud in (c) is not in thermal equilibrium, in contrast to (d). Note
that the number of atoms in (d) is lower, probably due to enhanced
three-body loss.

ing that full thermalization takes longer than the so-called
thermalization time for distributing energy isotropically, an
effect which has not been pointed out before and is discussed
in Appendix D. Therefore p-wave collisions are less efficient
for evaporative cooling than s-wave collisions, and require a
considerable higher ratio of good to bad collisions.

VI. DIPOLAR RELAXATION OF STATE |6〉
In the magnetic trap, we cool lithium atoms in state

|3/2, 3/2〉 ≡ |6〉. By omitting the Landau-Zener sweep in the
sample preparation, we can study collisional properties of
state |6〉 clouds. Initial measurements of thermalization rates
found the surprising result that thermalization in state |6〉 is
much faster than in state |1〉. It turned out that this is due
to an admixture of state |1〉 atoms in a quasi-equilibrium
concentration. This is caused by a rather amazing interplay
of various collision processes: p-wave dipolar relaxation of
state |6〉 atoms, ultrafast (μs) s-wave spin relaxation between
state |6〉 and state |3/2, 1/2〉 ≡ |5〉 atoms in which state |5〉
decays to state |1〉, fast collisional relaxation by s-wave elastic
collisions between states |1〉 and |6〉 and loss of state |1〉 atoms
by three-body recombination.
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FIG. 6. Dipolar relaxation of state |6〉, leading to a population of
state |1〉. Population of both states, as a function of hold time in the
trap at full power. Lines are a guide to the eye. The initial number of
state |1〉 atoms are generated while the optical trap was ramped up to
full power.

Via absorption imaging, we find that a pure state |6〉 cloud
creates a growing admixture of state |1〉 atoms (Fig. 6). Al-
though our detection scheme is sensitive to both states |1〉 and
|2〉 of the lower F = 1/2 hyperfine level, we can exclude the
presence of state |2〉 since it undergoes rapid spin relaxation
with state |6〉 (with a rate coefficient of 10−8 cm3/s at 1 G
field [35]).

The dominant decay mechanism for state |6〉 atoms is
three-body loss. From the initial slope of the decay, we obtain
a loss rate of Ṅ/N = −6.3/s, slightly larger than observed for
state |1〉 under the same conditions. A second, weaker loss
mechanism is p-wave dipolar relaxation which transfers spin
angular momentum to orbital angular momentum [36]. The
rate coefficient for producing state |5〉 atoms is calculated to
be Ldip

2 = 3.2 × 10−16 cm3/s [36]. A generated state |5〉 atom
undergoes rapid spin relaxation with state |6〉 atoms to state
|1〉 with a predicted rate coefficient of 2 × 10−9 cm3/s [37].
At our densities, this spin flip takes place in less than 1 μs,
one of the fastest collisional processes ever observed with
ultracold atoms. This spin flip releases the ground state hy-
perfine splitting energy of 11 mK (three times the trap depth).
Our detection of cold and trapped state |1〉 atoms implies that
the cloud is collisionally dense for collisions between states
|1〉 and |6〉. A collisional density of one along the radial di-
rection requires an s-wave scattering length of around 200a0.
We don’t know of any predictions for 6-1 scattering length,
but the 6-2 scattering length is predicted to be large (around
−1700a0 [35]) due to the large triplet scattering length for 6Li
of −2160a0 [37]. Note that all states should decay rapidly in
spin relaxation collisions with state |6〉, except for state |1〉,
for which spin relaxation is not possible due to conservation
of angular momentum along the z direction.

The observed initial growth rate in the number of state |1〉
atoms of Ṅ1 = 1.06 × 106 atoms/s is in reasonable agreement
with the predicted production of state |5〉 atoms by dipolar
relaxation, and implies a capture efficiency close to unity.

After 1 s, the relative population in state |1〉 reaches a quasi-
equilibrium, indicating a loss mechanism for state |1〉 with
a rate of around 10/s. State |1〉 can disappear in three-body
recombination with possible combinations of states 6,6,1 or
6,1,1 or 1,1,1. Since some of the rate coefficients are not
known, we cannot model the dynamics. The observation of
a quasi-constant fraction of state |1〉 atoms suggests that the
ratio of production and loss rate is proportional to the density
of state |6〉 atoms.

VII. DISCUSSION

In this paper, we have explored a spin-polarized Fermi gas
at unprecedentedly high densities and observed various col-
lisional interactions. Although the observed elastic collision
cross section of 9 × 10−16 cm2 is four orders of magnitude
smaller than typical s-wave cross sections of 7 × 10−12 cm2,
these Fermi gases equilibrate on time scales of 100 ms and
establish a weakly interacting gas for which the p-wave mean
field energy is 0.2% of the Fermi energy (for zero temperature
and 1015 cm−3 density [38]). This study has realized extreme
parameters for ultracold atoms, not only in density, but also
in Fermi energies (3 MHz) and in inelastic collision times
(<1 μs), and found new effects in p-wave thermalization. Fur-
ther improvements, also in p-wave evaporative cooling, can be
achieved in optimized traps, with improved vacuum lifetime,
and by exploring other atoms, states or magnetic field ranges.
In the near future, we plan to use these unprecedented high
densities and optical densities for studies of superradiance and
light scattering in new regimes.
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APPENDIX A: RATIO OF GOOD TO BAD COLLISIONS

Here we provide a more detailed discussion of the role of
elastic and inelastic collisions. An obvious question is whether
Feshbach resonances can lead to a more favorable ratio of
elastic to inelastic collisions. Comprehensive studies of the
p-wave resonance near 159 G have been carried out by the
Tokyo group [13,16]. In the regime with universal scaling
(Eq. (4) in Ref. [16]), the losses are 67 times higher than for
the background interactions studied here. However, effective
range corrections can enhance elastic collisions on one side
of the resonance and suppress them on the other side; they
also increase losses. As we discuss below, an analysis of the
results of Refs. [13,16] show a narrow range of magnetic field
detunings where the ratio of good-to-bad collisions is around
10, but at rather slow elastic collision rate around 5/s.

For the condition of our experiment, the zero-range ap-
proximation is valid, and the ratio of good to bad collisions
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for the experimentally determined collision parameters (L3,
Vp) is shown in Fig. 1 of the main text. In the main text,
we showed that the ratio of good to bad collisions scales as
1/(CV 2/3

p k2). If we rewrite the scaling as (TF /�el )1/3/C, and
assume that a certain elastic collision rate is needed to over-
come residual gas collisions, then the collision ratio depends
only on the achievable densities (or TF ) and the constant C.
We have measured the constant C for background scattering
to be almost two orders of magnitude less than observed near
a Feshbach resonance (see Sec. III). Therefore, in the regime
where the zero-range approximation applies, the p-wave Fes-
hbach resonance near 159 G has an unfavorable ratio of good
to bad collisions.

However, near the Feshbach resonance, the zero-range ap-
proximation breaks down. For elastic collisions, the effective
range term interferes constructively with the p-wave scat-
tering volume on the high-field side of the resonance (and
destructively on the other side), which can improve the col-
lision ratio, as we show here.

The thermally averaged elastic collision rate is given by

�el = nmean 〈σpFR(k)vrel〉 , (A1)

where vrel is the relative velocity between colliding atoms, and
nmean = 〈n〉 = 1

N

∫
n2(r)d3r is the mean density (sometimes

referred to as the density-weighted density), given by nmean =
1

48 ( kBm
h̄2π

)3/2 T 3
F

T 3/2 for an harmonically trapped Boltzman gas. The
p-wave cross section σpFR(k) = 24π | fpFR(k)|2 is expressed
by the scattering amplitude fpFR(k). Near a p-wave Feshbach
resonance, one can express the scattering amplitude using the
effective range expansion [28] as

fpFR(k) = k2

− 1
V (B) + kek2 − ik3

, (A2)

where ke is the second coefficient in the effective-range ex-
pansion, and the scattering volume varies as V (B) = Vp(1 +

�B
B−Bres

). We use the values from Ref. [13] to parametrize the

Feshbach resonance: Vp = (−41a0)3, ke = −0.058a−1
0 and

�B = 40G.
Inelastic collisions near the p-wave Feschbach resonance

have been parametrized through the scaling relation

�inel = 〈n2〉 L3 = 〈n2〉C
h̄

m
k4

T V 8/3
B , (A3)

where 〈n2〉 = 1
N

∫
n3(r)dr is the mean squared density,

given by 〈n2〉 = 1
864

√
3
( kBm

h̄2π
)3 T 6

F
T 3 for a harmonically trapped

Boltzman gas, kT =
√

3mkBT/2h̄2, C = C0{1 + (βkek2
T VB)γ },

C0 = 2 × 106, β = 9, and γ = 14 [16].
With a vacuum limited lifetime of τvac = 60 seconds, we

define ratio of good to bad collisions as

�el

�inel + 1/τvac
. (A4)

Figure 7(a) shows the ratio of good to bad collisions around
the Feshbach resonance in the range relevant to the Tokyo
group experiment [13]. The maximum of the ratio is around
12. Figure 7(b) shows the elastic collision rate.

FIG. 7. The ratio of good to bad collisions (a) and the elastic
collision rate (b) near the p-wave Feshbach resonance at 159 G for a
harmonically trapped cloud with T = TF .

APPENDIX B: ANALYSIS OF THREE-BODY LOSS DATA

1. Harmonic approximation

Since there are no inelastic two body collisions for 6Li
atoms in the lowest hyperfine state (i.e. the two-body loss
coefficient L2 = 0), the time dependence of the number of
atoms N in the trap is described by the differential equation
Ṅ
N = −L3〈n2〉. Later, we will add a single-particle loss rate
L1. For a nondegenerate cloud, and using the harmonic ap-
proximation for the trapping potential, the density profile is
Gaussian, and we obtain

Ṅ

N
= −L3

N2

24
√

3π3σ 2
x σ 2

y σ 2
z

= −L3
N2

24
√

3π3V 2
, (B1)
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where σi =
√

kBT/mω2
i is the cloud’s size in direction i, and

the volume is defined as V 2 = σ 2
x σ 2

y σ 2
z . The Wigner thresh-

old law predicts that L3 should scale with wavenumber k as
L3 ∼ k4 [20]. Since three-body losses also cause significant
heating during the measurement, L3 and the volume V are
both time-dependent, which has to be included in the analysis.
Integrating both sides of the differential equation, we obtain

Ṅ

N3
= − 1

24
√

3π3

L3(t )

V 2(t )
,

1

2N2
= 1

24
√

3π3

∫ t

0

L3(t ′)
V 2(t ′)

dt ′ + 1

2N2
0

. (B2)

We define �3b(t ) = L3(t )
V 2(t ) . Further simplifying the equation

1

2N2
= 1

24
√

3π3
�3b(0)

∫ t

0

�3b(t ′)
�3b(0)

dt ′ + 1

2N2
0

,

N (t̃ ) =
√

1
1

12
√

3π3 �3b(0)t̃ + 1
N2

0

,

(B3)

where

t̃ =
∫ t

0

�3b(t ′)
�3b(0)

dt ′ =
∫ t

0

T (0)

T (t ′)
dt ′ (B4)

is the rescaled time, T (t ) the time-dependent temperature,
and we have used �3b ∼ 1/T . Knowledge of the temperature
evolution from the experimental measurements allows us to
calculate t̃ , which can be used in the new time axis in the fit.

2. Beyond the harmonic approximation

The optical trapping potential is approximately Gaussian
in the radial direction, and Lorentzian axially. If the ratio
of the trap depth to the temperature η ≡ U0/kBT is smaller
than ∼10, anharmonic corrections become important, and the
expression in Eq. (B1) overestimates the density. One then has
to numerically calculate the mean squared density 〈n2〉, as we
discuss below.

For temperatures kBT 	 h̄ω, we can use a semiclas-
sical description where the occupation of a phase space
cell {r, p} is given by a Boltzmann distribution: f (r, p) ∝
exp[−β(p2/2m + U (r))], where U (r) is the external poten-
tial. The density distribution of the thermal gas is then given
by integrating over the momentum:

nth(r) = 1

C

∫
d3p

(2π h̄)3
f (r, p)

= 1

C

(mkBT )3/2

2
√

2π3/2h̄3
exp[−βU (r)]. (B5)

The normalization constant C is determined by the total num-
ber of atoms N :

C = 1

N

∫
(mkBT )3/2

2
√

2π3/2h̄3
exp[−βU (r)]d3r. (B6)

The mean squared density 〈n2〉 is then given by

〈n2〉 = 1

N

∫
nth(r)3d3r

= N2

(2π )2

∫∫
r exp[−3βU (r)]drdz

(
∫∫

r exp[−βU (r)]drdz)3 ,

(B7)

where rdrdz is the volume element in cylindrical coordinates.
Without the harmonic approximation of U (r) this integral

is generally not analytically solvable. We evaluate it numeri-
cally, using the explicit potential of a focused Gaussian beam
[33]:

UODT(r) = − U0

1 + (z/zR)2
exp

(
− 2r2

w(z)2

)
, (B8)

where w(z) = w0

√
1 + (z/zR)2 is the beam spot size, zR is the

Rayleigh range of the beam, and U0 is the trap depth.
Since gravity tilts the potential, it sets a constraint on the

maximum energy an atom can have inside the trap. We include
this effect by setting the integration limits to 95% of the
full trap depth, i.e., UODT(rmax) = 0.95U0, and UODT(zmax) =
0.95U0. Without this cutoff, 〈n2〉 tends towards zero.

To account for the scaling of the three-body loss coefficient
with temperature, we modify Eq. (B1) such that Ṅ = L1N −
LT

3 T 2 〈n2〉 N , where LT
3 is the temperature-independent part

of L3. We insert the numerically calculated time-dependent
〈n2〉 into the modified form of Eq. (1), and fit the decay of the
atom number as a function of hold time. The values shown in
Fig. 2 represent the loss coefficient at the beginning of each
measurement (i.e., at zero hold time).

APPENDIX C: CALCULATION OF THE p-WAVE
SCATTERING RATE

The thermally averaged p-wave elastic collision rate is
given by

�el = nmean〈σp(k)vrel〉

= nmean

√
8

μπ
(kBT )−3/224π

∫
| fp(k)|2Ee−βE dE .

(C1)

Far-away from the Feshbach resonance, and in the low
energy limit, the scattering p-wave scattering amplitude
[Eq. (A2)] becomes fpFR(k) ≈ −Vpk2. This assumes that con-
tributions from an effective range expansion are negligible,
which should be well fulfilled in the low k limit [29], specif-
ically when k|V 1/3

p | � 1 [39], which is valid in our case. The
p-wave scattering cross-section for identical fermions is then
given by

σp(k) = 24π | fp(k)|2 = 24πV 2
p k4, (C2)

where Vp is the p-wave background scattering volume. The

integral over the energy then gives V 2
p

4μ2

h̄4
24
β5 , where we used

E = h̄2k2/2μ for the collision energy, and where μ is the
reduced mass. Combining all terms, and using �th = �el/α,
one directly obtains Eq. (1) of the main text.
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FIG. 8. Comparison between s- and p-wave collision rates.
(a) shows the rate of collisions involving an atom with speed v with
respect to the thermally averaged collision rate. In (b), the collision
rates are weighted by the Maxwell-Boltzman speed distribution.
(c) shows the ratio of s- and p-wave collisions for an atom at speed v.
(d) is the fraction of collisions up to a kinetic energy of ηkBT , where
η is the truncation parameter.

APPENDIX D: COMPARING s AND p-WAVE
COLLISION RATES

Here we analyze how the k4 dependence of the p-wave
scattering cross-section affects thermal equilibration, and
compare to the familiar case of s-wave scattering. The col-
lision rate for partial wave l involving an atom with speed v is

�l,v = nmean

∫
σl |v − v2| fv2d3v2, (D1)

where σl is the collision cross-section, and fv is the Maxwell-
Boltzmann velocity distribution. We are interested in the ratio
of the elastic scattering rate for an atom with velocity v com-
pared to the average scattering rate:

�p,|v1|=v

�p
=

√
2

48

∫ ∞

0

∫ π

0
(ũ2 + u2 − 2ũu cos θ )5/2

× sin θdθe−u2
u2du (D2)

and
�s,|v1|=v

�s
= 1√

2

∫ ∞

0

∫ π

0

√
ũ2 + u2 − 2ũu cos θ

× sin θdθe−u2
u2du, (D3)

where β m
2 v2 = ũ2. Figure 8 shows these collision rates and

their ratio. Considering the mean speed is
√

8kBT
πm , s-wave

interactions have three times more collisions for speeds below
the average speed [Fig. 8(b)]. Detailed balance implies that the
rate of collisions generating low-speed particles is the same
as the rate of collisions involving a low-speed particle. In
evaporative cooling the high-energy tail of the atomic distribu-
tion is removed, and collisions repopulate the tail and transfer
population to lower velocities. For the same average collision
rate, the transfer of population to the velocity group near
v = 0 takes 4 times longer for p wave collisions compared
to s wave [panel (c)]. In addition, for a trap depth of ηkBT
with η = 5, the rate of p-wave collisions calculated for a full
Boltzmann distribution overestimates the collision rate of the
truncated Boltzmann distribution by 13% [panel (d)]. As a
result, efficient evaporation with p-wave collisions requires a
substantially higher ratio of good to bad collisions than s-wave
collisions.
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