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Few- to many-vortex states of density-angular-momentum–coupled Bose-Einstein condensates
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Motivated by recent experiments, we study theoretically a gas of atomic bosons confined in an elliptical
harmonic trap, forming a quasi-two-dimensional atomic Bose-Einstein condensate subject to a density-dependent
gauge potential which realizes an effective density-angular-momentum coupling. We present exact Thomas-
Fermi solutions which allow us to identify the stable regimes of the full parameter space of the model.
Accompanying numerical simulations reveal the effect of the interplay of the rigid body and density-angular-
momentum coupling for the elliptically confined condensate. By varying the strength of the gauge potential and
trap anisotropy, we explore how the superfluid state emerges in different experimentally accessible geometries,
while for large rotation strengths dense vortex lattices and concentric vortex ring arrangements are obtained.
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I. INTRODUCTION

Quantum and classical fluids can respond to rotation by
the nucleation of vortices, effective holes in the fluid density
around which there exists a net circulation. While classi-
cal fluids manifest vortices for arbitrary rotation, vortices
in quantum fluids appear instead when a minimum rotation
is met and are unique since their allowed rotational prop-
erties are restricted. Early experimental work demonstrated
the feasibility of generating quantum vortices in equilib-
rium atomic gases [1–4], while ongoing work has explored
nonequilibrium effects such as quantum turbulence [5], the
Berezinskii-Kosterlitz-Thouless transition [6], Kibble-Zurek
dynamics [7], and the emergence of equilibrium [8] and or-
dered states [9].

Degenerate quantum gases represent a powerful tool for in-
vestigating the phenomenology of analog systems such as the
quantum simulation of effects drawn from condensed matter
[10], quantum information and computing [11], and metrolog-
ical applications [12]. Atomic gases benefit from being highly
controllable; here the statistics, particle interactions, dimen-
sionality, and potential landscape can be engineered with high
fidelity to realize novel and exotic states of quantum matter
[13] such as the recent experimental progress with topological
phenomena [14,15] with these systems.

Quantum vortices represent the fundamental excitations of
superconductors and superfluids alike, appearing in response
to magnetic or rotational driving, respectively. Although the
atomic superfluids He II and weakly interacting Bose-Einstein
condensates both nucleate vortices, the condensate fraction
of He II is small (∼10%) in comparison to that of atomic
condensates which typically contain only a very small fraction
of noncondensate atoms. While studying vortex physics with
strongly interacting superfluids such as He II is challenging,
the weakly correlated quantum fluids have shown to be strong
candidates for understanding superfluid vortices and their

dynamics. Experiments have generated vortex dipoles [16],
observed individual vortex dynamics [17], created vortices
through interference techniques [18], and realized multiply
quantized vortices [19,20]. Theoretical interest in these sys-
tems has focused on understanding the fundamental properties
of the superfluid state [21], anisotropic trapping [22–27],
coherent couplings [28–31], and the dynamics and ordering
properties of few- [32] and many-vortex states [33,34].

Parallel to these developments, neutral ultracold quantum
gases have become a prominent platform for the generation
of synthetic forms of matter. Artificial gauge potentials repre-
sent a burgeoning subdiscipline of this field [35,36], where
experiments have demonstrated orbital magnetism [37–39]
and spin-orbit [40] and spin-angular-momentum couplings
with bosons [41–43] and fermions [44,45]. These experiments
are based on versatile Raman techniques [46] that allow the
internal states of atomic gases to be optically dressed to mimic
the mathematical structure of a variety of gauge theories [47].
The versatile toolbox of quantum technologies now allows for
the creation of gauge potentials giving rise to spatially varying
synthetic magnetic fields which have been shown to lead to
unusual manifestations of superfluidity with a single compo-
nent [48], spin-orbit-coupled systems [49], and proposals for
atom-surface mediated gauge theories [50–52].

All the gauge potentials realized in this way, however, are
static; there is no feedback between the light and the matter
field. To address this, there is a growing subfield whose aim in-
stead is to simulate dynamical [53–55] gauge potentials. One
methodology to overcome this problem is to directly couple
the gauge potential and the quantum state of the system, which
naturally introduces a time-dependent feedback in the form
of a density-dependent gauge potential either in the contin-
uum [56] or for lattice-based theories [57–60]. The associated
phenomenology has revealed a wealth of unusual effects;
in the one-dimensional context the theory violates Kohn’s
theorem [61,62] and possesses exact chiral soliton solutions
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[63–67], as well as exhibiting unusual transport effects when
confined in double-well [68] or harmonic potentials [69]. The
rotational properties of the theory present an opportunity to
understand the vortex solutions and associated superfluidity
in two-dimensional homogeneous [70,71] and trapped config-
urations [72], as well as the simulation of curved space-time
for the excitations of the ground state [73]. Recent work has
also examined the theory’s mathematical structure from a
hydrodynamical perspective [74,75], and proposals have now
appeared that generalize the theory to support gauge theories
such as those with a topological Chern-Simons structure [76],
as well as density-dependent spin-orbit coupling [77].

Complementary to its theoretical appeal, density-
dependent magnetism has also been demonstrated
experimentally with bosons [78] and fermions [79] confined
in two-dimensional optical lattices as well as for an ensemble
of Rydberg atoms [80]. Very recently the first experiment in
the continuum has also appeared realizing domain walls
coupled to a density-dependent gauge potential [81].
In this work we comprehensively examine the unusual
phenomenology provided by this system in a quasi-two-
dimensional harmonically confined configuration, in
particular focusing on the interplay of elliptical harmonic
confinement and the density-dependent gauge field that
manifests as a density-angular-momentum coupling, using
a combination of analytical and numerical approaches
to identify unconventional phenomena in experimentally
accessible regimes.

The paper is organized as follows. In Sec. II we de-
rive the density-dependent gauge theory and particularize
the model such that the gauge potential manifests as a
density-angular-momentum coupling of the atomic cloud in
the quasi-two-dimensional limit. We then derive the static
(Thomas-Fermi) solutions to this model, which we use to
explore the stable regions of the total parameter space of the
model, as well as discussing the requirements for a future
experiment. Following this we present in Sec. III detailed
calculations of the vortical stationary states, under cylindrical
and general elliptical harmonic confinement. We also explore
the effect of the nonlinear rotation on the formation of vortex
lattices and rings comprised of larger numbers of vortices. We
summarize in Sec. IV.

II. THEORETICAL MODEL

A. Density-dependent gauge theory

In what follows we demonstrate how to construct a
density-dependent gauge theory using a weakly interacting
two-component atomic Bose gas. This is based on the adia-
batic theorem, where the gauge potentials appear as geometric
vector and scaler potentials. Our system comprises N two-
level atoms coupled via a coherent light-matter interaction,
forming a Bose-Einstein condensate. Within the rotating-wave
approximation the Hamiltonian can be written as

Ĥ =
[

p̂2

2m
+ V (r)

]
⊗ 1 + Ĥint (r) + ÛMF, (1)

where the light-matter interaction is defined as

ÛMF = h̄�r

2

[
cos θ e−iφ sin θ

eiφ sin θ − cos θ

]
. (2)

Here �r gives the strength of the light-matter coupling and
θ and φ are in general spatially varying quantities. While
the off-diagonal components of Eq. (2) define the coherent
coupling between the light and the matter, the diagonal terms
define the detuning between the frequency of the driving
laser ωr and the atomic transition frequency ωt = ω2 − ω1

between the ground and excited states such that � = ωt −
ωr . Then one has � = �r cos θ . The other quantities that
appear in Eq. (1) are the two-body mean-field interactions
Ĥint = 1

2 diag[�1,�2], with � j = g j jn j + g jknk and g jk =
4π h̄2a jk/m defining the scattering parameter for atoms in
internal states j and k. The population density of state j is
n j = |ψ j |2 and the external harmonic confinement is provided
by V (r) = m(ω2

x x2 + ω2
y y2 + ω2

z z2)/2, where ω j defines the
trapping strength in each coordinate direction. To derive the
density-dependent gauge theory, we require the eigenstates of
the light-matter interaction (2), which for a two-level atom
with internal states |1, 2〉 are defined

|+〉 = cos
θ

2
|1〉 + eiφ sin

θ

2
|2〉, (3a)

|−〉 = −e−iφ sin
θ

2
|1〉 + cos

θ

2
|2〉, (3b)

which obey ÛMF|±〉 = ±h̄�r |±〉/2. In order to construct the
density-dependent gauge theory, we use perturbation theory
and Eqs. (3) to build perturbed dressed states. Since the
motion of the atoms in the dressed states must be adiabatic,
this requires that h̄�r � ER, with ER = p2

R/2m and pR = h̄k
giving the respective atomic recoil energy and momentum
[82]. Then the alkaline-earth atoms represent a good candidate
since these atoms are used for atomic metrology and in partic-
ular atomic clocks and as such possess excited states whose
lifetimes are of the order of seconds [83]. The perturbed
interacting dressed basis states are defined in turn as

|ψ±〉 = |±〉 ± �d

h̄�r
|∓〉. (4)

The mean-field dressed detuning appearing in Eq. (4) is
defined as �d= 〈±|ÛMF|∓〉 = sin θ

2 cos θ
2 (�1 − �2)/2. In or-

der to derive a density-dependent gauge theory, we use
the perturbed dressed states (4) to define a state |χ〉 =∑

j=+,− 
 j (r, t )|ψ j〉 along with Eq. (1), and since the qual-
itative details of the resulting physics do not depend on which
of the two dressed states we choose to project into, the atomic
motion will be projected into the |ψ+〉 state. Hence the effec-
tive Hamiltonian is written

Ĥ+ = (p − A+)2

2m
+ W+ + h̄�r

2
+ �+ + V (r), (5)

where the dressed mean-field atomic interactions are writ-
ten as �+= 〈+|ÛMF|+〉 = (�1 cos2 θ

2 + �2 sin2 θ
2 )/2, while

the two arising geometric potentials are consequences of
the adiabatic atomic motion. The vector potential is de-
fined by A+ = ih̄〈ψ+|∇ψ+〉, while the scalar potential is
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W+ = h̄2|〈ψ+|∇ψ−〉|2/2m. For atomic motion in the |ψ+〉
state these two geometric potentials are

A+ = − h̄

2
(1 − cos θ )∇φ + �d

�r
∇φ sin θ, (6a)

W+ = h̄2

8m
(∇θ )2 + h̄2

8m
sin2 θ (∇φ)2

+ h̄

2m

�d

�r
sin θ cos θ (∇φ)2 − h̄∇θ · ∇�d

�r
. (6b)

In order to derive a mean-field equation of motion for the
atoms, we write the Dirac-Frenkel action S as

S[
∗
+, 
+] =

∫
dt

∫
dr 
∗

+(r, t )

[
ih̄

∂

∂t
− Ĥ+

]

+(r, t ),

(7)
which can in turn be extremized by computing δS/δ
∗

+ = 0,
from which we obtain the generalized Gross-Pitaevskii equa-
tion [56,84]

ih̄
∂

∂t

+ =

[
(p − A+)2

2m
+ W+ + a1 · j + h̄�r

2

+ 2�+ + V (r)

]

+ +

[
n+

(
∂W+
∂
∗+

− ∇ · ∂W+
∂∇
∗+

)
− ∂W+

∂∇
∗+
· ∇n+

]
(8)

for atomic motion in the |ψ+〉 dressed state. Here the strength
of coupling to the gauge potential is a1 = ∇φ�d sin θ/n+�r .
The generalized Gross-Pitaevskii equation (8) includes a num-
ber of additional terms arising from the density dependence of
the geometric potentials (6a) and (6b), in particular the current
nonlinearity

j = h̄

2mi

[

+

(
∇ + i

h̄
A+

)

∗

+ − 
∗
+

(
∇ − i

h̄
A+

)

+

]
. (9)

The theory supports two small parameters: θ = �r/�, which
gives the ratio of the Rabi frequency to the detuning, and
ε = n(g11 − g22)/4h̄�, which underpins the collisional and
coherent interactions. Since both of these parameters are as-
sumed to be small, we can expand Eqs. (6a) and (6b) to first
order in ε and θ , which gives the simplified relations for the
vector potential

A+ = − h̄θ2

4
[1 − 4ε] (10)

and the scalar potential

W+ = h̄2

2

[
(∇θ )2[1 − 4ε] + θ2(∇φ)2[1 + 4ε]

4m
− ∇θ2 · ∇ε

]
,

(11)
which together with Eqs. (8) and (9) can then be used to
construct a simplified density-dependent gauge theory, where
the equation of motion for the condensate becomes

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∇2 + V (r) − �(r, t )L̂z + geff n

]
ψ. (12)

Equation (12) defines a type of generalized nonlinear
Schrödinger equation where the condensate experiences a

nonlinear as well as rigid-body rotation through the density-
dependent rotation frequency �(r, t ) = � + Cn(r, t ). The
two geometric potentials θ and φ are given by θ = θ0ρ and
φ = ϕ, respectively, where θ0 is a constant of proportionality
arising from assuming the angle θ is small. Then the effective
strength of the nonlinear rotation is C = θ2

0 (g11 − g22)/2m�r ,
while geff = g11 + h̄θ2

0 (g11 − g22)/m�r defines the effective
two-body scattering parameter. Finally, the angular momen-
tum operator is given by L̂z = ρ × p. In what follows we
specialize to quasi-two-dimensional harmonic confinement so
that the atomic cloud adopts a pancake geometry with ωz �
ωx,y. This in turn permits us to write the full three-dimensional
mean-field wave function in the factorized form ψ (r, t ) =
ψ (x, y, t ) exp(−z2/2a2

z )/ 4
√

πa2
z , which can be combined with

Eq. (12) to project out the dynamics of the z coordinate. This
causes the effective strengths of the two nonlinear terms geff

and C to be scaled by the factor 1/
√

2πaz, which in what
follows will be absorbed into the definitions of these two
parameters for notational convenience.

B. Experimental considerations

Given the active experimental interest in these types of
synthetic gauge theories [78–81], let us outline the key in-
gredients required to realize the density-angular-momentum–
coupled gauge theory (12). The geometric phase methodology
on which the model is based is generated by the light-
matter interaction (2). Laser light possessing fixed angular
momentum can be exploited in order to generate the required
mathematical structure of the gauge theory [85]. The recent
experiments demonstrating spin-angular-momentum–coupled
Bose-Einstein condensates used Laguerre-Gaussian laser light
with a radially varying electric-field profile [41–43]

E (r) = E0e−i�ϕ

(
ρ

w

)|�|
e−ρ2/w2

eikz, (13)

where E0 is the amplitude, w is waist of the beam, and k is
the wave number. For � = 1, Eq. (13) has precisely the spatial
structure that is required since φ = ϕ and θ ∝ ρ. Accompany-
ing these requirements, the perturbative requirement must also
be satisfied such that ε � 1, and since ε directly depends on
the difference of scattering lengths g11 − g22 [see Eq. (10)],
optical Feshbach resonances for alkaline-earth atoms repre-
sent an important resource for tuning this parameter [86].

C. Static solutions and stability analysis

The energy functional associated with Eq. (12) can be
written in a hydrodynamic picture described by the density
n(ρ, ϕ) and phase ϑ (ρ, ϕ) degrees of freedom, where ρ and
ϕ define the polar coordinates using the Madelung decompo-
sition ψ (ρ, ϕ) = √

n(ρ, ϕ) exp[iϑ (ρ, ϕ)] as

E [n, ϑ] =
∫

dρn

[
h̄2

2m

|∇n|2
4n2

+ m

2
v2 + ih̄

2mn
∇n · A

− A2

2m
+ V (ρ) + geffn

2
− μ′

]
, (14)

where v = (h̄∇ϑ − A)/m defines the hydrodynamic kinetic
velocity, while A=m� × ρ and �= êz(� + Cn/2). Working
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in the limit geffN/h̄ωxa2
x � 1 allows us to drop the quantum

pressure term appearing in Eq. (14). Then, by first minimizing
the energy functional (14) with respect to the hydrodynamic
phase ϑ (ρ, t ), the superfluid velocity vsf = � × ρ is obtained.
Subsequently inserting vsf into Eq. (14) and then minimizing
with respect to the hydrodynamic density n(ρ, ϕ), we obtain
the rotating frame Thomas-Fermi distribution

V (ρ) − m

2
ρ2

(
�2 + 2�Cn + 3

4
C2n2

)
+ geffn = μ′, (15)

where ρ2 = x2 + y2, the elliptical harmonic trap is V (ρ) =
1
2 m(ω2

x x2 + ω2
y y2), μ′ is the chemical potential in the rotating

frame, and the Cartesian boundaries of the cloud are found
from R2

x,y = 2μ′/m(ω2
x,y − �2). In the limit C → 0 we re-

cover the standard rotating frame Thomas-Fermi distribution

with n(ρ) = {μ′ − [V (ρ) − 1
2 m�2ρ2]}/geff . By imposing the

normalization condition∫
dρθ (μ′ − V (ρ))n(ρ) = N, (16)

in this limit we obtain

μ′ =
√

mgeffN

π

4

√(
ω2

x − �2
)(

ω2
y − �2

)
, (17)

which defines the corresponding chemical potential, which
can be shown to possess real (μ′ > 0) solutions when � <

ωy and � < ωx. The two trapping frequencies ωx,y define
the maximum rigid-body rotation strength. Equation (15) is
quadratic in the density distribution n(ρ, ϕ) and can be solved
straightforwardly to give

n(x, y) = − 4

3mC2ρ2

{
− [geff − m�Cρ2] +

√
[geff − m�Cρ2]2 + 3mC2ρ2

2

{
1

2
m

([
ω2

x − �2
]
x2 + [

ω2
y − �2

]
y2

) − μ′
}}

. (18)

Equation (18) gives in general the shape of the background
of the trapped condensate under both nonlinear and rigid-
body rotation. Here we will consider the limit � = 0, which
corresponds to a vortex-free state and allows us to construct
semianalytic and analytical solutions. The solutions in general
are bounded by the ellipse R2

x (ω2
x − �2) + R2

y (ω2
y − �2) =

2μ′/m. The normalization integral (16) can then be partially
evaluated by switching to polar coordinates and leads to the
expression

sinh−1

√
ω2

x (1 − α2)

ω2
y − ω2

x

− sinh−1

√
ω2

x

ω2
y − ω2

x

+
∫ 2π

0

dϕ

2π

ωxα√
ω2

x + [
ω2

y − ω2
x

]
sin2 ϕ

× tanh−1

⎡
⎣ ωxα√

ω2
x + [

ω2
y − ω2

x

]
sin2 ϕ

⎤
⎦

= 3mC2N

8πgeff
, (19)

where for brevity we have defined the dimensionless ratio
α = √

3Cμ′/2ωxgeff which connects the chemical potential
μ′, nonlinear rotation strength C, and quasi-two-dimensional
scattering parameter geff . The final angular integration appear-
ing in Eq. (19) cannot in general be reduced to an elementary
function, except for the special case of when the trap has
cylindrical symmetry so ωy = ωx. This leads to the expression

ln

[
1 − 3C2μ′2

4ω2
x g2

eff

]
+

√
3Cμ′

ωxgeff
tanh−1

[√
3Cμ′

2ωxgeff

]
= 3mC2N

4πgeff
.

(20)
Equation (20) defines an implicit relationship between the
chemical potential and the various interaction parameters,
whose logarithmic nature means that the allowed solu-
tions exist on the finite domain −2ωxgeff/

√
3μ′ � C �

2ωxgeff/
√

3μ′. From this we can identify a minimum value of
the chemical potential μ′

min = 2ωxgeff/
√

3Cmax, which using
Eq. (20) in turn allows us to obtain the maximum nonlinear
rotation strength Cmax as

Cmax =
√

8π ln 2

3

geff

Nm
, (21)

which for C > Cmax (or C < −Cmax) means the nonlinear rota-
tion overcomes the harmonic confinement and the condensate
no longer exists, a situation analogous to the case of pure
(C = 0) rigid-body rotation when the trapped gas is rotated
faster than the harmonic trapping strength such that � > ωx,y

[viz., Eq. (17)]. Using Eq. (21), we obtain the corresponding
minimum chemical potential as

μ′
min =

√
N

π ln 4
mω2

x geff . (22)

Since the chemical potential can be related to the total energy
via the standard thermodynamic relation μ′

min = ∂Emin/∂N ,
Eq. (22) yields the relation Emin = 2

3 Nμ′
min. Then, using the

definition R2
TF = 2μ′

min/mω2
x , we obtain the Thomas-Fermi

length scale associated with Eqs. (21) and (22),

RTF =
(

2

π ln 2

geff N

mω2
x

)1/4

. (23)

Knowledge of the chemical potential given by Eq. (22) and
intrinsic length scale (23) provides useful insight for potential
future experimental studies, since these points in the param-
eter space show predominantly the effect of the nonlinear
rotation as well as providing key information about the stable
regions of the total parameter space of the model. In general,
for elliptical harmonic confinement (ωy �= ωx) Eq. (19) can
be solved numerically to understand the regions where the
condensate exists and as such the maximum nonlinear rotation
strength for the cylindrically symmetry [Eq. (21)] provides a
useful reference point to understand the more general ellipti-
cal case (ωy �= ωx).
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(a)

(b)

(c)

FIG. 1. Nonlinear rotation stability. (a) Boundaries (maximum
nonlinear rotation strength C) for various fixed interaction strengths
geff in the ωy/ωx and C parameter space, along with an example
inset density profile |ψ |2 for (CNm/h̄∼27, ωy/ωx = 2). Also shown
are the counterparts of (a) except with fixed (b) trap ellipticity and
(c) nonlinear rotation strength.

Figure 1 shows the numerical solutions obtained from
Eq. (19) in the parameter space of the trap anisotropy
ωy/ωx, nonlinear rotation strength CNm/h̄, and two-body
mean-field interaction strength geff N/h̄ωxa2

x . The allowed
solutions are presented in the (ωy/ωx, CNm/h̄) parameter
space in Fig. 1(a). Here each of the three shaded regions
corresponds to the allowed solutions for a particular fixed
value of the two-body mean-field strength geff N/h̄ωxa2

x = 1 ×
102, 3 × 102, 5 × 102. The dotted white boundaries in each
case represent the maximum value of the nonlinear rotation
strength CNm/h̄ at which a solution can be obtained for the
Thomas-Fermi density (18). The accompanying inset shows
an example solution for |ψ |2, for geff N/h̄ωxa2

x = 3 × 102 with
trap anisotropy ωy/ωx = 2. The two panels above and below
this show cross sections of |ψ (x, y = 0)|2 and |ψ (x = 0, y)|2,
respectively. The density cut along y = 0 reveals the effect
of the density-angular-momentum coupling, giving a flat-
tened top to the density profile, similar to a quantum droplet
[87]. Figures 1(b) and 1(c) depict the allowed solutions for
fixed trap anisotropy [Fig. 1(b)] and fixed nonlinear rotation

strength [Fig. 1(c)]. Note that the white-dashed boundaries
shown in Fig. 1(c) depict the minimum value of the two-body
mean-field interaction geff at which a solution to Eqs. (18) and
(19) can be obtained. For the case of cylindrical symmetry,
this minimum can be shown to be

gmin
eff = 3

8π ln 2
C2Nm. (24)

In Figs. 1(a)–1(c) the quasi-two- and quasi-one-dimensional
regions are annotated with accompanying arrows. The addi-
tion of the nonlinear rotation means we must also consider
the effect of the parameter C on the validity of the Thomas-
Fermi approximation. Since we work in a perturbative regime
�d � h̄�r , the effect of the gauge field might either be neg-
ligible or require very large coupling strengths to have any
effect that would in turn violate perturbation theory. From the
analysis presented in Figs. 1–3 for typical two-body interac-
tion strengths of order geff N/h̄ωxa2

x ∼ 102 it is already seen
that nonlinear rotation strengths of the order CNm/h̄ ∼ 10
are sufficient to observe effects stemming from the nonlinear
rotation, which does not violate the assumption �d � h̄�r .

Figure 2 shows example solutions for different fixed pa-
rameters. Figure 2(a) shows example chemical potentials
μ′/h̄ωx calculated as a function of the trap anisotropy for
three fixed individual values of the two-body mean-field inter-
action strength geffN/h̄ωxa2

x = 1 × 102, 3 × 102, 5 × 105. We
observe that the point at which the solutions terminate shifts to
larger values of μ′/h̄ωx as the two-body mean-field strength
is increased. Figure 2(b) shows the chemical potential as a
function of the nonlinear rotation strength, for different fixed
values of the trap anisotropy with geff N/h̄ωxa2

x = 3 × 102.
Here the nonlinear rotation strength C attains a maximum
value for the case of cylindrical symmetry (ωy = ωx) and is
found to possess a maximum value that is always smaller than
this for ωy > ωx and ωy < ωx, i.e., as the cloud goes from
a quasi-two to quasi-one-dimensional geometry. Figure 2(c)
depicts four example solutions with ωy/ωx = 0.75, 1, 1.5, 2
in the (geff , C) parameter space with constant μ′/h̄ωx = 10.
Again the point of cylindrical symmetry (ωy = ωx) represents
the point with the largest range of solutions for C, while
either reducing or increasing the anisotropy of the harmonic
trap always reduces the range of available solutions, similar
to Fig. 2(b). Meanwhile, Fig. 2(d) shows example solutions
for fixed μ′/h̄ωx = 10 and CNm/h̄ = 10 in the (geff , ωy/ωx )
parameter space. Plotted on a log-log scale, these solutions
are revealed to be quasilinear, with a maximum and mini-
mum allowed solution for a given fixed pair of parameters.
Increasing the chemical potential μ′ has the effect of shifting
the solutions to higher geff , as well as simultaneously increas-
ing the overall observed range of ωy/ωx for a given pair of
parameters.

It is also also important to consider the validity of the the-
ory in terms of the local density approximation. On physical
grounds this amounts to the size of an individual vortex core
being much smaller than the size of the condensate; conse-
quentially, the healing length ξ = h̄/

√
mμ′ of the vortex must

be much smaller than the Thomas-Fermi length scales Rx,y or

ξ

Rx,y
=

{ h̄ωx√
2μ′ � 1 for x

h̄ωx√
2μ′

ωy

ωx
� 1 for y.

(25)
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(a) (b) (c) (d)

FIG. 2. Fixed parameter solutions to Eq. (19): chemical potential μ′ for fixed (a) interaction strength geff and (b) trap anisotropy ωy/ωx ,
(c) allowed solutions for fixed μ′/h̄ωx = 10 and ωy/ωx obtained from Eq. (19) in the (geff , C) parameter space, and (d) allowed solutions
for fixed μ′ in the (geff , ωy ) parameter space with CNm/h̄ = 10. The gray shaded regions in (b) and (c) indicate the boundary to maximum
nonlinear rotation for ωy = ωx .

Figure 3 presents numerical calculations of the ratio ξ/Rx,y.
Figures 3(a) and 3(b) show ξ/Rx and ξ/Ry, respectively, for
fixed two-body interaction strength geff N/h̄ωxa2

x = 300, for
various fixed trap anisotropies ωy/ωx = 1

4 , 1
2 , 1, 2, 4. In all

cases Eq. (25) is satisfied. Figure 3(c) shows instead ξ/Rx,y

computed as a function of ωy/ωx for various fixed two-body
interaction strengths. The data for ξ/Rx (green) are mono-
tonically decreasing on the interval 0 < ωy/ωx � 5, whereas
the data for ξ/Ry (blue) monotonically increase on this in-
terval. This can be interpreted in a straightforward way: For
ωy/ωx < 1 the data for ξ/Rx show that the local density ap-
proximation is not as good as for ωy/ωx > 1. This situation is
reversed for the equivalent ξ/Ry data, where the local density
approximation is instead improving for ωy/ωx < 1. Finally,
the three schematic diagrams above Fig. 3(b) illustrate the
three situations ωy/ωx < 1, ωy/ωx = 1, and ωy/ωx > 1. For
the case of cylindrical symmetry we can write down an exact

form of Eq. (25) using Eqs. (22) and (23), giving√
π ln 2

N

h̄√
mgeff

� 1. (26)

Finally, let us comment on the presence of the cusps that
appear in Figs. 1(a) and 1(c), Fig. 2(a), and also Fig. 3(c) at
the symmetry point ωy = ωx. Examining the mathematical
structure of Eq. (19), we note that the first two terms on
the left-hand side are a difference of inverse hyperbolic
sines whose arguments involve square roots of the function
(ω2

y/ω
2
x − 1)−1 which is sharply peaked around the symmetry

point ωy = ωx. The difference of these two functions (the
argument of the second is shifted with respect to first by a
factor of 1 − α2, which effectively removes the singularity
at ωy = ωx) can be understood as the origin of these cusps.
As the solutions are continuous through the symmetry point
in these examples, these cusps can be understood as an

(a) (b)

(c)

FIG. 3. Local density approximation. (a) and (b) Ratio ξ/Rx,y with constant geff N/h̄ωxa2
x = 300 throughout for various fixed ωy/ωx as

a function of C and (c) ratio ξ/Rx,y as a function of ωy/ωx . The three schematic diagrams above (b) show the geometry of the cloud for
ωy/ωx < 1, ωy/ωx = 1, and ωy/ωx > 1.
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(a)

(b)

(c)

FIG. 4. Vortex ground-state diagram. (a) Number of vortices Nv as a function of the rigid-body � and nonlinear rotation strengths C for 44
individual ground states. Example ground states |ψ (x, y)|2 are shown for different choices of (�, C), indicated by the gray dashed lines. Also
shown are (b) the energy E computed using Eq. (28) and (c) the angular momentum 〈L̂z〉 corresponding to the data presented in (a).

interesting mathematical artifact of Eq. (19), rather than
having any measurable physical consequence in a potential
experimental.

D. Existence of stationary solutions

Since this model [Eq. (12)] possesses an unusual nonlinear
structure, it is important to consider the nature of the non-
linear solutions and in particular their dynamical behavior.
Since the model is Hermitian, the dynamical evolution of
solutions obtained from the regions of the parameter space
where they exist are stationary with a well-defined energy.
An explicit way to see this is to switch to the hydrody-
namic picture using the Madelung transformation ψ (r, t ) =√

n(r, t ) exp[iϑ (r, t )], giving

∂n(r)

∂t
+ ∇ ·

(
n(r)

{
vϑ − 1

2
[�(ρ, t ) + �] × ρ

})
= 0,

(27)
where vϕ = h̄∇ϑ/m, �(r, t ) = êz�(r, t ), and � = êz�.
Equation (12) has the form of a standard rotating conservation
law for the probability density and does not depend on any
additional terms that constitute loss or gain of probability den-
sity. From this we can conclude that the associated solutions
are stationary, which we explore in the next section.

III. NUMERICAL RESULTS

A. Isotropic nonlinear rotation

In this section we explore the numerical stationary-state
solutions to the generalized Schrödinger equation (12) for
different physical conditions. These solutions are calculated

using a finite-difference scheme, the details of which are
provided in the Appendix. Understanding the possible vor-
tex configurations in superfluid systems remains an ongoing
interest; see, for example, Refs. [88–90] for recent studies.

In this section we begin by considering the possible
ground-state configurations of Eq. (12) in the parameter space
of the rigid-body and nonlinear rotation strength (�, C) for
fixed trap anisotropy ωy/ωx = 1.01 and two-body mean-field
strength geffN/h̄ωxa2

x = 3 × 102. Note that in order to nu-
cleate vortices in this system we require a finite rigid-body
rotation strength (� > 0) since the vorticity would otherwise
be zero at the edges of the system due to the presence of the
trapping potential. In Fig. 4 the number of vortices Nv is pre-
sented in the (�, C) parameter space, allowing us to interpret
the effect of these two parameters on both the morphology
and topology of the superfluid state. In general, increasing �

for fixed nonlinear rotation strength C increases the observed
number of vortices. If instead we fix the rigid-body rotation
strength �, we find that the number of vortices increases
with the modulus of C. The morphology of the superfluid
is strongly affected by the choice of C. For large positive
C the vortices tend to localize; for example, the ground-
state densities |ψ (x, y)|2 for (�/ωx = 0.5, CNm/h̄ = 20) and
(�/ωx = 0.65, CNm/h̄ = 15) show tightly packed arrange-
ments (five and nine vortices, respectively). On the other
hand, for large negative C the vortices tend to delocalize into
ring structures; for example, (�/ωx = 0.55, CNm/h̄ = −25)
and (�/ωx = 0.6, CNm/h̄ = −35) each shows a single ring
of five and seven vortices, respectively. As well as the ring
arrangements, we also observe concentric ring configurations.
For (�/ωx = 0.65, CNm/h̄ = −10) a pair of rings formed

043310-7



MATTHEW EDMONDS PHYSICAL REVIEW A 104, 043310 (2021)

from individual triangular vortex patterns is observed, while
for (�/ωx = 0.7, CNm/h̄ = −30) a pair of rings constructed
from vortices occupying the vertices of two squares is found.
It is also possible to find a ground state comprising a single
ring of vortices surrounding a single vortex at the origin of the
harmonic trap, as shown for (�/ωx = 0.7, CNm/h̄ = −10).
Figures 4(b) and 4(c) show the energy of the individual ground
states computed from the definition

E =
∫

dρ

[
h̄2

2m
|∇ψ |2 + V |ψ |2 + geff

2
|ψ |4 − � · ψ∗L̂zψ

]
,

(28)

which for a fixed value of � increases monotonically as
a function of C. Intuitively, we can understand this behav-
ior since vortices at the edge of the cloud are localized in
a low-density region and have a lower energy than those
at larger values of C that may be closer to the center of
the trap, possessing a corresponding larger ground-state en-
ergy. Figure 4(c) displays the mean value of the angular
momentum, computed from 〈L̂z〉 = ∫

dρ ψ∗L̂zψ . Again the
computed value of 〈L̂z〉 monotonically increases from negative
to positive C for fixed �, due to the effect of the back-
ground of the trapped cloud modulating 〈L̂z〉 with the position
of the vortices. We can also understand the unusual vortex
phenomenology present in this system by considering the
(averaged) vorticity, defined as ωv = ∇ × v [91], where v =
�(ρ, t )êz × ρ. Using these two definitions, we can show that

ωv = êz

[
2�(ρ, t ) + ρ

∂�(ρ, t )

∂ρ

]
. (29)

The vorticity given by Eq. (29) varies in both time and space.
This can be used to interpret the unusual vortex arrangements
described in this work. Here the second (different) term
appearing in Eq. (29) depends on the radial derivative of the
atomic density [Eq. (18)], leading to a contribution to the
vorticity that depends on the local radial curvature of the state.

B. Elliptical trap deformation

Next we explore the effect of varying the strength of
the nonlinear rotation strength while fixing both the trap
anisotropy and rigid-body rotation strengths. Although an-
gular momentum is no longer conserved when ωy �= ωx,
stationary states of the generalized Gross-Pitaevskii model
[Eq. (12)] can still be obtained in the rotating frame in a
similar spirit to Refs. [24,27] where stationary states were
obtained for nonaxisymmetric confined gases for finite rigid-
body rotation. Figure 5 explores the effect of computing the
ground states of Eq. (12) in two configurations: the first with
constant ωy/ωx = 1.25 and �/ωx = 0.6 and the second with
constant ωy/ωx = 1.5 and �/ωx = 0.8. Note that the change
in the rigid-body strength here is to accommodate the fact that
working at larger values of the trap anisotropy ωy/ωx tends
to reduce the observed number of vortices; hence �/ωx is
slightly increased for the case of ωy/ωx = 1.5. Figure 5(a)
shows the ground-state energy E (left axis) computed using
Eq. (28) and corresponding angular momentum 〈L̂z〉 (right
axis). The energy of the ground states, shown as blue pluses
and crosses, is found to be increasing from negative to positive

(a)

(b)

FIG. 5. Nonlinear elliptical rotation ground states. (a) Energy
(blue pluses and crosses) calculated using Eq. (28) and angular mo-
mentum 〈L̂z〉 (green circles and triangles) computed for the trapping
anisotropies ωy/ωx = 1.25, 1.5 as a function of the nonlinear rotation
strength. (b) Corresponding number of vortices Nv as a function
of CNm/h̄. Four example ground-state density and phases are also
shown, labeled (i)–(iv) in (b).

values of CNm/h̄. Again, as described in Sec. III A, this is
due to the vortices tending to delocalize at the edges of the
harmonic trap for C � 0, resulting in a lower overall energy.
Meanwhile, for large (positive) C the vortices are localized
closer to the center of the trap, resulting in a (relatively)
higher ground-state energy. The angular momentum is shown
as green circles and triangles and shows a similar trend to
the energy, increasing from negative to positive C. We also
note that increasing the trap anisotropy ωy/ωx has the effect
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(a)

(d)(c)

(b)

FIG. 6. Deformed trap ground states. (a) Number of vortices computed as a function of the trap anisotropy ωy/ωx; the dashed arrows
connect example ground states for different anisotropies. Example ground states show the density and phase, with vortices highlighted in the
phase. (b) Density for ωy/ωx = 1.2 with accompanying Cartesian cross sections of the density. Also shown are the associated (c) energy and
(d) angular momentum. Throughout �/ωx = 0.7 and CNm/h̄ = 10.

of reducing the amount by which the energy and angular
momentum vary. Figure 5(b) shows the number of vortices Nv

for both configurations presented in Fig. 5(a). Interestingly,
we find that there exists a value of the nonlinear rotation
strength C where the number of vortices is reduced but does
not increase again, in contrast to the situation with cylindrical
trap symmetry described previously in Sec. III A. We attribute
this behavior to the breaking of conservation of angular mo-
mentum, since the density-dependent rotation in the trapped
limit essentially depends on the shape of the harmonic con-
finement which becomes elliptical for ωy �= ωx. Finally, in
Fig. 5 there are several example ground states, labeled (i)–
(iv), showing different vortical configurations for parameters
shown in Fig. 5(b), with the top panels in each example show-
ing the density |ψ (x, y)|2 while the bottom panels show the
associated phase distribution ϑ (ρ) = tan−1{Im(ψ )/Re(ψ )}.
The individual vortices are highlighted in the phase with white
circles.

We can also investigate the effect on the superfluid state
by fixing both of the rotational parameters � and C and
instead varying the ellipticity of the harmonic confinement
through ωy/ωx. Numerical simulations of this situation are
presented in Fig. 6 for �/ωx = 0.7 and CNm/h̄ = 10. Fig-
ure 6(a) displays the number of vortices Nv as a function
of the trap anisotropy. As the trap geometry is gradually
reduced from the quasi-two-dimensional (ωy ∼ ωx) to quasi-
one-dimensional (ωy � ωx) limit, the number of observed
vortices decreases, consistent with the known behavior of
anisotropically confined phase defects [26]. Six individual
ground-state configurations are also presented for different
values of the trap anisotropy ωy/ωx. We observe that close to
the cylindrical ωy ∼ ωx limit the vortices adopt almost trian-
gular configurations, while for ωy/ωx = 1.8, 1.9 the vortices
instead adopt a one-dimensional alignment as well as being

reduced in number. Figure 6(b) displays the ground-state
density |ψ (x, y)|2 for ωy/ωx = 1.2, as well as accompany-
ing Cartesian cross sections |ψ (x, y = 0)|2 (top panel) and
|ψ (x = 0, y)|2 (right panel) showing the cores of the vortices
for this example. Figures 6(c) and 6(d) show the correspond-
ing ground-state energy E [Eq. (28)] and angular momentum
〈L̂z〉, respectively. The ground-state energy E is observed to
increase monotonically with ωy/ωx, again consistent with the
known behavior of these systems [viz., Eq. (17)]. Finally,
Fig. 6(d) showing the angular momentum 〈L̂z〉 is observed
to oscillate as the trap anisotropy is increased, an unusual
and unexpected result, since increasing ωy/ωx typically causes
a reduction of the angular momentum, since the number of
vortices is reduced at larger trapping anisotropies. This is
likely due to the nontrivial effect of nonlinear rotation, which
directly couples the deformed atomic density and the angular
momentum of the condensate.

C. Vortex lattices and rings

In this section we examine the effect of the interplay of
rigid-body and nonlinear rotation when there is significant
vorticity, for the almost cylindrical trap ωy/ωx = 1.01. For the
case of pure rigid-body rotation (C = 0) it is well established
that for large rotational driving strengths � ∼ ωx dense trian-
gular arrangements of vortices are observed. The presence of
the nonlinear rotation in Eq. (12) is expected to give rise to un-
usual many-vortex states, since we know that the presence of
this term modifies the morphology of the vortex arrangements.
Recent related work has also revealed the vortex patterns of
bosonic systems with long-range statistical interactions [92],
a cousin of the model considered in this work.

Figure 7 shows several example stationary states pos-
sessing significant vorticity. In Figs. 7(a)–7(c) the atomic
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Vortex lattices and rings. (a)–(c) Atomic density |ψ |2
for fixed CNm/h̄ = 10 and (a) �/ωx = 0.7, (b) �/ωx = 0.75, and
(c) �/ωx = 0.85, with the corresponding phase shown in each panel
below. (d)–(f) Atomic density |ψ |2 for fixed nonlinear rotation
strength CNm/h̄ = −60 and (d) �/ωx = 0.75, (e) �/ωx = 0.8, and
(f) �/ωx = 0.85, again with the phase distributions shown below in
each case. Throughout ωy/ωx = 1.01.

density is presented corresponding to the fixed nonlinear rota-
tion strength CNm/h̄ = 10 for increasing rigid-body driving
strengths �/ωx = 0.7, 0.75, 0.85, respectively. We can ob-
serve that the increasing number of vortices Nv = 10, 11, 16
in these examples arrange into a triangular pattern; however,
it would seem that as �/ωx increases the density of the
vortices also grows. We would speculate that this is an ef-
fect of the boundaries of the cloud, which as we move to
higher rotational driving strengths become more deformed
due to the nonlinear rotation and hence contribute more in
this limit to the deformation of the observed vortex lattice.
In each case, the corresponding phase distribution is shown
in the panels directly below Figs. 7(a)–7(c), with the vor-
tices highlighted by white circles. Figures 7(d)–7(f) show
stationary states obtained for fixed CNm/h̄ = −60, again
with increasing rigid-body rotation �/ωx = 0.75, 0.8, 0.85,
with the respective number of vortices being Nv = 11, 20, 26.
Again, for C < 0 we observe the spatial delocalization of
the vortices and the absence of the triangular Abrikosov
vortex lattice. Instead, the vortices tend to arrange into ring
structures, as observed in Fig. 7(d). Interestingly, as �/ωx

is increased, concentric (double) ring structures can also be
obtained, as shown in Figs. 7(e) and 7(f). We can see that
the shape of the background condensate is quite different for
the examples presented in Figs. 7(a)–7(c) with C > 0 and
Figs. 7(d)–7(f) with C < 0, due to the underlying generalized

(rotating) density distribution n(ρ) [Eq. (18)] possessing a
distorted form compared to the standard Thomas-Fermi dis-
tribution. As before, the corresponding phase distributions are
presented below Figs. 7(d)–7(f) and the vortices are high-
lighted with white circles.

IV. SUMMARY

In this work we have examined theoretically the few- to
many-vortex states of a gas of bosons confined in an elliptical
harmonic trap, subject to a density-dependent gauge poten-
tial that manifests as an effective density-angular-momentum
coupling to the atomic condensate. By constructing analytical
and semianalytical solutions in the Thomas-Fermi limit, the
stability of the nonlinear system was probed as a function
of the anisotropy of the confinement and strengths of the
nonlinear rotation and two-body interactions. This in turn
revealed stable and unstable regions of the parameter space,
the condensate being stable over the largest parameter values
(nonlinear rotation strength) close to the cylindrical limit,
while for more quasi-one-dimensional configurations the sta-
ble regions of the total parameter space were found to be more
restricted.

Numerical simulations of the generalized Schrödinger
equation revealed the vortical phenomenology, including the
topology and morphology of the various ground states of the
rotating system. Close to cylindrical confinement, different
vortex patterns were presented, exploring the interplay of the
nonlinear rotation and the rigid-body rotation. Vortex ring
arrangements were observed and attributed to the effect of
the unusual vorticity present in the system. Following this, the
effect of elliptical harmonic trapping was studied. Here the
trap aspect ratio was fixed while the strength of the nonlinear
rotation was varied, revealing a critical point where the vor-
tices separate into opposing regions of the trapped cloud, an
effect caused by the spatially varying vorticity. Then the effect
of fixing the nonlinear rotation strength and changing the
trap ellipticity was investigated. It was found that, similar to
the case of rigid-body rotation, increasing the trap anisotropy
from a quasi-two- to quasi-one-dimensional limit causes the
total number of observed vortices to decrease. Finally, we con-
sidered the effect of the density-angular-momentum coupling
at larger rigid-body rotation strengths in an almost cylindrical
trap. It was found that for large positive nonlinear rotation
strengths vortex lattices with increasingly densely arranged
vortices are observed, while instead for large negative nonlin-
ear rotation strength the vortices arrange into single ring and
(multiple) concentric ring structures.

This work has explored the effect of elliptical density-
angular-momentum coupling in quasi-two-dimensional
atomic Bose-Einstein condensates, revealing the exotic
phenomenology of this unusual physical system. As well as
being interesting from a fundamental physics perspective,
exotic superfluid systems such as those considered in this
work also provide an important potential resource for
quantum technologies. One potential application in this realm
is the emerging field of atomtronics, which aims to harness
cold-atom systems to realize, e.g., analogies of classical
electronic circuits [93]. In this sense the density-dependent
gauge theory studied in this work possesses a spatially
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varying vorticity which could be exploited to realize
atomtronic circuits with radial symmetry without the need
for complicated ring trap potentials [94], due to the ability to
realize ring vortex arrangements in a standard harmonic trap
with the system studied in this work. In the future it would
be interesting, for example, to understand experimentally
motivated dynamical effects associated with dimensional
crossovers, such as vortex solitons and solitonic vortices, as
well as beyond mean-field effects such as density-dependent
quantum droplets.
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APPENDIX: NUMERICAL SIMULATIONS

In this Appendix we outline the methodology used to com-
pute the numerical solutions presented in Sec. III. Essentially,
we propagate the generalized Schrödinger equation (12) in
imaginary time using the discretization

ih̄

[
ψn+1

j,k − ψn
j,k

�t

]

= − h̄2

2m

[
ψn

j+1,k − 2ψn
j,k + ψn

j−1,k

�x2

+ ψn
j,k+1 − 2ψn

j,k + ψn
j,k−1

�y2

]

+ Vj,kψ
n
j,k + ih̄

(
� + C

∣∣ψn
j,k

∣∣2)
×

[
x j

{
ψn

j,k+1 − ψn
j,k−1

2�y

}
− yk

{
ψn

j+1,k − ψn
j−1,k

2�x

}]

+ geff

∣∣ψn
j,k

∣∣2
ψn

j,k, (A1)

where the continuous wave function ψ (x, y, t ) becomes the
discrete variable ψn

j,k . The spatial and temporal grid sizes are
defined as �x,�y and �t , respectively, and numerical stabil-
ity requires �t/�{x, y}2 < 1

2 (ωxa2
x )−1. In our simulations we

used �x = �y = 0.05ax and �t = 5 × 10−5(ωx )−1.
Figure 8 shows data recorded from two example

imaginary-time runs for different physical parameters. Fig-
ure 8(a) shows E [tn] − E [tN ], i.e., the difference between the
energy recorded after the nth sample and the final sample N ,
where each sample is recorded after every 2 × 105 iterations.
Figure 8(b) shows instead the difference between consecutive
samples E [tn−1] − E [tn] plotted semilogarithmically. The ini-
tial condition ψ0

j,k for each run is taken as a pseudorandom
matrix, which breaks any underlying symmetries and stops

FIG. 8. Imaginary-time ground-state calculations: (a) example
data for the difference of the sampled energy during imaginary time
and the final energy and (b) difference between the consecutively
sampled energies. The two gray lines are a fit [see Eq. (A2)] during
the final equilibration of the vortex pattern.

the simulation from getting stuck in any metastable states.
Note that for a finite (trapped) system vortices can only be
nucleated if � �= 0, since phase defects enter the cloud via
the boundaries, so one must always work at finite � in order
to generate vorticity with a density-angular-momentum cou-
pling. Then propagation in imaginary time leads to different
dynamical regimes. For nωxt � 100, vortices enter the cloud
from the edges of the system and begin to arrange themselves
inside the trap. After this for 100 � nωxt � 200 the vortices
continue to arrange themselves closer to the equilibrium con-
figuration, which occurs for long times and is heralded by the
exponential decay of the energy difference (gray dashed lines)
which follows the exponential fit

|E [tn−1] − E [tn]|
h̄ωx

= a0 exp(−t/τ ), n � 1, (A2)

where τ = 47/ωx and a0 is a fitting parameter, which gives the
converged ground-state configuration. Individual simulations
can be terminated after a certain tolerance of the energy dif-
ference is obtained. This is typically less than approximately
10−10, although configurations with more vortices present or
where there are vortices closer to the edges of the harmonic
trap require a smaller tolerance to produce the final high-
fidelity ground state.
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D. S. Hall, Dynamics of a Few Corotating Vortices in Bose-
Einstein Condensates, Phys. Rev. Lett. 110, 225301 (2013).

[33] K. E. Wilson, Z. L. Newman, J. D. Lowney, and B. P. Anderson,
In situ imaging of vortices in Bose-Einstein condensates,
Phys. Rev. A 91, 023621 (2015).

[34] A. Rakonjac, A. L. Marchant, T. P. Billam, J. L. Helm, M. M. H.
Yu, S. A. Gardiner, and S. L. Cornish, Measuring the disorder
of vortex lattices in a Bose-Einstein condensate, Phys. Rev. A
93, 013607 (2016).

[35] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Collo-
quium: Artificial gauge potentials for neutral atoms, Rev. Mod.
Phys. 83, 1523 (2011).
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